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Abstract: A 21-year Enhanced Vegetation Index (EVI) time-series produced from MODIS satellite im-
ages was used to study the complex phenological cycle of the drought semi-deciduous shrub Phlomis
fruticosa and additionally to identify and compare phenological events between two Mediterranean
sites with different microclimates. In the more xeric Araxos site, spring leaf fall starts earlier, autumn
revival occurs later, and the dry period is longer, compared with the more favorable Louros site.
Accordingly, the control of climatic factors on phenological events was examined and found that the
Araxos site is mostly influenced by rain related events while Louros site by both rain and temperature.
Spring phenological events showed significant shifts at a rate of 1–4.9 days per year in Araxos,
which were positively related to trends for decreasing spring precipitation and increasing summer
temperature. Furthermore, the climatic control on the inter-annual EVI fluctuation was examined
through multiple linear regression and machine learning approaches. For both sites, temperature
during the previous 2–3 months and rain days of the previous 3 months were identified as the main
drivers of the EVI profile. Our results emphasize the importance of focusing on a single species and
small-spatial-scale information in connecting vegetation responses to the climate crisis.

Keywords: remote sensing; MODIS; enhanced vegetation index; temperature; precipitation; rain
days; inter-annual variability; time-series; machine learning; climate change

1. Introduction

Vegetation response to climate variability is becoming increasingly important, espe-
cially under the frame of the ongoing global climate change [1–3]. Our understanding of
vegetation function, its interactions with the climate, the key controlling mechanisms, and
its vulnerability to climate change are far from complete. Evidently, understanding climatic
influences on processes and interactions enables the prediction of changes under different
climatic scenarios [4,5].

The most consistent results of climate change experiments are the species-specific
responses. Many experiments that have been conducted worldwide, including manip-
ulations of the CO2 and UV-B environment, temperature rise, and N deposition, have
manifested that plant species differ in their sensitivity to damage and their morphological,
biochemical, and physiological responses to altered environmental factors [6,7]. The exact
position held by a certain species in the sensitivity-tolerance continuum, as well as its spe-
cific responses, could cascade upwards to alter community and ecosystem composition and
structure through changes in the competitive balance between species [8,9]. Additionally,
the proposed conceptual frameworks for analysis of the species and ecosystem response
to changing climate underline the importance of thresholds for interpreting experimen-
tal results and predicting effects [10]. Rapid, nonlinear changes in some plant processes
or responses can be triggered by even small differences in environmental conditions if
threshold values are exceeded. This evidence stresses the importance of studies focusing
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on direct and indirect effects of environmental change on plant species and not only on
large formations and ecosystem-level spatial scales.

Plant phenology is considered an important factor that mediates vegetation and
climate relationships, through affecting a diverse set of processes [2]. Phenology is not
merely the succession of recurrent biological events in the plant’s lifecycle, but it also greatly
relates to plant activity, since different phenophases affect plant function and resource
allocation patterns [11]. The phenology–climate feedbacks are bi-directional. At one end
is the climate impact on the timing and duration of phenological events [3,12]. At the
other end is the influence of phenological events and, moreover, transitions on vegetation
feedbacks to the microclimate, i.e., humidity, temperature, wind speed, as well as soil
moisture and topsoil temperature [2]. Scaling up at the community and ecosystem level,
phenology influences processes and mechanisms such as water, CO2, and energy fluxes
which feedback to large-scale vegetation–atmosphere interactions. The well-established
sensitivity of phenology to year-to-year variability in climate could also serve as an indicator
of the long-term biological impacts of climate change on terrestrial ecosystems [13,14].

Remotely sensed data proved to be a valuable tool in coupling climate and vegetation
distribution/performance at large spatial and temporal scales. As a result, the objective of
many studies was the assessment of the effects of certain environmental factors on remote-
sensing-derived vegetation parameters [15–17]. A common feature in most of the above-
mentioned research efforts is the large spatial scale used, i.e., regional, continental or global,
exploiting satellite-derived simultaneous estimates of ecosystem function over wide areas.
Indeed, remote sensing of vegetation offers a promising and urgently needed assessment
of ecosystem function at a spatial scale that is comparable with the extent of human-caused
environmental change. However, information on specific species performance, which is
possibly incorporated in remote sensed data, is rather lost in the inevitably vague picture
given by large spatial-scale studies [18]. Ecophysiological field surveys could address
this issue, but because of laborious and time-consuming measurements, they have the
disadvantage of temporal and spatial limitations. Alternatively, satellite imagery in the
context of studying a particular species’ behavior, i.e., at small spatial scale, may render
an accurate picture of species responses to natural climate variability, as well as climate
change [19,20].

The focus on species and use of satellite data to study species-level responses, from a
phenological and especially an eco-physiological point of view, to climate forcing has an
essential prerequisite: strong correspondence with ground-measured plant processes or
features [21,22]. Indeed, established relationships between ground-determined characteris-
tics and their satellite-derived surrogates in terms of vegetation indices allow for an explicit
physiological meaning to the latter. This in turn permits understanding, monitoring, and
explaining species behavior, as well as identifying broad patterns in space and time, in-
cluding a species’ relationship with environmental determinants. Collectively, established
correlations enable exploiting the advantages of remote sensed data, i.e., large spatial and
temporal scales, with direct reference to species phenological/physiological characteristics.
The above-mentioned benefits justify the intensive research efforts of the last two decades
devoted in establishing such correlations [22–25].

The Enhanced Vegetation Index (EVI) has been shown to be well correlated with
LAI, biomass, canopy cover, and the fraction of absorbed photosynthetically active radia-
tion [26,27], and is therefore useful for monitoring seasonal, inter-annual, and long-term
variation of the vegetation structure and function [28]. EVI has been used instead of the
Normalized Difference Vegetation Index (NDVI) because it reduces sensitivity to soil and
atmospheric effects and remains sensitive to variation in canopy density where NDVI
becomes saturated [29–31]. Given these characteristics, modelers have begun using EVI
data to predict net primary production in ecosystem modelling applications [24,29].

Under the above-described framework, a 21-year EVI time-series is used in the present
study to assess climatic effects on the growth cycle of the drought semi-deciduous Mediter-
ranean shrub Phlomis fruticosa. P. fruticosa was chosen for the following reasons: (a) it is
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a typical drought shrub of Mediterranean ecosystems and, moreover is considered a key
species of the garrigue vegetation which dominates the most xeric parts of the Mediter-
ranean basin [32]; (b) we consider this species an ecological indicator of overgrazed ecosys-
tems in which it forms large, continuous, and undisturbed stands, exclusively covered by
this particular species, because it is not eatable by major farm animals (sheep, goats); (c) it
has a multi-phase intra-annual growth cycle, with distinct phases being possible targets to
climatic effects, which makes P. fruticosa a good model plant for satellite-derived phenol-
ogy studies; (d) its growth cycle has been extensively studied through eco-physiological
field measurements [33,34]; thus, there are established relationships between growth/eco-
physiological parameters and satellite indices [22,25]; (e) the plasticity and adaptability of
P. fruticosa, although established by field eco-physiological measurements have not been
validated in large space and time scales, as those provided by satellite imagery.

For the purposes of the present study, two distant P. fruticosa ecosystems, with dif-
ferences in climatic characteristics were chosen. The aims were (a) to depict the complex
phenological cycle of this species through satellite-derived EVI and extract metrics that
analyze the phenological events and transitions, (b) to determine the climatic drivers that
influence the phenophases and their possible differences between the two sites, and (c) to
identify trends for change, which could further be used as diagnostic and prognostic tool
for climate crisis effects.

2. Materials and Methods
2.1. Study Sites

Two ecosystems dominated by P. fruticosa with different climatic characteristics were
chosen in order to study possible differences in climate control and plant responses
(Figure 1): (a) Araxos area, the southern one (NW Peloponessos, Greece, 38.18◦ N, 21.37◦ E),
characterized by a prolonged summer stress period where high temperature co-exists
with a severe water shortage and (b) Louros area, the northern one (Epirus, Greece,
39.17◦ N, 20.85◦ E), with more favorable temperature and water availability conditions for
plant growth.

Figure 1. Map of Greece with the two study sites indicated with red dots and the locations of the
meteorological stations with blue dots.
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2.2. Meteorological Data

Meteorological data (average daily temperature and daily precipitation) of the 21-year
study period (2000–2020) for Araxos site were recorded by a meteorological station situated
in Andravida, about 29 km from the study area, while for Louros site, in Aktion airport,
about 28 km from the study site. Data were downloaded from U.S. National Oceanic and
Atmospheric Administration (NOAA) National Climatic Data Center (NCDC, www.ncdc.
noaa.gov, accessed on 1 March 2021). In Figure 2, the annual profile of the average total
monthly precipitation and the average monthly temperature for the 21-year study period
is presented for both study sites. Increased rain amounts in Louros site throughout the
year and a slightly lower temperature during the stressful summer period are evident
(average temperature of June to August 25.93 ± 0.62 ◦C for Araxos and 25.25 ± 0.63 ◦C for
Louros). For Araxos, the average annual temperature is 17.86 ± 0.35 ◦C and total annual
precipitation 759.5 ± 151.8 mm, while for Louros, the temperature and precipitation were
17.64 ± 0.42 ◦C and 919.3 ± 217.2 mm, respectively.

Figure 2. Annual profile of the average total monthly precipitation (bars) and the average monthly
temperature (points) for the 21-year study period (2000–2020) for Araxos and Louros study sites.

2.3. Species Description

Phlomis fruticosa is a dimorphic, semi-deciduous shrub of the eastern Mediterranean
areas. It bears two kinds of leaves—winter and summer ones—with different biochemical
and structural characteristics [30]. Winter leaves and summer leaves of the previous
growing season are massively shed during mid to late spring, resulting in a decrease in Leaf
Area Index (LAI). Hereinafter, we refer to this event as spring drop. During the summer dry
period, plants bear summer leaves developed during spring, which are smaller than winter
leaves and have lower chlorophyll content. After the onset of the autumn rainy period,
summer leaves absorb water rapidly (within days) and increase their area, while they alter
their biochemical characteristics, including chlorophyll content increase. Additionally, new
winter leaves with high chlorophyll content appear during November. Hereinafter, we refer
to this event as autumn revival. The transformation of summer leaves and the appearance
of winter leaves during autumn result in an increase in LAI, which remains almost stable
during winter, until next spring. Even though this phenological/physiological cycle is
repeated every year, the extent and/or the exact date for each particular phenological
event seem to depend on the microenvironmental conditions [31]. The main physiological
advantage of the semi-deciduous habit is the decrease in the transpiring leaf area during
the summer dry months, resulting in more efficient water economy.

www.ncdc.noaa.gov
www.ncdc.noaa.gov
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2.4. Satellite Data

The Enhanced Vegetation Index (EVI) was used in the present study. For the calcu-
lation of EVI, data from the Moderate Resolution Imaging Spectroradiometer (MODIS)
onboard the Terra satellite (part of the NASA Earth Observing System) were used. MODIS
scans the entire Earth surface every 1–2 days, acquiring data in 36 spectral bands. Out
of the 36 spectral bands, 7 bands are designed for the study of vegetation and land sur-
faces: blue (459–479 nm), green (545–565 nm), red (620–670 nm), near infrared (NIR1:
841–875 nm, NIR2: 1230–1250 nm), and shortwave infrared (SWIR1: 1628–1652 nm, SWIR2:
2105–2155 nm). Several products with differences in spectral, spatial, and temporal resolu-
tion, as well as in correction levels are freely provided by the MODIS Land Science Team
to users. In the present study, the geometrically and atmospherically corrected Surface
Reflectance 8-Day L3 Global 500 m product (MOD09A1), available to the public from the US
Geological Survey EROS Data Center (USGS EROS Center, http://eros.usgs.gov/, accessed
on 1 March 2021), was used. EVI was calculated according to the equation:

EVI = 2.5
Rnir − Rred

Rnir + 6Rred − 7.5Rblue + 1
(1)

where Rnir is reflectance between 841 and 875 nm, Rred between 620 and 670 nm and Rblue
between 459 and 479 nm [35].

The MOD09A1 datasets (2000–2020), which have a 500 m spatial resolution and 8-day
temporal resolution, were downloaded from the USGS EDC website using the geographical
coordinates of each study site and 21 years EVI time-series were produced for 4 and 3 pixels
for Araxos and Louros sites, respectively. These pixels were selected for each site after
land observations and GPS recording, as being homogenous and dominated exclusively
by P. fruticosa. The time-series of each pixel were corrected for erroneous values during
cloudy dates or other reasons using the BISE (Best Index Slope Extraction) algorithm [32].
Accordingly, for each date the average of the corresponding pixels was calculated for each
site and used for the construction of time-series over the 21-year study period. The time-
series of the two sites were further smoothed using an adjusted Fast Fourier Transform [36].
Additionally, the average annual EVI profile for each site was calculated by averaging EVI
values for the same 8-day period between years (Figure 4).

2.5. Phenology Metrics

The phenological cycle of P. fruticosa—as described above—may be depicted by the
seasonal EVI fluctuation shown in Figure 2. High and rather stable values of EVI during
winter (December to March), corresponding to high LAI and chlorophyll content values, are
followed by the spring drop period (April to June). The steep reduction in EVI during that
period corresponds to the massive loss of winter leaves and summer leaves of the previous
year. During summer dry period (July to September), plants bear a small number (low LAI)
of low chlorophyll content summer leaves (low and stable EVI values). The subsequent
autumn revival period, coinciding with the onset of the autumn rainy period (October–
November), is characterized by an abrupt rise of EVI, as a result of the “resurrection”
of summer leaves (rapid increase in leaf area due to water absorption, accompanied by
chlorophyll content increase) followed by the burst of new winter leaves at the end of
autumn. This pattern is repeated every year in both study sites, but remarkable differences
in parameters of spring drop, dry period and autumn revival may occur among sites
and/or years.

In order to quantify the phenological events described above (spring drop, dry period,
and autumn revival), the parameters presented in Table 1 were calculated for each site
and year. For the calculation of spring drop and autumn revival related parameters, the
1st derivative of the EVI curve was used. Day of Year for spring drop onset (SDO) and
autumn revival onset (ARO) are determined when the 1st derivative departs from near
zero values (Figure 3) and spring drop end (SDE) and autumn revival end (ARE) when
the 1st derivative returns to near-zero values, during the spring and autumn EVI steep

http://eros.usgs.gov/
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change period. The differences between SDE-SDO and ARE-ARO result in the spring drop
duration (SDD) and autumn revival duration (ARD), respectively.

Table 1. Phenological events derived from the EVI curves, their abbreviations, and characteristics.

Phenological event Abbreviation Characteristics

Spring drop onset SDO Day of Year
end SDE Day of Year

duration SDD Number of days. SDD = SDE – SDO

Autumn revival onset ARO Day of Year
end ARE Day of Year

duration ARD Number of days. ARD = ARE – ARO

Dry period onset DPO Day of Year
end DPE Day of Year

duration DPD Number of days. DPD = DPE – DPO

Annual maximum EVI Max EVI
Date of Max EVI Day of Year

Annual minimum EVI Min EVI
Date of Min EVI Day of Year

Figure 3. Typical profile of the annual fluctuation of EVI (thick line) and its 1st derivative (thin line).
Red horizontal line corresponds to EVI = 0.3 and EVI 1st derivative = 0. Black vertical lines indicate
the onset and end of the spring drop and the autumn revival period, when EVI 1st derivative departs
or returns to zero values for onset and end correspondingly. Red vertical lines indicate the onset and
end of the dry period, when EVI is lower than 0.3.

Concerning dry period parameterization, onset (DPO) and end (DPE) of the dry period
were calculated according to the threshold method [37,38]. The EVI value of 0.3 was defined
as the threshold for DPO and DPE and was chosen because it represents the midpoint
between absolute maximum and absolute minimum (all 21 years) EVI values. Thus, DPO
and DPE were quantified as the Day of Year at which EVI reaches or leaves 0.3, respectively,
and the dry period duration as their difference (Figure 3).
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Additionally, in an attempt to exploit all the information contained in the shape of
EVI curve, annual maximum and minimum values and the date of their occurrence were
also determined for each site and year (Table 1). Finally, mean monthly EVI was calculated
and used as a surrogate of ecosystem dynamics in the assessment of climate control on
growth features. All the above-mentioned extracted parameters were used as independent
phenology metrics in the statistical analyses (see below) for the identification of the most
influential climatic factor.

2.6. Statistical Analysis

The relationships between the above described phenological events and climatic pa-
rameters were assessed using Pearson correlations and stepwise multiple linear regressions.
The examined climatic parameters concern total monthly precipitation (P), monthly sum of
rainy days (RD) and mean monthly temperature (T), of different time intervals-concurrent
and lagged-in relation to the corresponding phenological event. More specifically, pheno-
logical events were examined against the following combinations:

1. Average temperature, total precipitation, and total rain days of one to six consecutive
months before each phenological event, e.g., for a phenological event occurring in
October, total precipitation of October and September (two months combination).

2. Average temperature, total precipitation, and total rain days of one to five consecutive
months with one to five months lag before the event, e.g., for a phenological event
occurring in October, total precipitation of August and July (two months combination
with two months lag time).

The first step was to perform a Pearson correlation analysis for each phenological event
and the above-mentioned climatic parameters. Accordingly, the independent variables
that exhibited the maximum correlations in each case were employed in multiple linear
regression analyses with stepwise selection. Collinearity of predictor variables was auto-
matically detected by the statistical software and subsequently dealt by omitting variables
and re-running the regression analysis.

The influence of climatic parameters on inter-annual EVI variation was examined
following two different regression analysis methods, i.e., multiple linear regression and
random forest machine learning. As in the case of phenology and climate control, all com-
binations of the climatic parameters (precipitation, rain days, temperature) of various time
intervals and time lags of consecutive months up to six months before the event (EVI of a
particular month) were considered. Initially, a monthly step EVI time-series was produced
for each site, by averaging the analytical time-series data for each month. For the first
approach, the most significant climatic parameters were determined through single linear
regressions between monthly EVI and climatic parameters. Accordingly, combinations of
the most important parameters were examined through stepwise multiple linear regres-
sion. Analyses showed that a high regression coefficient was achieved with two climatic
parameters, i.e., adding additional parameters did not significantly enhance the efficiency
of the regression (data not shown). On the second approach, all climatic parameters were
used in a random forest machine learning procedure. During this procedure, data were
randomly split into a training set (64% of data), a validation set (16% of data) for perfor-
mance optimization and a test set (20% of data) for assessment of performance efficiency.
However, for an overall comparison of machine learning with multiple linear regression all
data were used in Figure 8. The efficiency of the two approaches was assessed through the
coefficient of determination (R2) and Root Mean Square Error (RMSE) of the predicted EVI
against actual EVI values.

All statistical analyses were performed with JASP v.0.16 software (JASP Team 2021
Computer Software), which includes a machine learning module.
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3. Results
3.1. Phenology

In Figure 4, the annual EVI profile for the two study sites is presented as average ± SD
from the 21-year study period data. In Araxos, spring drop as well as dry period (EVI < 0.3)
starts earlier and dry period ends later in autumn, accompanied by a retarded autumn
revival. Additionally, annual maximum and minimum EVI values appear higher for the
Louros site compared with Araxos, possibly as a result of better physiological performance
and/or higher shrub density under the more favorable conditions of Louros.

Figure 4. Annual EVI profile for the two study sites as average ± SD from the 21-year study period
data. The red line marks EVI = 0.3, the value which was defined as the threshold for dry period onset
and end.

These general differences among sites are usually followed every year throughout the
21-year study period (Figure 5). Additionally, it is clear from Figure 5 that the annual pro-
files for both sites show strong differences from year to year. These interannual variations
may be rather large, especially during summer periods, as seen by comparing the very dry
summer of 2001 with the wet summer of 2016 (Figure 5).

In an attempt to reveal the detailed differences between sites, the phenological events
described in Table 1, were determined for all years and sites and their average values are
presented in Table 2, whereas the most important among them, i.e., events concerning
spring drop, dry period, and autumn revival, are depicted in Figure 6.

As shown in Table 2, onset and end of spring drop occur 15 and 27 days earlier in
Araxos compared with Louros, respectively, with both events showing statistically signif-
icant differences. Additionally, spring drop in Araxos occurs more rapidly, as indicated
by the smallest duration, compared with Louros. Dry period starts 40 days earlier and
finishes 11 days later in Araxos compared with Louros, resulting in a significantly longer
dry period duration by 51 days. Concerning autumn revival, onset and end appear 13 and
5 days later, respectively, in Araxos, even though only onset is significant. However, as in
the case of spring drop, autumn revival occurs more rapidly in Araxos (shorter duration),
compared with Louros. Maximum and minimum EVI values are both significantly higher
in the Louros site, where more favorable climatic conditions prevail. Accordingly, the date
of maximum EVI appears 22 days earlier in Araxos, whereas no statistical difference is
evident for the date of minimum EVI.
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Figure 5. Interannual EVI fluctuation for the 21-year study period for the two study sites (a); EVI
fluctuation and the corresponding precipitation profile during a dry (2001, b) and a wet (2016, c) year
in the two study sites. The blue line marks the threshold for dry period onset and end (EVI = 0.3).

Table 2. Average data (±SD) for the phenological events described in Table 1 for the two study sites,
their difference (Araxos–Louros), and the significance of their difference (P, paired t-test). DOY, Day
of Year; ND, Number of Days.

Phenological Event Araxos Louros Difference P

Spring Drop
Onset (DOY) 95 ± 14 110 ± 11 −15 <0.001
End (DOY) 212 ± 33 239 ± 17 −27 0.004

Duration (ND) 117 ± 38 129 ± 23 −11 0.242

Dry Period
Onset (DOY) 131 ± 8 171 ± 19 −40 <0.001
End (DOY) 304 ± 33 292 ± 37 11 0.033

Duration (ND) 172 ± 34 121 ± 47 51 <0.001

Autumn Revival
Onset (DOY) 268 ± 23 255 ± 22 13 0.007
End (DOY) 345 ± 40 340 ± 42 5 0.486

Duration (ND) 77 ± 33 85 ± 32 −8 0.238

Max EVI 0.439 ± 0.026 0.473 ± 0.028 −0.034 <0.001
Date of Max EVI (DOY) 81 ± 17 103 ± 10 −22 <0.001

Min EVI 0.179 ± 0.011 0.226 ± 0.021 −0.048 <0.001
Date of Min EVI (DOY) 253 ± 23 245 ± 20 8 0.171
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Figure 6. Graphical depiction of onset, duration, and end of the main phenological events (Spring
Drop, Dry Period and Autumn Revival) for the two study sites. For all events, onset and end
correspond to Day of the Year, whereas duration corresponds to number of days (data from Table 2).

3.2. Phenology and Climatic Control

In order to account for climatic controls of phenology, average monthly temperature,
total monthly precipitation and total monthly rain days of time windows relevant to each
event and transition were examined. More specifically, phenological events were examined
against climatic parameters of various time intervals and time lags up to six months before
the event (see Section 2.6).

Spring drop onset for Araxos is influenced by precipitation of April (Figure 7), with
more rain delaying SDO. Accordingly, Louros is similarly influenced by the rain days of
April and March, whereas the temperature during January and February also plays a role;
low temperature delays SDO, probably through sustaining higher soil water capacity.

In Araxos, where precipitation during summer months is minimal and with low
interannual variability (July and August rainfall of 15 ± 33 mm), the main influential factor
on SDE is temperature of July and August with high temperature delaying the SDE and
resulting in lower minimum EVI values compared with Louros (Table 2). On the contrary,
in the wetter and more variable Louros site (July and August rainfall of 29 ± 61 mm), SDE
is mainly influenced by summer precipitation: the more it rains the earlier SDE appears
and at higher minimum EVI value compared with Araxos.

Dry period onset for Araxos, is affected by the precipitation of March and April (higher
precipitation delays onset) and the temperature of April and May (higher temperature
advances onset). For Louros, DPO is mildly affected by the February temperature, with
higher temperature delaying the event. DPE for Araxos is strongly affected by summer-
early autumn rain, since both precipitation and rain days of July to October period influence
the event, causing a delay at drier years. Similar effects of precipitation are evident
for Louros, but for this site, the temperature in July also plays a minor role; a higher
temperature results in earlier DPE and shorter duration.
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Figure 7. Climatic control on phenological events and transitions of P. fruticosa in the two sites as
derived by single or multiple linear regressions. The phenological metrics are: Spring drop onset
(SDO); spring drop end (SDE); spring drop duration (SDD); Dry period onset (DPO); dry period
end (DPE); dry period duration (DPD); Autumn revival onset (ARO); autumn revival end (ARE),
autumn revival duration (ARD); MaxEVI the maximum value of EVI; MaxDate, the date it is achieved;
MinEVI the minimum value of EVI; MinDate, the date it is achieved. For each phenological event, the
partial regression coefficient(s) of the most significant climatic variable(s) (precipitation (Pr), number
of rain days (RD) and temperature (T)) of single or multiple months (top line) is presented in the
corresponding colored horizontal lines, according to the chromatic scale appearing in the right. The
regression coefficient (R2) of the model which includes the factors influencing each event and the
corresponding level of significance (p) is presented in the right column of each site.

Autumn revival onset is also strongly affected by rain (precipitation of July to October
and rain days of August and September), with earlier onset during wetter years. A similar
effect of rain is apparent for Louros, but only through precipitation (June to October).
For both sites, ARE is affected by autumn rain days (July to October for Araxos and
September to October for Louros). Nevertheless, a rather unreasonable effect of June rain
days is evident in Araxos, where more rain days during June delay the ARE. However, this
peculiar effect is also recorded for ARD for both sites (rain days of June for Araxos and July
for Louros).

The value of maximum EVI seems to be positively affected by spring rain days for both
sites (of March for Araxos and March–April for Louros). Winter precipitation affects the
date in which the maximum EVI is achieved for both sites. More specifically, more rainfall
during January to March for Araxos and January for Louros causes a delayed appearance
of maximum EVI. Minimum EVI occurs during late August or early September in both
sites. The rain days of August is the determinant of minimum EVI in Araxos, whereas
precipitation over a longer period, February to June, positively affects the minimum EVI of
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Louros. Additionally, Louros seems to be affected by temperature of July, but in a rather
unexpected way, since higher temperature results in higher EVI. Finally, for both sites
the date that the minimum EVI appears is affected by the spring–summer precipitation
(May–June for Araxos and March to August for Louros), with more rain transferring the
date earlier.

Collectively, the 13 phenological events analyzed above are influenced mostly by rain
related parameters for the Araxos site; more specifically 10 events by precipitation and/or
rain days, 2 events by temperature and 1 event by both rain and temperature. On the
contrary, both rain and temperature play crucial roles in Louros phenology, since 6 events
are influenced by precipitation and/or rain days, 6 events by both rain and temperature,
and 1 event by temperature.

3.3. Phenology and Climate Change

All phenological events examined above could be potentially related to the ongoing
climate change. Our dataset of 21 years is long enough to permit the analysis of the trends
of phenological events’ interannual fluctuation in the context of climate change. As shown
in Figure 8, spring-drop-related events show significant trends for the Araxos site, but not
for Louros, whereas no significant trends appear for the rest of the phenological events (data
not shown). The trends appearing for Araxos seem to be explained by similar trends in the
main climatic factors that these events are related to (Figure 8). SDO tends to commence
earlier in the season by 1 day per year, whereas April precipitation—the main influential
climatic parameter (Figure 7)—tends to decrease by 1.7 mm per year. Accordingly, SDE
experiences a delay by 3.8 days per year and spring drop duration is elongated by 4.9 days
per year. Both events are influenced by July–August temperature (Figure 7), which shows a
similar trend, increasing by 0.06 ◦C per year during the study period (Figure 8).

Figure 8. Interannual fluctuation of the spring drop related phenological events (dots) and their trends
(lines) for the two study sites during the study period: (a) Spring drop onset (SDO,), (b) spring drop
end (SDE), (c) spring drop duration (SDD. Interannual fluctuation of the main climatic parameters
influencing the phenological events of the Araxos site (dots) and their trends (lines) during the study
period: (d) April precipitation, (e) July–August temperature.
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3.4. EVI and Climatic Control

Since all phenological parameters are extracted from the EVI time-series, the influence
of climatic parameters on EVI per se was examined as a final integrating step. To that
purpose, as in the case of climate control on phenological events, all combinations of the
climatic parameters (precipitation, rain days, temperature) of various time intervals and
time lags of consecutive months up to six months before the event (EVI of a particular
month) were considered through two regression analysis methods, i.e., multiple linear
regression and random forest machine learning.

As shown on Figure 9, EVI may be predicted by similar parameters for both sites
through multiple linear regression analysis, i.e., temperature of the previous two months
for Araxos and three months for Louros and rain days of the precious three months for
both sites. However, the machine learning approach—in which all climatic parameters are
included—results in much stronger models compared with the multiple linear regression
approach, as judged by R2, RMSE and the regression line which is closer to the 1:1 line. It is
worth to note, that the parameters determined by the multiple linear regression approach
are among the most important ones determined by the machine learning approach, but the
inclusion of additional parameters significantly enhances model efficiency.

Figure 9. Regressions between measured and modelled EVI through multiple linear regression (MLR,
a,c) and random forest machine learning (RF, b,d) for Araxos (a,b) and Louros (c,d). In multiple
linear regressions (a,c) the two climatic parameters participating in the models are shown in the right
lower corner of each graph. In machine learning models (b,d) the ten most important parameters are
shown. In both cases parameter importance decreases from top to bottom. Black lines correspond to
the 1:1 lines and red ones to the regression lines. Climatic parameters are described by an acronym
for parameter description (T for temperature, Pr for precipitation, and RD for rain days) followed by
a number showing the number of the corresponding months and a number corresponding to the lag
time, for example T_2_1 refer to temperature of two months before one month.
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4. Discussion

In this study, the phenological differences between two sites dominated by the semi-
deciduous shrub Phlomis fruticosa, were examined using MODIS EVI time-series. P. fruticosa
has been extensively studied from an ecophysiological point of view with both field mea-
surements [33,34] and in combination with satellite data [22,25]. The most important
characteristic of its growth pattern is the massive leaf shedding during spring, as an adap-
tation to the adverse conditions of the hot and dry Mediterranean summer, accompanied
by autumn revival after the onset of the autumn rains.

4.1. EVI Tntra- and Inter-Annual Fluctuation and Phenology Metrics

The first target of the present study was to monitor seasonal and inter-annual fluctua-
tion of EVI and, subsequently, to identify key phenological events, in order to analyze the
temporal dynamics of P. fruticosa community in two distinct sites.

The two sites examined in this study are located near to the shoreline of western
Greece but have a latitude difference of about 1◦. Accordingly, during the 21-year study
period, the southern site (Araxos) appeared more xeric compared with the northern site
(Louros, Figure 2).

As shown in Figures 3–5, satellite data can capture and effectively describe the com-
plex phenology of the semi-deciduous shrub. The inter-annual variability of EVI values
is considerable and this is well depicted in two extreme years, the dry 2001 and wet 2016,
which are presented in Figure 5 in relation to precipitation. Both sites exhibit an analo-
gous profile concerning the prolonged drought phase (denoted by EVI < 0.3) at the dry
year, which is considerably shortened during the wet year. In the relevant remote sensing
literature, several studies have reported a detailed single-species phenology monitoring,
emphasizing the importance of spatially explicit analyses and the study of phenological
trends in small-scale level [15,39,40]. Especially in the fragmented and highly heteroge-
neous Mediterranean vegetation, this approach connects small- to large-scale information
on community or ecosystem function, which would be otherwise lost if only regional level
is considered [41].

The timing of certain phenological events that describe the annual cycle of P. fruticosa
differs in various degrees between the two sites. In the southern Araxos, the earlier spring
drop onset, the later autumn revival onset, the prolonged dry period and the earlier
appearance of maximum EVI are important in shaping the annual picture and statistically
significant. It is well documented that the above-described phenological transitions relate
to greening-up or senescence processes which control the community function, state,
and productivity [22,25]. Thus, the phenological transitions are influenced and in turn
may influence the microclimate, generating gradients of humidity and temperature and
affecting topsoil characteristics. Playing such a crucial role in microclimate modification
the phenological patterns may have long-term feedback on larger-scale vegetation–climate
interactions [2].

4.2. Climatic Control on Phenological Events

In semi-arid Mediterranean ecosystems, the high inter-annual variability of EVI sug-
gests that the “memory effects” of previous year’s climate are minimized, as proposed by
Catorci et al. [42]. Therefore, our analysis of the relationship between phenological events
and climatic drivers was focused on up to 6 months preceding each certain transition. The
spring and dry-period-related events were influenced by both precipitation and temper-
ature of a short preceding period. The spring drop of winter leaves indicates the end of
winter growth and the “preparation” of P. fruticosa to face summer adverse period. Spring
precipitation was the major driver of SDO, whereas its duration was influenced by summer
precipitation in Louros and summer temperature in the drier Araxos site. Spring phenology
has been proved to be sensitive to climatic control in Mediterranean-type ecosystems,
possibly due to the high variability of climatic parameters during spring [4,43]. Work-
ing with Mediterranean grasslands Catorci et al. [42] reported that rainfall in March and
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drought stress in April and May were the main drivers of satellite-derived spring biomass
production. Climatic parameters linked to moisture control are predominant in shaping
vegetation response in Mediterranean, semi-arid and arid ecosystems [44]. Precipitation
totals over the preceding three months have been found to correlate with the start of growth
season in various Mediterranean regions [4]. Piedallu et al. [45] highlighted the positive
correlation of spring temperature with vegetation greenness in an elevation gradient in
South France, while stating that rainfall played a minor role in the overall region response,
except for the most arid microsites.

The onset of the dry period for P. fruticosa was determined as the time-point at which
the EVI reaches the 0.3 threshold, denoting a massive leaf loss thus a significant decrease
in LAI. Increased spring precipitation retards DPO, but increased spring temperature ad-
vances it in Araxos, whereas the temperature of February is the only important parameter
in Louros. The duration of dry period and the DPE is influenced mainly by precipitation in
both study sites. The seasonal timing of rainfall events is important in determining their
effects on phenology [43]. Especially in semi-arid systems and drylands, the precipitation
during water-deficit periods is significantly more important in driving phenology than the
rain during favorable moisture conditions. Broich et al. [31] suggested that the stronger
correlation patterns with single-month compared with multi-month aggregated drivers
indicate that rainfall at a specific time-point determines most phenological events. Cor-
roborating this conclusion, our findings suggest that 7 out of 13 phenology metrics were
influenced by single or double-month precipitation related parameters in the drier site
of Araxos.

The autumn revival of P. fruticosa is characterized by the resurrection of summer
leaves and the massive production of the winter leaves, thus it is related to an abrupt
increase in EVI values. The ARO is primarily driven by the precipitation of the previous
5 months in Louros, whereas in Araxos an equal contribution of the previous 4 months
precipitation and the rain days of previous 3 months is recorded. This result is in accordance
with Cabello et al. [43], who reported that the earlier arrival of the first rains after the
summer adverse period significantly account for the acceleration of growth period onset in
Mediterranean drylands. To the same direction was the effect of precipitation on vegetation
greening in semi-arid sites of Tunisia [17]. On the contrary, Horion et al. [46] stated that
temperature of the last month was the major climatic constraint for growth from the start
of vegetative growth to flowering in two studied sites in the Mediterranean basin.

The study of possible climate change effects on phenology was significantly advanced
by the use of satellite remote sensing as an efficient tool for continuous vegetation mon-
itoring in large temporal scales [47,48]. The present 21-year study covers an adequate
period to evaluate trends in timing of phenological events. A significant trend for earlier
spring drop onset in Araxos site was evident following the similar downward trend of
April precipitation, which was found to be the most influential climatic factor at this par-
ticular event and site. On the contrary, the SDE showed a delay rate of 3.8 days year−1,
in response to July-August temperature increase. Both SDO advancement and SDE delay
resulted in a significant trend for prolonged SDD, at a rate of 4.9 days year−1. Spring
events in Louros and the other phenophases of P. fruticosa showed weak or no trends for
change. The advancement of spring phenology is one of the consistent observations across
Northern Europe [18], North America [30], and China [5] during the two recent decades.
In Mediterranean-type ecosystems, the spring phenology trends show scattered spatial
pattern according to a comprehensive study of Ivits et al. [4]; over the southern Mediter-
ranean region, an earlier start-of-season was observed, whereas over parts of the northern
Mediterranean basin a growing season shift towards later dates was evident. Concerning
the climate forcing of spring phenology trends, March rainfall was reported as the main
driver of NDVI variability [42], whereas in accordance with our results Cabelo et al. [43]
also reported a trend for reduced spring precipitation which accounted for spring phenol-
ogy variations. Temperature rising has also well documented consequences in vegetation
phenology, especially in semi-arid ecosystems [49–51]. An interesting outcome of the
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analyses presented here is that the contribution of both temperature and precipitation is
higher in shaping the Louros phenological profile, whereas the more xeric Araxos depend
more on rainfall. This is in accordance with the relevant literature, where a positive link of
precipitation and satellite-derived phenology has been generally observed, but a stronger
relationship has been reported for xeric compared with colder and wetter areas [45,52].

Temperature and rain days proved to be the main climatic drivers of EVI profile
for both Araxos and Louros sites, according to multiple linear regressions and machine
learning approach (Figure 9). Specifically, the temperature of the previous two (Araxos)
or three (Louros) months and the number of rain days for the preceding three months
account for the overall variation of EVI in the 21-year period. The same climatic factors
with variable time windows are present in the set of the 10 most influential parameters
derived from the machine learning approach, which is increasingly adopted in studies
involving time-series. It is interesting to examine these results in the context of climate
change. Mediterranean ecosystems are vulnerable due to intense anthropogenic pressure,
natural disturbances (i.e., drought and fires), and a highly fluctuating climate, with main
characteristic the erratic precipitation patterns [4]. The scenarios of climate change impact
on the existing precipitation and temperature regimes include a large reduction in annual
precipitation and an increase in inter-annual variability. The latter is expected to result in
more heavy rainfall concentrated in fewer rain days, thus prolonged and frequent drought
events. Thus, it is crucial to include the parameter of rain days in the studies of climatic
forcing on phenology and ecosystem productivity.

The findings of the present work revealed differences in both P. fruticosa phenology and
its climatic drivers between two sites being only 1◦ apart with small differences in climate.
We may expect even more significant differences between regions with completely different
climatic profile, though the direction and magnitude of response cannot be predicted. The
single-species sites examined in this work facilitated EVI signal analysis and drawing
conclusions but simultaneously may be considered a study’s limitation concerning the
applicability of the methodology in more diverse and species-rich ecosystems. Future
studies may examine distant Mediterranean sites where significantly different climatic
conditions prevail. Moreover, incorporating other key Mediterranean species will be crucial
for understanding the dynamics of Mediterranean species phenology in regard to climate.
Since P. fruticosa is a key species in garrigue formations in Greece (also called phrygana),
the findings of the present study may give valuable baseline information for future studies
on more complex garrigue ecosystems phenology and the involved climatic drivers.

5. Conclusions

The complex phenological cycle of the drought semi-deciduous P. fruticosa was clearly
depicted in the satellite-derived EVI seasonal fluctuations in both studied sites, the southern
Araxos and the northern Louros. The phenology metrics were differentiated between the
two sites. The contribution of both temperature and precipitation is higher in shaping the
Louros phenological profile, whereas the more xeric Araxos depends more on rainfall. In
Araxos, a trend for SDO advancement and more prolonged SDD was recorded during
the last 21 years, closely related to certain precipitation and temperature trends. The
results of the present study revealed the importance of analyzing the seasonal timing of the
phenological events in the lifecycle of a typical species of the Mediterranean ecosystem and
of identifying the climatic drivers of their profiles changes. This approach, which focuses
on a single species and explicit small-spatial-scale information, will be crucial in connecting
small- and large-scale vegetation responses to climate crisis.
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