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Abstract: Soursop leaves are a source of phytochemical compounds, such as phenolic acids, flavonoids,
hydrolyzable tannins, and acetogenins. These compounds can have several types of biological ac-
tivities. Lactic acid bacteria can uptake phenolic compounds present in plants or fruits. The aim of
the present work was to investigate the in vitro effect of hexane, acetone, methanolic, and aqueous
extracts of soursop leaves (Annona muricata L.) on the growth, motility, and biofilm formation of Lacto-
bacillus casei, and to determine compounds related to growth. The minimum concentration promoting
growth, motility (swimming, swarming, and twitching), and biofilm-forming capacity (crystal violet)
were evaluated. The results showed the growth-promoting capacity of acetone and aqueous extracts
at low doses 25–50 mg/L, and an inhibition in the four extracts at higher doses of 100 mg/L. The
L. casei growth is related to ellagic acid, quercetin rhamnoside, kaempferol dihexoside, quercetin
hexoside, secoisolariciresinol, and kaempferol hexoside-rhamnoside. Hexane extract increased the
three types of motility, while aqueous maintained swimming and twitching motility similar to control.
The four extracts inhibited the biofilm formation capacity.

Keywords: prebiotic; Lactobacillus; polyphenol; probiotic; growth promoters; soursop leaves

1. Introduction

The growing demand for functional foods and nutraceuticals has guided researchers
to develop new products that meet the needs of consumers. An example of this is the use
of beneficial bacteria, which can restore the balance of microbiota, stimulate the immune
system, reduce digestive disorders, improve the absorption of nutrients, produce vitamins
such as B and K, and prevent diseases [1,2]. Lactic acid bacteria (LAB) are a group of
probiotic bacteria commonly used in the pharmaceutical and food industries [3], due
to their low energy cost of production, production of compounds, such as lactic acid,
flavorings, thickeners, and bacteriocins [4].

One of the most widely studied lactic acid bacteria, for its health-promoting properties,
is Lactobacillus casei, a probiotic bacterium used to treat or prevent diverse diseases, so it is
extensively used in the industry [5].
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The demand for probiotics, such as L. casei, is increasing rapidly due to their impact
on consumers’ health, so satisfying demand is a challenge [6]. Additionally, extracellular
metabolic by-products of L. casei have been used as antagonist bacteria, bio-preservative,
production of bacteriocin, and enzymes as clarification of juice [7–10].

Due to the above, recent research has focused on searching for new precursor resources
for the growth of these microorganisms and the development of non-dairy products that
preserve their viability and bioavailability [11,12].

Lactic acid bacteria can adapt to the characteristics of raw materials, such as plants
or fruits, which are an abundant source of phenolic compounds [13]. Therefore, various
interactions of medicinal plants and spices have been evaluated, such as extracts of oregano,
pomegranate peel, and cloves, among others, which are rich in polyphenols. These plant
materials have shown an antibacterial capacity against pathogenic bacteria at concentrations
greater than 2500 µg/mL. However, they do not inhibit the growth of lactic acid bacteria
(LAB) or probiotic bacteria [14]. Sutherland et al. [15] reported the growth of Lactobacillus
reuteri by using aqueous extracts of garlic and black pepper. Furthermore, the aqueous
extracts of banana, apple, and orange significantly increased the growth of L. reuteri,
L. rhamnosus, and Bifidobacteria lactis. Park et al. [16] reported the production of lactic acid
bacteria in fermented kimchi (cabbage, garlic, red pepper, and ginger).

Due to its wide nutraceutical and therapeutic use, a potential substrate for probi-
otics is soursop (Annona muricata L.) leaves [17]. It has bioactive properties, such as
anti-inflammatory, anticarcinogenic, antidiabetic, antifungal, antibacterial, anthelmintic,
and antiviral [18,19]. Furthermore, the soursop leaves are a source of antioxidant com-
pounds and possess a wide diversity of phytochemical compounds, such as phenolic
acids, flavonoids, hydrolyzable tannins, saponins, terpenoids, coumarins, annonaceous
acetogenins, and cyclic hexapeptides [20,21]. The above compounds could be taken up by
probiotic bacteria since their enzymes intervene in the glycosylation of the compounds,
some oxidation processes, demethylation, and catabolism of small phenolic acids and
aromatic compounds [22].

Therefore, this work aimed to investigate the in vitro effect of hexane, acetone, methano-
lic, and aqueous extracts of soursop leaves (Annona muricata L.) on the growth of Lactobacil-
lus casei, and to determine compounds related to it. Further, we evaluate the effect of the
extracts on the bacteria’s motility and biofilm-forming capacity.

2. Results
2.1. Effect of Extracts on Lactobacillus Casei Growth

Figure 1 shows the effect of the dosage of soursop leaf extracts, SHE (hexane extract),
SAE (acetone extract), SME (methanolic extract), and SWE (aqueous extract), on the growth
of L. casei. SAE and SWE treatments at 25 µg/L showed the highest growth (p < 0.05); they
increased the growth 80% above the control. However, all extracts at 100 µg/mL decreased
the bacterium’s growth percentage.
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Figure 1. Growth percent of Lactobacillus casei. SHE soursop hexane extract, SAE soursop acetone
extract, SME soursop methanol extract, and SWE soursop aqueous extract. Different letters indicate
significant differences according to the Fisher LSD test (p < 0.05).

2.2. Polyphenols in Soursop Leaf

Table 1 shows the content of polyphenolic compounds identified in the soursop leaf
extracts. A total of 31 compounds were identified, including two flavanols, 12 flavonols,
two hydroxybenzoic acids, 13 hydroxycinnamic acids, and two lignans. Of the identified
compounds, 58% were found in the SAE, while SME presented 54% of the compounds. The
polyphenols with the highest concentration were kaempferol dihexoside (286.01 µg/g) and
kaempferol hexoside-rhamnoside (199.30 µg/g). Both compounds were found in SME.

2.3. Effect of the Polyphenols on the Growth of L. casei

According to the PLS-DA model plot constructed with the profile of polyphenols and
microbial growth (Figure 2), eight compounds from soursop leaf extracts were related to
the L. casei growth (VIP > 0.8 and coefficients > 0.10). These compounds were identified as
ellagic acid (27), quercetin rhamnoside (11), rhamnetin rhamnoside (8), coumaroyl hexo-
side (30), kaempferol dihexoside (5), quercetin hexoside (6), secoisolariciresinol (31), and
kaempferol hexoside-rhamnoside (9). Quercetin hexoside (6), ellagic acid (27), coumaroyl
hexoside (30), and secoisolariciresinol (31) were presented in the aqueous extract (SWE).
These compounds are polar, so they have a greater affinity for water. Furthermore, quercetin
hexoside was presented in acetone (SAE) and hexane (SHE) extracts, and secoisolariciresinol
in hexane extract (SAE). Quercetin hexoside and secoisolariciresinol showed affinity for
solvents of a range from polar to nonpolar, so they dissolve in water (polar), acetone
(moderately polar), and, specifically, quercetin hexoside was soluble in hexane (nonpolar).
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Table 1. Polyphenols profile of extracts from soursop (Annona muricata L.).

Family Code Compound Concentration (mg/g)
SAE SHE SME SWE

Flavanols 1 (+)-Catechin * ND ND 5.96 ± 0.41 ND
2 (-)-Epicatechin * ND ND 27.15 ± 1.53 ND

Flavonols 3 Quercetin dihexoside ND ND 0.06 ± 0.00 ND

4 Quercetin rutinoside
(rutin) * 0.02 ± 0.00 ND ND ND

5 Kaempferol dihexoside 10.03 ± 1.11 0.02 ± 0.00 286 ± 44.07 185.82 ± 8.31
6 Quercetin hexoside 27.04 ± 2.58 0.03 ± 0.00 ND 23.42 ± 1.30
7 Quercetin xylosyde ND 0.02 ± 0.00 ND ND

8 (Iso)-rhamnetin
rhamnoside 0.39 ± 0.03 ND 0.35 ± 0.03 0.19 ± 0.00

9 Kaempferol
hexoside-rhamnoside 9.17 ± 1.06 0.01 ± 0.00 199.30 ± 14.59 115.94 ± 18.51

10 Kaempferol hexoside 32.30 ± 3.21 ND ND ND
11 Quercetin rhamnoside ND ND 0.03 ± 0.00 60.38 ± 6.48
12 Quercetin * 15.21 ± 0.71 0.06 ± 0.00 ND 3.51 ± 0.21
13 Kaempferol * 21.01 ± 1.29 0.27 ± 0.01 ND 0.92 ± 0.06
14 (Iso)-rhamnetin 0.40 ± 0.03 0.01 ± 0.00 ND ND

Hydroxy-
Dihydroxybenzoic acid

hexoside

5.41 ± 0.22 ND 33.43 ± 1.46 ND
benzoic 15

acids
16 Hydroxybenzoic acid * ND ND 0.20 ± 0.01 ND

Hydroxy- 17 Caffeoylquinic acid
isomer I *

ND ND 15.70 ± 0.89 ND
cinnamic acids ND ND ND

18 Coumaroylquinic acid
isomer I ND ND 11.88 ± 0.68 ND

19 Caffeoylquinic acid
isomer II ND ND 6.20 ± 0.33 ND

20 Sinapic acid hexoside 0.78 ± 0.06 ND 0.09 ± 0.01 ND

21 Feruloylquinic acid
isomer I 0.32 ± 0.02 0.039 ± 0.00 ND ND

22 Coumaroylquinic acid
isomer II ND ND 17.00 ± 0.91 ND

23 Caffeoylquinic acid
isomer III ND ND ND ND

24 Feruloylquinic acid
isomer II 0.55 ± 0.04 0.039 ± 0.00 0.14 ± 0.01 ND

25 Coumaric acid * ND 0.023 ± 0.00 0.06 ± 0.00 ND

26 Feruloylquinic acid
isomer III 0.62 ± 0.04 0.02 ± 0.00 ND ND

27 Ellagic acid * ND ND ND 0.07 ± 0.01
28 Ferulic acid * 0.74 ± 0.03 ND ND 0.25 ± 0.01
29 Sinapic acid * 0.15 ± 0.01 ND ND 0.06 ± 0.00
30 Coumaroyl hexoside ND ND ND 0.08 ± 0.00

Total 124.142 ± 10.45 0.121 ± 0.00 603.54 ± 64.93 204.82 ± 26.58

Family Compound Response (AU)
SAE SHE SME SWE

Lignanes 31 Secoisolariciresinol 4651.90 ± 440.68 ND ND 3877.30 ± 147.70
32 Medioresinol ND ND 2645.60 ± 290.4 ND

* Identification confirmed with commercial standards. (ND) not detected.
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Figure 2. Association of polyphenols profile of soursop (Annona muricata L.) leaf with their effect
on the Lactobacillus casei growth capacity through a PLS-DA model. PLS-DA, partial least square-
discriminant analysis.

2.4. Effect of Extracts on Motility and Biofilm-Forming Capacity

According to bacterial growth results, the dose of 25 µg/mL was used to evaluate
motility and biofilm formation capacity. Figure 3A shows the swimming-type displacement
of L. casei. Treatment SAE decreased the bacterium displacement, while SHE increased the
displacement regarding control (p < 0.05). On the other hand, SME and SWE did not show
significant differences regarding control (p > 0.05).

Figure 3B shows that treatments SAE and SWE decreased the displacement swarming-
type regarding control, while SHE increased the displacement (p < 0.05). SME did not
show significant differences concerning control (p > 0.05). The displacement twitching of
L. casei is shown in Figure 3C. Treatments SHE and SWE significantly increased this type
of displacement, while SME and SAE decreased it compared to the control (p < 0.05). All
extracts decreased the biofilm-forming capacity (p < 0.05) of L. casei (Figure 3D).
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Figure 3. Box-plot of the effect of the extracts on displacement swimming (A), swarming (B), twitching
(C), and biofilm-forming capacity (D). Different letters indicate significant differences according to
the Fisher LSD test (p < 0.05).

3. Discussion

Different properties have been found in soursop (A. muricata L.), such as antimicro-
bial, anti-inflammatory, antiprotozoal, antioxidant, insecticidal, larvicidal, and cytotoxic
activity to tumor cells. These properties have been related to the more than 200 chemical
compounds found in this plant [23]. In this study, 31 compounds were identified. Secoiso-
lariciresinol (Sccl) and medioresinol (Mdl) have not been previously reported in soursop
leaves. Secoisolariciresinol has been reported in pulp and seed of another species of the
same genera, such as Annona cherimola [24].

The highest concentration of phenolic compounds was found in the methanolic extract,
followed by water. Previous studies have shown that methanol has a greater affinity for
phenolic compounds [25,26]. Phenolic compounds such as quercetin and its derivates
present several hydroxyl groups, which gives it the hydrophilic character; however, they
can be both lipo- and hydrophilic, depending if the molecule shows O-methyl, C-methyl,
and phenyl derivates, which are lipophilic, and they could be solubilized in acetone or
hexane [27]. The affinity of the solvents for different compounds could cause the extracts to
have different biological activities.

The ability to affect microbial growth is one of the biological properties of plant
extracts, either by inhibiting or increasing microbial growth. In this sense, we found a
differentiated response depending on the dose. The lower evaluated concentrations of
acetonic, methanolic, and aqueous extracts increased bacterial growth regarding control.
The acetonic and aqueous at 25 µg/mL highlight increased microbial growth. On the other
hand, we also found that the extracts at a dose of 100 µg/mL decreased bacterial growth.
Some authors have reported that soursop leaf extract inhibited the growth of Acanthamoeba
triangularis, S. aureus, B. subtilis, E. coli, K. pneumonia, and Proteus vulgaris using doses
between 500 and 1000 µg/mL [28–31]. This behavior related to dose-response could be
due to the phenomenon of hormesis. According to toxicology, hormesis is the effect of
non-nutritional substances, which may have beneficial or stimulatory effects at low doses
and produce adverse effects at higher doses [32,33]. Furthermore, Laparra and Sanz [34]
mention that phytochemicals may inhibit pathogenic bacteria while stimulating the growth
of beneficial bacteria, exerting prebiotic-like effects.
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The stimulatory effect of acetone and aqueous extracts on the L. casei growth could be
related to extracts composition. The previous could be because this bacterium has been
characterized as an auxotrophic microorganism; namely, it cannot synthesize all growth
factors, so it is necessary to obtain them from the growth medium [35]. Lee and Paik [36]
mention that Lactic Acid Bacteria (LAB), as L. casei, use polyphenols and polysaccharides
as substrates in fermentations.

The PLS-DA model contructed with the polyphenols profile of soursop leaves extracts
and the bacterial growth showed that the main polyphenols associated with L. casei growth
were ellagic acid (27), quercetin rhamnoside (11), rhamnetin rhamnoside (8), coumaroyl
hexoside (30), kaempferol dihexoside (5), quercetin hexoside (6), secoisolariciresinol (31),
and kaempferol hexoside-rhamnoside (9). These compounds showed the higher values
of VIP (>0.8) and coefficients (>0.10), as we observe in Figure 2, which indicate that those
compounds can be considered as the principal compounds associated with L. casei growth.
Some authors mention that Lactobacillus spp. may metabolize polyphenols using bacterial
enzymes, such as β-glucosidase, α-rhamnosidase, and β-glucuronidase. These enzymes
could hydrolyze conjugated polyphenols and release glycosides and aglycones (flavonols
as kaempferol, quercetin, quercitrin, and rutin, which are identified as aglycones) [36–38].

LAB can uptake oligosaccharides from the conjugated polyphenols and assimilate
them through the fermentative metabolism of hexoses and pentose. This process can
release aglycones that possess bioactive capacities (biological activity) as an antioxidant,
antibacterial, preservative, and chemoprotective, among other properties [39].

Kaempferol and glycosylated derivates can protect against reactive oxygen species
in cells [40]. In addition, these flavonoids can protect cells from different insults that lead
to mitochondria-mediated cell death and attenuate oxidative stress and mitochondrial
dysfunction [40,41].

Valero-Cases et al. [42] mention that lactic acid bacteria can uptake ellagic acid and
increase survival. Lactobacillus spp. Can metabolize ellagic acid and secoisolariciresinol and
biotransform them into secondary metabolites like enterodiol and enterolactone, according
to Bravo et al., which give them one of their probiotic features. Furthermore, ellagic acid has
been shown to prevent possible modifications to the mitochondrial membrane, oxidative
stress, and toxins’ effects on cell division [43–45].

Regarding quercetin and its glycosylated derivates, Curiel et al. [46] found that
quercetin has effects dependent on pH and compound concentration. Moreover, quercetin
increased the growth and sugar consumption of L. plantarum. Braga et al. [47] asseverate
that quercetin could prevent lipid oxidation by its antioxidant properties. This could
help to maintain the membrane integrity on L. casei. Besides, Herranz-López et al. [48]
assert that quercetin and quercetin-3-O-glucuronide can restore the mitochondrial mass
and biogenesis, postulating that they could act as agonists of specific proteins. Finally,
Lacerda et al. [49] mentioned that substances like quercetin and kaempferol in Myrciaria
jaboticaba fruit extracts stimulated the growth and metabolic activity of probiotics such as
L. acidophilus, L. casei, and Bifidobacterium animalis subsp. Lactis.

Moreover, the flavonol rhamnetin and hydroxycinnamic acids as coumaroyl hexoside
from Aloe arborescens and A. barbadensis allowed the growth of lactic acid bacteria such
as Lactobacillus [50]. According to Hervert-Hernández et al. [51], LAB can metabolize
hydroxycinnamic acids such as coumaroyl hexoside by reducing the side chain to produce
the corresponding 2-hydroxyphenylpropionic acids, which can then be descarboxylated to
p-ethylphenols, allowing these bacteria to grow and modulate the functional composition
of gut microbiota [52].

Furthermore, in order to grow, bacteria require nutrients, so they have strategies to
obtain them. Motility is one of the ways bacteria can take nutrients to reach new niches
for colonization [53]. Lactobacillus casei’s motility is poorly characterized [54]. Our results
showed displacement swimming and swarming of L. casei exposed to SHE and SME at
low concentrations.
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Swimming and swarming motility are related to flagellar motility, however, L. casei
does not present flagella, so its motility is related to pilus. In addition, the twitching motility
is related to pilus. Sengupta et al. [55] reported the presence of sortase-mediated pilus gene
clusters in many strains of L. casei.

Ellagic acid has shown antiquorum sensing activity related to swimming motility and
biofilm-forming capacity [56]. It is natural for microorganisms to adhere to biotic or abiotic
surfaces, multiply and become embedded in a viscous matrix [57]. However, the extracts
evaluated in this work decreased the biofilm-forming capacity. The food industry’s partic-
ular concern is the maintenance of the microbial planktonic lifestyle through an efficient
cleaning and production process. The formation and growth of biofilms are influenced by
several factors, such as bacterial strain, surface and environmental properties, pH, nutrient
concentration, and temperature [58]. Even today, four strategies are known to combat
biofilms. One of them is the biochemical strategy to disrupt the biofilm using hydrolytic
enzymes that degrade extracellular matrix components and the use of compounds able
to bind or block intracellular communication, decreasing its level and promoting biofilm
dispersion. Although the mechanism of how polyphenols affect the motility, adhesion,
and biofilm formation of bacteria is not yet clear and can be very complex, the interaction
of these with the protein-membrane and the activity of the quorum sensing has been
established [58–60].

Altogether, our results showed the capacity of soursop leaf extracts as a potential
prebiotic. These extracts are constituted for non-digestible compounds that beneficial
microorganisms can metabolize, allowing to improve the bioavailability and bioactivity
of the compounds. These compounds can increase the growth of Lactobacillus casei, which
is known as a probiotic. These results suggest a wide application of extracts improving
the biomass production and viability of probiotic bacteria as L. casei, into the health,
pharmaceutical, food, agricultural, veterinary, and zootechnical industries.

4. Materials and Methods
4.1. Biologic Material

Mature soursop leaves (completely developed) were collected from the community
of Lima de Abajo, Compostela, Nayarit, Mexico (21◦56′7.1808′′ N 105◦15′28.584′′ W), in
August, 2018. Leaves were washed, disinfected, and shade dried at 30 ◦C for 15 days.
These were ground in a food processor (Nutribullet® NB-201, Ningbo, China) and stored
in trilaminate bags at 25 ◦C until use. A commercial strain of Lactobacillus casei Shirota
(Yakult ®, Guadalajara, Mexico) was used.

4.2. Preparation of Plant Extracts

The leaf powder was suspended in the extraction solvents (hexane, acetone, methanol,
and water) at a ratio of 1:10. Subsequently, the suspensions were sonicated for 30 min at
42 Hz in an ultrasonic bath (BRANSON® 5510, Danbury, CT, USA) [61]. The extracts were
filtered on Whatman No. 1 paper using vacuum filtration equipment (20 Torr). The filtrates
were concentrated on a rotatory evaporator (BÜCHI Labortechnik AG, CH) at 40 ◦C and
40 Torr vacuum. Finally, a stream of nitrogen gas was circulated over the extracts to remove
residual solvent. The extracts were stored in an amber flask until their analysis. The extracts
were labeled as hexane extract (SHE), acetonic extract (SAE), methanolic extract (SME), and
aqueous extract (SWE).

4.3. Effect of Extracts on the Growth of Lactobacillus casei
4.3.1. Inoculum Preparation

Lactobacillus casei was activated in 10 mL of Man, Ragosa, and Sharpe (MRS) medium
for 24 h at 37 ◦C. Then, 1 mL aliquot was taken and added to 9 mL of MRS medium to
prepare an inoculum; after, it was incubated for 16 h at 37 ◦C. Next, the inoculum was
concentrated by centrifugation at 10,433× g for 10 min. Finally, a cellular suspension was
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prepared with an absorbance of 0.4 at a wavelength of 620 nm using a spectrophotometer
(Thermo Fisher Scientific, Multiskan Go, Vantaa, Finland), equivalent to 108 cells/mL [62].

4.3.2. Determination of Minimum Growth-Promoting Concentration

The microdilution technique was used to determine the minimum growth-promoting
concentration. Initially, a stock solution of the extracts was prepared in dimethyl sulfoxide
(DMSO) at a concentration of 30,000 µg/mL. Then, four concentrations, 25, 50, 75, and
100 µg/mL, were prepared. Each treatment consisted of 175 µL of MRS medium, 20 µL
of inoculum, and 5 µL of the extract [63]. The treatments were added to a sterile 96-well
plate and incubated at 37 ◦C in a microplate reader (Thermo Fisher scientific, MultiSkan
GO, Vantaa, Finland). The microplate was shaken every 5 min for 30 s. The OD at 620 nm
was read after 24 h of incubation. The growth percentage was determined using the
Equation (1).

% Growth = (OD initial − OD sample)/(OD control) × 100 (1)

4.4. Phytochemical Analysis

First, the polyphenols were extracted using the method described by Arranz et al. [64].
Then, 2 mL of the polyphenol extract (EPF) were concentrated in a 16,000× g vacuum cen-
trifuge for 10 min at 4 ◦C. Next, the concentrate was resuspended in 200 µL of methanol and
filtered using a PVDF syringe filter (13 mm, 0.45 µm) and stored in microvials until analysis.

The phytochemical profile was assessed in an Ultra-Performance Liquid Chromato-
graph (UPLC) coupled to a Diode Array Detector (DAD) and a Quadrupole Time-of-Flight
(Q-ToF) mass spectrometer (MS) with an electrospray ionization (ESI) interphase (Vion
IMS, Waters Co., Milford, MA, USA). Decoctions were filtered (0.45 mm) and directly
injected into a BEH Acquity C18 column (2.1 × 100 mm, 1.7 mm) at 35 ◦C. For the chro-
matographic separation, water with 0.1% formic acid (A) and acetonitrile (B) were used
as mobile phase at a flow of 0.5 mL/min. The gradient conditions were 0% B/0 min, 15%
B/2.5 min, 21% B/10 min, 90% B/12 min, 95% B/13 min, 0% B/15 min, and 0% B/17 min.
Absorbances were measured at 214, 280, 320, 360, 484, and 535 nm [65]. The following
commercial standards were used to construct calibration curves and quantitate the different
types of phenolic compounds: (+)-catechin (flavanols), naringenin (flavanones), quercetin
(flavonols), p-hydroxybenzoic acid (hydroxybenzoic acids), and chlorogenic acid (hydrox-
ycinnamic acids). Polyphenol results are expressed as µg/g of extract, whereas lignan
and stilbene results are expressed as arbitrary units. The following MS conditions were
used: capillary voltage, 2.0 kV; cone voltage, 40 eV; low collision energy, 6 V; high collision
energy, 15–45 V; source temperature, 120 ◦C; cone gas flow, 50 L/h; and desolvation gas,
N2 at 450 ◦C and 800 L/h. Data acquisition was carried out at negative ionization mode
(ESI-) within a 100–1200 Da mass range. Leucine-enkephalin solution (50 pg/mL) was used
for lock mass correction at 10 mL/min. Identification was carried out by analysis of the
exact mass of the pseudomolecular ion (mass error < 5 µg/mL), isotope distribution, and
fragmentation pattern.

4.5. Bacterial Motility

Bacterial motility (swimming, swarming, and twitching) was determined by measur-
ing the displacement (mm) of the bacterium in MRS medium supplemented with agar.
The medium was supplemented with 0.3% agar to swimming-type motility, 0.6% agar to
swarming-type motility, and 1% agar to twitching, as Burrows [66] described. A total of
25 µg/mL of each soursop leaf extract was added to the culture media in each technique.
The percentage displacement in each technique was determined using the Equation (2).

%Displacement =
Displacement with extract

Displacement in control treatment
× 100% (2)
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4.6. Biofilm Forming Capacity

The method proposed by Naves et al. [67] was followed with slight modifications.
First, 200 µL of MRS medium at 50%, 10 µL of inoculum, and 25 µL of extract at 25 µg/mL
were added to 96-well microplates. The cultures were incubated at 37 ◦C for 18 h. After that,
OD at 620 nm was read in a microplate reader (Thermo Fisher scientific, MultiSkan GO,
Vantaa, Finland). Then, the plate was washed with saline solution to remove unattached
bacteria. Next, the plate was dried under airflow for 20 min. Wells were stained with
200 µL of crystal violet at 0.3%, washed with distilled water, and dried for 1 h. After, wells
were filled with 200 µL of 95% ethyl alcohol, and absorbance was read at 540 nm. The
biofilm-forming capacity (BFC) was calculated with Equation (3).

BFC =
AB− CW

G
(3)

AB is the DO540 nm of the adhered bacterium to the microplate, CW is the DO540 of
the control medium (MRS without bacteria), G is the DO620 nm of cell growth.

4.7. Statistical Analysis

Each extract was analysed by triplicate in three independent experiments. A com-
pletely randomized design was used. The data obtained in the microdilution technique to
determine the bacterium minimum growth-promoting concentration of the bacterium were
analysed by ANOVA with α = 0.05 to determine significant differences in the extracts. An
LSD Fisher test (α = 0.05) was used when ANOVA showed statistical differences.

The association between polyphenolic compounds and the bacterial growth were anal-
ysed by plots means of variable importance in projection (VIP) vs. coefficient, constructed
from partial least squares-discriminant analysis (PLS-DA) with centered and scaled data.
A nonlinear intervention in partial least squares (NIPALS) was used. All analyses were
carried out with JMP software 14.3 (Sytat Software, Inc., San José, CA, USA).

5. Conclusions

The acetone, methanolic, and aqueous extracts of soursop at 25 µg/mL increased
the bacterial growth. However, all evaluated extracts inhibited the bacterial growth at
100 µg/mL. Hexane and methanolic extract of soursop leaf did not show differences with
respect to control on swimming motility, while aqueous and acetonic decreased it. Hexane
extract increased the swarming motility, methanolic extract maintained it, while acetone
and aqueous extracts decreased this motility concerning control. Hexane and aqueous
extracts increased twitching motility, while acetone and methanolic extracts decreased this
type of motility. All extracts decreased the biofilm-forming capacity of Lactobacillus casei.

In order to obtain higher L. casei growth and to use the less toxic solvent, the best
treatment was the aqueous extract at 25 µg/mL, which increased the bacterial growth and
maintained the swimming and twitching motility without differences regarding control.

The L. casei growth was related to ellagic acid, quercetin rhamnoside, kaempferol
dihexoside, quercetin hexoside, secoisolariciresinol, and kaempferol hexoside-rhamnoside.

The study suggests a broad range of applications to the aqueous extract of soursop leaf
into the health, pharmaceutical, food, agricultural, veterinary, and zootechnical industries
since it improves the biomass production and viability of probiotic bacteria as L. casei.
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