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Abstract: The response of chloroplasts to adverse environmental cues, principally increases in light
intensity, stimulates chloroplast-to-nucleus retrograde signalling, which leads to the induction of
immediate protective responses and longer-term acclimation. Hydrogen peroxide (H2O2), generated
during photosynthesis, is proposed to both initiate and transduce a retrograde signal in response
to photoinhibitory light intensities. Signalling specificity achieved by chloroplast-sourced H2O2 for
signal transduction may be dependent upon the oft-observed close association of a proportion of
these organelles with the nucleus. In this review, we consider more precisely the nature of the close
association between a chloroplast appressed to the nucleus and the requirement for H2O2 to cross both
the double membranes of the chloroplast and nuclear envelopes. Of particular relevance is that the
endoplasmic reticulum (ER) has close physical contact with chloroplasts and is contiguous with the
nuclear envelope. Therefore, the perinuclear space, which transducing H2O2 molecules would have to
cross, may have an oxidising environment the same as the ER lumen. Based on studies in animal cells,
the ER lumen may be a significant source of H2O2 in plant cells arising from the oxidative folding
of proteins. If this is the case, then there is potential for the ER lumen/perinuclear space to be an
important location to modify chloroplast-to-nucleus H2O2 signal transduction and thereby introduce
modulation of it by additional different environmental cues. These would include for example,
heat stress and pathogen infection, which induce the unfolded protein response characterised by an
increased H2O2 level in the ER lumen.

Keywords: retrograde signalling; chloroplasts; nucleus; endoplasmic reticulum; hydrogen peroxide;
nuclear envelope; peri-nuclear space; aquaporins; membrane contact sites; cytoskeleton; environmental
stress

1. Introduction

Chloroplast-to-nucleus (retrograde) signalling is an important part of plants’ capacity
to sense and act upon changes in their environment, especially those that require eventual
adjustments to photosynthetic capacity. The ability to coordinate immediate and longer-
term responses to environmental perturbations occurs at the cellular, tissue and whole
plant (systemic) level [1–7]. A particularly active area within this research sphere is the
quest to identify the precise signalling routes between chloroplasts and the nucleus. Several
signalling pathways and signal initiators and transducers have been identified and continue
to attract attention, although there are undoubtedly many more to be uncovered [8–13].

The close association of a proportion of a cell’s chloroplast complement with its nucleus
is a feature of all plant species so far examined [11,14,15]. More recently, this relationship
has received growing attention since the juxtaposition of a subset of chloroplasts with
the nucleus is suggested to be a crucial feature in the communication and coordination
of highly complex processes between these organelles in response to developmental and
environmental cues. [4,11,16–18]. Since some signalling molecules could originate from
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multiple cellular sources, the close association between the nucleus and a subset of chloro-
plasts may provide the necessary specificity for retrograde signal transduction. Conversely,
if no discrimination between the origins of such molecules was accommodated, then using
them as signal transducers from the chloroplast would not provide any specificity [11,15].
The molecule where this argument is most pertinent and will be the example used in
this essay, is hydrogen peroxide (H2O2) whose origin from different subcellular sources
produces differential gene expression patterns, which implies that there is an associated
signalling specificity [19–22].

In the context of retrograde signalling, specificity could be achieved by conversion
of the oxidising equivalent from H2O2 to another molecule in the chloroplast [2,23–25].
While this does indeed occur, observations also suggest that H2O2 can also be the trans-
ducing signal from chloroplasts to the nucleus [4,16]. In higher plants, the movement of
H2O2 between chloroplasts and the nucleus has been studied in Nicotiana benthamiana (Nb)
epidermal pavement cells. This tissue is readily accessible for monitoring changes in the
oxidation state of transiently expressed genetically encoded H2O2-reporting fluorescent
biosensor proteins using confocal laser scanning microscopy [4,16,26]. Important for inter-
pretation of responses to some environmental stresses is that Nb epidermal pavement cells
are photosynthetic [4]. The H2O2 that accumulates in Nb chloroplasts in these studies arises
in response to increased light intensity or to pathogen effector triggered immunity [4,16,27].
However, a wide range of environmental challenges cause changes in H2O2 levels in
other subcellular compartments including the peroxisome, mitochondrion, cytosol and the
plasma membrane [5,13,22,28–30]. Therefore, chloroplast-nucleus association is proposed
to be relevant in determining how H2O2 secreted from chloroplasts [31] could be specific in
the transduction of an oxidising signal to the nucleus [4,11,15].

The aim of this short article is not to provide a detailed consideration of all aspects
of chloroplast-nucleus association but rather to consider the route H2O2 may take in its
journey from the chloroplast to the nucleus. Despite the apparently short distance of travel
between the origin and destination for H2O2 in retrograde signalling, we reflect here that
other factors and subcellular environments could influence both the potency and specificity
of this transducing signal.

2. Stromules

Effector triggered immunity in Nb pavement cells elicited by flagellin, chitin, INF1 (an
extracellular Phytophthora infestans protein) or over-expression of NADH dehydrogenase-
like (NDH) complex M subunit, causes chloroplast aggregation around nuclei and the
formation of tubular chloroplast stroma extensions (stromules) [16,26,32,33]. Stromule
formation may be associated with a suppression of photosynthesis, which occurs in
Arabidopsis thaliana challenged with elicitors [27]. Photoinhibition may also be an important
step, which stimulates stromule formation in the absence of pathogen infection such as in
senescing leaves [15]. Stromules appear to promote chloroplast-to-chloroplast contacts but
also that of chloroplasts-to-nucleus [26,34] and are suggested to be conduits for H2O2 and
selected proteins to transfer to the nucleus [16] although this remains under debate [26,34].
Stromules may also facilitate the clustering of chloroplasts with the nucleus since they have
been shown to move along microtubules and anchored by actin filaments [32]. In addition,
pathogen-derived effectors may also achieve the same end without stromules by promoting
peri-nuclear clustering of chloroplasts [17,35].

3. Nature of the Linkages—The Nuclear Envelope

The outer membrane of the nuclear envelope is continuous with the endoplasmic
reticulum membrane (ER; Figure 1) [35] and consequently, the ca. 50 nm wide perinuclear
space between the inner and outer nuclear membrane is contiguous with the ER lumen [36].
Chloroplasts, like many other organelles that form physical interactions with the ER, are
tethered to the outer ER/nuclear membrane typically at 10–30 nm distance [37–40]. The
ER outer membrane is thus frequently in very close association with the outer chloroplast
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envelope membrane [11,41–43]. The transient tethering of chloroplasts to the ER occurs
at so-called membrane contact sites (MCS), which have been defined as “areas of close
apposition between the membranes of two organelles” but crucially, the two organellar
membranes do not fuse [38]. MCS are regarded as having specific functions, acting to
concentrate protein-protein interactions to allow transfer of molecules between compart-
ments [38]. The bidirectional exchange of lipids between the ER and chloroplasts via
such MCS has been studied to some extent. Notably, transorganellar complementation
experiments elegantly demonstrated the existence of metabolic continuity in biosynthetic
pathways, which span both organelles [44,45]. These tethers between chloroplasts and
the ER are such that a 400 pN force applied with optical tweezers could not separate
them [39,46,47]. Various biophysical, genetic, biochemical and microscopy methodologies
have begun to provide a picture of the complexity of these interactions and the reader is
referred to the comprehensive review on this subject by Baillie et al. [39].

Plants 2022, 11, x FOR PEER REVIEW 3 of 11 
 

 

space between the inner and outer nuclear membrane is contiguous with the ER lumen 
[36]. Chloroplasts, like many other organelles that form physical interactions with the ER, 
are tethered to the outer ER/nuclear membrane typically at 10–30 nm distance [37–40]. The 
ER outer membrane is thus frequently in very close association with the outer chloroplast 
envelope membrane [11,41–43]. The transient tethering of chloroplasts to the ER occurs at 
so-called membrane contact sites (MCS), which have been defined as “areas of close ap-
position between the membranes of two organelles” but crucially, the two organellar 
membranes do not fuse [38]. MCS are regarded as having specific functions, acting to con-
centrate protein-protein interactions to allow transfer of molecules between compart-
ments [38]. The bidirectional exchange of lipids between the ER and chloroplasts via such 
MCS has been studied to some extent. Notably, transorganellar complementation experi-
ments elegantly demonstrated the existence of metabolic continuity in biosynthetic path-
ways, which span both organelles [44,45]. These tethers between chloroplasts and the ER 
are such that a 400 pN force applied with optical tweezers could not separate them 
[39,46,47]. Various biophysical, genetic, biochemical and microscopy methodologies have 
begun to provide a picture of the complexity of these interactions and the reader is re-
ferred to the comprehensive review on this subject by Baillie et al. [39]. 

 
Figure 1. The nuclear envelope, contiguous endoplasmic reticulum (ER) and chloroplasts are 
closely associated. The four vertical panels on the left are selected top-to-bottom Z planes of a Ni-
cotiana benthamiana abaxial epidermal cell transiently expressing the ER luminal marker RFP-HDEL 
(magenta) with chloroplast autofluorescence (green). The images were taken by confocal scanning 
laser microscopy. Scale bar, 5mm. The diagram on the right provides a pictorial interpretation of 
the combined Z planes. The thicker magenta circle is the nuclear envelope which is connected to the 
pink lines representing the ER. (Cell schematic created with BioRender). 

A long-observed phenomenon is the avoidance response of chloroplasts whereby 
they move away from high fluence blue light, which is controlled by phototropins and 
uses the actin cytoskeleton to guide movement [48,49]. Interestingly, the nucleus, which 

Figure 1. The nuclear envelope, contiguous endoplasmic reticulum (ER) and chloroplasts are
closely associated. The four vertical panels on the left are selected top-to-bottom Z planes of a
Nicotiana benthamiana abaxial epidermal cell transiently expressing the ER luminal marker RFP-HDEL
(magenta) with chloroplast autofluorescence (green). The images were taken by confocal scanning
laser microscopy. Scale bar, 5mm. The diagram on the right provides a pictorial interpretation of the
combined Z planes. The thicker magenta circle is the nuclear envelope which is connected to the pink
lines representing the ER. (Cell schematic created with BioRender).

A long-observed phenomenon is the avoidance response of chloroplasts whereby
they move away from high fluence blue light, which is controlled by phototropins and
uses the actin cytoskeleton to guide movement [48,49]. Interestingly, the nucleus, which
has no capacity to move independently, is towed by its attached chloroplasts [50]. Un-
doubtedly, many proteins are involved in the combined tethering of chloroplasts to nuclei
and their repositioning in the cell, as well as being involved in other functions such as
anchoring of plastids to the plasma membrane and chloroplast division. Examples include
CHLOROPLAST UNUSUAL POSITIONING1 (CHUP1), KINESIN-LIKE PROTEIN FOR
ACTIN-BASED CHLOROPLAST MOVEMENT1 (KAC1) and KAC2, PLASTID DIVISION1
(PDV1) and PDV2 and PARALOG OF ARC6 (PARC6) [15,50–56].
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From a structure-function perspective, CHUP1 currently is one of the best-understood
proteins engaged in chloroplast relocation and positioning [57]. CHUP1 localises to the
chloroplast envelope and to do this requires the first 25 N-terminal residues, which form a
hydrophobic domain. The remainder of the protein protrudes outwards into the cytosol.
A coiled-coil region (residues 65–276), an F-actin binding region (residues 350–360) and
proline-rich region (residues 670–710) ensure the anchoring of the chloroplast to the plasma
membrane and linking it to the actin cytoskeleton and/or its polymerisation. Completing
the protein is a conserved C-terminal region (residues 720–1004) which binds profilin [58].
CHUP1 forms homodimers via leucine zippers contained within its N-terminal coiled-coil
region [59] and has the effect of bringing the proline-rich and actin binding domains into
close proximity [59]. Most recently, it has been shown that the conserved C-terminal region
also forms dimers and is a novel plant-specific actin nucleator sharing structural homology,
but not sequence homology, to the FH2 C-terminal domain dimers of formins that regulate
actin polymerisation across the Eukarya [60,61]. It should be emphasised that the afore-
mentioned studies did not specifically address nuclear-chloroplast connectivity having
focussed instead on chloroplast-plasma membrane connectivity. Nevertheless, one impor-
tant observation is that CHUP1 may be a negative regulator of stromule formation [16]
and in addition there is, to our knowledge, no information on how or even if CHUP1 is
part of chloroplast-ER/outer nuclear membrane MCS. It was suggested recently that direct
contact between plastids, the nucleus, and the same connections involving stromules are
a continuum of essentially the same process and may provide a means of distinguishing
the role of CHUP1 in chloroplast-nuclear connections from that of chloroplast-plasma
membrane association [15].

One further consideration in this inter-organellar communication is the role of nuclear
pore complexes (NPCs) [62–64] which punctuate the nuclear membranes. This is the route
for the trafficking of macromolecules, most commonly proteins and nucleic acids [62,63].
This could be a route for the transfer of proteins engaged in retrograde signalling such as
WHIRLY1 [65]. However, it is not clear that small molecules enter the nucleus via NPCs.
Therefore, while it is a theoretical route for trafficking H2O2 or an oxidising equivalent as
an oxidised protein there is no evidence of this and therefore no further consideration of
NPCs will be undertaken here.

4. H2O2, Aquaporins and the Route to the Nucleus

From the above considerations, it can be proposed that there is close association be-
tween some of a cell’s complement of chloroplasts and the nucleus, which would also
involve both organelles tied into the cytoskeleton with the strength of the connections de-
termined by tethering through MCS. More precisely, for H2O2 to travel from the chloroplast
stroma to the nucleus then it must not only cross the chloroplast double envelope, but also
the outer and then inner nuclear membrane separated by the perinuclear space.

The movement of H2O2 across membranes is considered to occur by diffusion down
a concentration gradient facilitated by membrane intrinsic proteins (aquaporins; AQPs;
reviewed by Bienert and Chaumont [66]). However, H2O2 diffusion into red blood cells is
not facilitated by AQPs but by an unknown membrane protein or through the lipid frac-
tion [67] raising the possibility of AQP-independent means of transporting H2O2 between
cellular compartments. This is despite physico-chemical considerations concluding that
simple diffusion of H2O2 across membranes can be disregarded [66,67]. Instead, all AQPs
that transport H2O may also transport H2O2, although there are differences in the efficiency
of how individual AQP isoforms discriminate between these two molecules [66,68,69].
Assuming a uni-directional movement of signal-transducing H2O2 to the nucleus from
attached chloroplasts, then its journey would include crossing the chloroplast envelope
membranes (Figure 2). Isolated chloroplasts exposed to high light intensities secrete H2O2
into their medium [31] and this is blocked by the AQP inhibitor acetazolamide [70]. Of the
35 AQPs in Arabidopsis [71], up to 5 may be present in the chloroplast. Of these, at least
two isoforms of the tonoplast intrinsic protein (TIP1;1 and TIP1;2) AQP family and one of
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the plasma membrane intrinsic proteins, PIP2a, may span the inner chloroplast envelope
membrane [72–74]. Therefore, the current evidence strongly suggests that AQPs are the
exit route out of the chloroplast for H2O2.
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Figure 2. A proposed route for a transducing H2O2 retrograde signal. In this case, the chloroplasts
and nucleus are in close association linked by the nuclear envelope and possibly influenced by H2O2

produced in the ER lumen. The H2O2 generated by photosynthetic electron transport passes through
membranes facilitated by aquaporins and arrives in the nucleus to transfer its oxidising equivalents
to a redox relay network ultimately leading to the activation of a range of diverse regulatory proteins,
which may act in the nucleus or migrate to other subcellular sites.

The likelihood of very close contact between the chloroplast envelope and the outer
nuclear envelope (see above) could include a localised increased concentration in mi-
crodomains at or near MCS and, if there is close proximity of further AQPs in the outer
nuclear membrane, this would facilitate the transfer of H2O2 to the perinuclear space.
Mitochondrial-ER MCS in animal cells form an environment where H2O2 does indeed
concentrate in microdomains either side of the mitochondrial envelope [75]. It can be
surmised that an analogous arrangement around chloroplast-outer nuclear/ER membrane
could exist and certainly H2O2 microdomains have been observed associated with Nb
epidermal chloroplasts [4]. Once in the perinuclear space, H2O2 would be in an oxidising
environment (see following section) and therefore would have time to diffuse to the vicinity
of any AQPs located on the inner nuclear membrane for its entry into the nucleus.

It should be emphasised that these considerations on the route from attached chloro-
plast to nucleus is informed speculation (Figure 2) based on the more complete information
available from other eukaryotic cells. Whether this route for H2O2 actually exists in plant
cells awaits experimental investigation.

5. H2O2 in the Perinuclear Space and ER Lumen and Its Impact on Retrograde Signalling

In animal cells, the ER lumen is regarded, along with mitochondria and peroxisomes,
as a major source of H2O2 for signalling [68,76–78]. These organelles are often found
in very close proximity to each other and may secrete H2O2 into a shared microdomain
in which proteins involved in further transducing the oxidising signal are also present.
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The cooperation between these three compartments to form a cytosol-located H2O2 mi-
crodomain has been termed the “redoxosome” [78]. A redoxosome for these same or-
ganelles but also including chloroplasts has been suggested as possible in plant cells, but
this suggestion remains unexplored [79]. It has been proposed that in animal cells, the
directing of H2O2 to the redoxosome ensures that it does not accumulate in the nucleus and
cause oxidative damage there. However, plant cells subjected to environmental stress can
accumulate chloroplast-sourced H2O2 in their nucleus [4,16]. This suggests that the organi-
sation of the spatial components of H2O2-mediated retrograde signalling may differ from
those involving non-plastid organelles, which may share a degree of conservation across
the Eukarya.

The midpoint redox potential of the reduced glutathione-glutathione disulphide (GSH-
GSSG) couple (EGSH) in the ER lumen is −208 ±4 mV, which is more oxidising than that of
the cytosol at ca. −320 mV in animal cells [80]. However, very recent in vivo measurements
conducted on Arabidopsis ER suggest a slightly more reducing EGSH of −241 mV [81].
Irrespective of these differences between animal and plant cells, the ER lumen environ-
ment allows the chaperone-catalysed oxidative folding of proteins to occur that requires
molecular oxygen (O2) and from which H2O2 arises (Figure 3). This is a highly conserved
process in all eukaryotic cells. Oxidative stress in the ER is caused when this protein
folding activity exceeds the capacity of the lumen antioxidant system to remove the H2O2
formed. GLUTATHIONE PEROXIDASE7 (GPX7), GPX8 and PEROXIREDOXIN4 (PRDX4)
scavenge the H2O2 generated by the ER oxidoreductase1 (ERO1)-catalysed oxidation of
the PROTEIN DISULPHIDE ISOMERASE (PDI) isoforms (Figure 3). Despite their names,
GPX7 and GPX8 use reduced PDI isoforms as electron donors and not GSH [77,82]. There
are also additional ERO1-independent means of generating H2O2 [83].
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Figure 3. A scheme for the oxidative folding of proteins in the plant cell ER lumen and the generation
of H2O2 by a luminal ER oxidase (ERO). This H2O2 may be scavenged by an ER glutathione peroxi-
dase (GPX3), although the reductant for this enzyme is suggested to be protein disulfide isomerase
(PDI) isoforms, which are members of the thioredoxin super-family. This proposed redox cycle is
adapted from and available in more detail in the review by Meyer et al. [84].

The increased H2O2 levels in the ER lumen can drive signalling, most notably the
initiation of the Unfolded Protein Response (UPR), which acts to mitigate against the
accumulation of unfolded or misfolded proteins in the ER lumen. One branch of the UPR
is mediated by a pair of ER membrane-associated bZIP transcription factors—bZIP17 and
bZIP28. UPR is also activated as a consequence of environmental perturbations including
exposure to heat/chilling stress, oxidative stress, salt stress, induction of immunity and
senescence [79,85–87].

6. Suppression of the UPR by High Light Intensities

The transfer of H2O2 from high light–exposed chloroplasts to their associated nucleus
is an important step in the retrograde signalling mediated by this reactive oxygen species
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(ROS) [4,11,88]. Interestingly, exposure to high light suppresses the UPR, which is linked to
the production of the ROS singlet oxygen (1O2) [87]. This is achieved by activation of the
bZIP transcription factor LONG HYPOCOTYL5 (HY5), which competes with bZIP28 for
binding to the promoters of UPR-activated genes and suppressing their induction [89]. The
HY5-mediated negative regulation of the UPR involving 1O2 may be linked to the recent
identification of HY5 as a positive regulator of high light acclimation [90]. This is because
the relative levels of 1O2 and H2O2 may be a good indicator of the type of physiological
response a plant carries out when exposed to increased light intensities [88,90–93].

7. Conclusions and Possibilities

The corollary of the above arguments is that during transit across the perinuclear
space—an extension of the ER lumen—there could be the opportunity to modulate retro-
grade signalling mediated by H2O2 from the chloroplast on its way to the nucleus. One
can envisage two converse scenarios: (a) increased H2O2 from the ER lumen augmenting
H2O2 coming from chloroplasts and amplifying a stress-responsive signal; or the opposite:
(b) the attenuation of a retrograde signal at this point by increased and highly localised
antioxidant activity. These possibilities now have the prospect of being tested with the
advent of a novel GSH:GSSG redox biosensor that functions in the plant ER lumen [79]
together with the possibility of using a modified Hyper, called Triper, to detect H2O2,
which elegantly sidesteps problems of this biosensor’s over-oxidation and its consequent
non-responsiveness [77].

In conclusion, if the considerations in this essay are correct then this could provide
a means of intervening in retrograde signalling to tailor a crop plant’s response to envi-
ronmental stress [13]. This may prove to be an easier option than trying to manipulate
a H2O2 signal once it has arrived in the nucleus considering the transfer of oxidising
equivalents is likely through an extensive and highly mobile network of intermediate redox
carriers [25,94,95] to a plethora of recipient redox sensitive regulatory proteins.
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