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Abstract: The Pimenta dioica essential oil and its main compound (eugenol) were tested for their
antibacterial potency against eight Gram-negative and Gram-positive bacteria implicated in food
intoxication. This essential oil and its main component were evaluated for their ability in inhibiting
Quorum sensing (QS)-dependent mechanisms such as motility in Pseudomonas aeruginosa PAO1, pro-
duction of violacein by Chromobacterium violaceum and biofilm formation on stainless steel and glass
surfaces. Our results demonstrated that P. dioica essential oil and eugenol were active against all tested
strains with a maximum of inhibition against Listeria monocytogenes CECT 933 (26.66 ± 0.57 mm).
The minimal inhibitory concentration (MIC) value of the tested essential oil and eugenol was about
0.048 mg/mL for all strains. The obtained results demonstrated that 4CMI eugenol inhibited food-
borne strains biofilm formation on the glass strips by 73.79% and by 75.90% on polystyrene. More-
over, 0.048 mg/mL (MIC) of P. dioica essential oil inhibited the violacein production by 69.30%. At
100 µg/mL, P. dioica oil and eugenol affected the motility of PAO1 by 42.00% and 29.17%, respectively.
Low concentrations of P. dioica essential oil are active against the quorum sensing phenomena and
biofilm potency. Thus, this essential oil could be further investigated for new molecules useful for the
treatment of toxi-alimentary infections.

Keywords: Pimenta dioica; eugenol; foodborne pathogens; biofilm; anti-quorum sensing; violacein

1. Introduction

Foodborne pathogenic bacteria are responsible of many human alimentary intox-
ications. The obvious examples of pathogenic bacteria are Salmonella enterica, Listeria
monocytogenes, Vibrio vulnificus, Shigella flexneri, Bacillus subtilis, Escherichia coli, Pseudomonas
aeruginosa and Staphylococcus aureus. These bacteria are recognized for their high ability to
adhere to surfaces and epithelial cells. Food preparations are based on the use of species
responsible for their aromatic properties and antimicrobial potency.

The diet based on the consumption of contaminated food with bacteria causes a big
problem to public health. Several bacteria accounted for many cases of death [1]. The
use of plants (spices) and natural products (herbs), which can be added during the food
conception may reduce the risk of contamination with these pathogens by inhibiting their
activities and food damage [2–4].
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Essential oils are widely used for antimicrobial, anti-parasitical, insecticidal and other
medicinal activities. Additionally, they are used as flavour in cosmetics, pharmaceuticals
and food industries [5,6].

The Pimenta genus is a group of trees native throughout the Caribbean region, is
recognized by its anticancer, antioxidant, antifungal, antibacterial and anti-inflammatory
properties [7].

Eugenol, as an additive in alimentary industry, was the main constituent identified
in P. dioica essential oil [3], which was recognized for its antioxidant, antimicrobial and
cytotoxic activities [8,9].

Volatile oils are obtained by the process of distillation of plant parts. There are widely
used for antimicrobial, antiparasitical, insecticidal and other medicinal activities. Addition-
ally, they are used as flavours in the cosmetics, pharmaceuticals and food industries [5].

The eugenol present in Pimenta leaf essential oil [8], which was recognized for many
activities, especially antioxidant, bactericidal and virucidal properties [9,10]. Ali et al. [11],
Faria et al. [12] and many other scientists have demonstrated the inhibitory activities of
P. dioica and eugenol against many pathogenic microorganisms such as S. aureus, E. coli and
P. aeruginosa [13–15].

Several virulence factors such as adhesion and resistance to antibiotics were largely
studied by scientists in order to search for a new method of therapy [16]. The formation
of biofilm in bacteria strains is regulated by the mechanism of QS [16,17]. The capacity
to form biofilms is considered as a QS-based factors, such as swarming, production of
exopolysaccharides and inhibition of violacein production [16].

The purpose of the present study was to determine the chemical composition of
P. dioica essential oil and to study its activity, as well as its main compound, eugenol, against
several foodborne pathogenic bacteria. The anti-QS activity of P. dioica EO was tested using
Chromobacterium violaceum and Pseudomonas aeruginosa PAO1. In addition, we reported
the antibiofilm potency of different concentrations of P. dioica essential oil and its main
component eugenol.

2. Results
2.1. Chemical Composition of P. dioica Essential Oil

The chemical composition of P. dioica essential oil is summarized in Table 1. Thirty
components with different percentage were identified using HP5 capillary column accord-
ing to their elution time. P. dioica essential oil was rich in eugenol (48.67%), β-pinene
(18.52%) and 2-Propenylphenol (7.61%). Other relevant components were linalool (3.68%)
and limonene (3.55%). The structures of the major compounds are represented in Figure 1.

Figure 1. Chemical structure of the main compounds identified in P. dioica essential oil by GC-MS
technique: (a) eugenol, (b) β-pinene, (c) 2-Propenylphenol, (d) linalool and (e) limonene.
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Table 1. GC-MS results showing the chemical composition of P. dioica essential oil.

N. Compound Ki a Ki b % c

1 α-thujene 916 930 0.05
2 α-Pinene 924 939 0.42
3 1-Octen-3-ol 970 979 1.42
4 3-Octanone 977 983 0.42
5 β-Pinene 983 979 18.52
6 3-Octanol 986 991 0.47
7 δ-2-carene 992 1002 0.52
8 δ-3-carene 1004 1011 0.21
9 ρ-Cymene 1012 1024 0.84

10 Limonene 1017 1029 3.55
11 (Z)-β-Ocimene 1038 1037 0.49
12 γ-Terpinene 1048 1059 0.06
13 Benzyl Formate 1077 1076 0.18
14 Linalool 1091 1096 3.68

15 Isopulegol
(neoiso) 1167 1171 0.61

16 α-terpineol 1180 1188 0.17
17 Methyl chavicol 1187 1196 0.47

18 2-
Propenylphenol 1247 1267 7.61

19 5-Indanol 1336 1341 0.12
20 Eugenol 1356 1359 48.67
21 α-copaene 1367 1376 0.29
22 α-gurjunene 1409 1409 0.93
23 α-muurolene 1443 1454 0.26

24 9-epi-(E)
Caryophyllene 1466 1466 0.26

25 Germacrene D 1485 1485 0.10
26 γ-amorphene 1497 1495 0.21
27 γ-patchoulene 1503 1502 0.17
28 δ-amorphene 1513 1512 0.74
29 γ–eudesmol 1631 1631 0.18
30 α-muurolol 1644 1646 0.16

a Kovats retention index determined relatively to the tR of a series of n-alkanes (C10–C35) on HP-5 MS column.
b Kovats retention index determined relatively to the tR of a series of n-alkanes (C10–C35) on HP Innowax.
c t = trace (<0.1%).

2.2. Antibacterial Activity of P. dioica Essential Oil and Eugenol

The results demonstrated that P. dioica essential oil and eugenol were active against all
tested strains with a maximum inhibition against L. monocytogenes CECT 933 (21.66 mm
with P. dioica and 21.33 mm for eugenol). Eugenol was more active against S. flexeneri
CECT 4804.

P. aeruginosa PAO1 showed a resistance to P. dioica and eugenol with inhibition zone
diameters of 8.00 mm and 7.66 mm, respectively (Table 2).

Low concentrations of P. dioica essential oil and eugenol inhibited the growth of all
foodborne pathogenic tested strains. In fact, the MIC value of the tested essential oil was
0.048 mg/mL for all strains. The same concentration (0.048 mg/mL) for the eugenol was
able to reduce the growth of all bacterial strains. The MBC values of the tested essential oil
were about 1.562 to 12.5 mg/mL and 3.125–12.5 mg/mL (eugenol) are needed to completely
inhibit the growth of the Gram-positive and Gram-negative strains tested (Table 2).
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Table 2. Antibacterial activity of P. dioica essential oil and eugenol against several foodborne
pathogenic bacteria.

Strains
P. dioica EO Eugenol

IZ
(mm ± SD)

MIC
(mg/mL)

MBC
(mg/mL)

IZ
(mm ± SD)

MIC
(mg/mL)

MBC
(mg/mL)

Listeria monocytogenes CECT 933 26.66 ± 0.57 a 0.048 12.5 21.33 ± 0.57 A 0.048 3.125
Vibrio vulnificus CECT 529 19.00 ± 0.01 d 0.048 12.5 17.66 ± 0.57 B 0.048 12.5
Shigella flexeneri CECT 4804 17.00 ± 0.01 e 0.048 3.125 18.66 ± 0.57 B 0.048 12.5
Bacillus subtilis CIP 5265 22.33 ± 0.57 c 0.048 12.5 6.00 ± 0.01 E 0.048 3.125
Salmonella enterica CECT 443 24.33 ± 0.57 b 0.048 3.125 22.00 ± 0.01 A 0.048 3.125
Escherichia coli ATCC 35218 16.67 ± 0.57 e 0.048 3.125 14.33 ± 0.81 C 0.048 3.125
Pseudomonas aeruginosa PAO1 8.00 ± 0.01 f 0.048 12.5 7.66 ± 0.57 D 0.048 12.5
Staphylococcus aureus ATCC 6538 17.00 ± 1.00 e 0.048 1.562 18.00 ± 1.00 B 0.048 3.125

IZ: Inhibition zone; MIC: Minimal inhibitory concentration; MBC: Minimal bactericidal concentration; SD:
Standard deviation. The letters (a–f) and (A–E) indicate a significant difference according to Duncan test (p < 0.05).

2.3. Adhesive Properties and Biofilm Formation on Abiotic Materials

Among the isolated strains, five out of eight (62.50%) were slime producing character-
ized by the black colonies and red with black center, and the remaining strains (P. aeruginosa,
B. subtilis and S. enterica) were non-slime producing characterized by red bordeaux colonies
(Figure 2, Table 3).

Figure 2. Different morphotypes of foodborne pathogenic strains cultivated on CRA: (a) negative
morphotype, (b) and (c): positive morphotype.

Table 3. Slime production, qualitative and quantitative adhesive properties of selected strains on
glass and polystyrene.

Strains Adhesion to Glass
Slime Production on CRA Adhesion to Polystyrene

Colour S+/S− OD570 ± SD Production of
Biofilm

S. aureus ATCC 6538 ++ Black S+ 1.36 ± 0.20 High productrice
P. aeruginosa PAO1 ++ Red bordeaux S− 0.42 ± 0.26 Low productrice
E. coli ATCC 35218 ++ Redwith black center S+ 0.17 ± 0.03 Low productrice
S. flexeneri CECT 4804 +++ Redwith black center S+ 0.10 ± 0.01 Low productrice
B. subtilis CIP 5265 + Red bordeaux S− 0.12 ± 0.01 Low productrice
V. vulnificus CECT 529 ++ Redwith black center S+ 0.13 ± 0.02 Low productrice
S. enterica CECT 443 + Red bordeaux S− 0.15 ± 0.01 Low productrice
L. monocytogenes CECT 933 +++ Red with black center S+ 0.19 ± 0.07 Low productrice

OD: Optical density; SD: Standard deviation; +: low adhesion; ++: moderate adhesion; +++: High adhesion;
S+: Slime producer; S−: Non slime producer.
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The study of biofilm formation on glass tubes showed that S. flexeneri and L. monocyto-
genes were strongly adherent (a, noted +++), and 50% of the tested strains were moderately
adherent (b, noted ++) to this material (Figure 3).

Figure 3. Adhesive properties on glass tube using safranin staining: (a) Strong adhesion (+++);
(b) Moderate adhesion (++); (c) Low adhesion (+).

The most used materials in culinary preparations (polystyrene, glass, stainless steel
and polyvinylchloride) were chosen during this work. The staining assay with 1% crystal
violet (CV) showed that all foodborne pathogenic strains form a biofilm (0.1 < OD < 1 or
OD570 > 1) on the selected materials with different degrees depending on the strain and the
surface (Figure 4).

Figure 4. Adhesion of the selected strains to different materials (Polyvinyl chloride PVC, glass and
stainless steel).

All Gram-positive and Gram-negative strains were high biofilm producers on glass
with a maximum of adhesion for B. subtilis (OD = 2.65). S. aureus ATCC 6538 was the
highest biofilm producer on polystyrene (OD > 1). S. flexneri CECT 4804 showed the lowest
values of OD on the four tested materials (Table 3).

2.4. Anti-Biofilm Activity of P. dioica and Eugenol on Polystyrene and Glass Surfaces

The study of the anti-biofilm properties of P. dioica and eugenol was carried out on the
S. aureus ATCC 6538 strain according to its high potency of biofilm formation.

P. dioica showed an anti-biofilm ability of the S. aureus strain on glass and polystyrene
about 55% and 58%, respectively, at the lowest tested concentration (MIC = 0.048 mg/mL)
(Table 4). This effect was stronger when we tested the anti-biofilm effect of eugenol against
the same strain showing an inhibition about 73.00% on polystyrene. In fact, low concen-
trations (0.048, 0.096 and 0.192 mg/mL) of this compound demonstrated an important
reduction of the biofilm formation on both tested surfaces.
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Table 4. Effect of MIC, 2MIC and 4MIC of P. dioica essential oil and eugenol on S. aureus ATCC 6538
biofilm formed on polystyrene and glass.

Essential Oil/
Main

Compound

Percentage of Inhibition of S. aureus ATCC 6538 Biofilm Formed on

Polystyrene Glass

MIC 2xMIC 4xMIC MIC 2xMIC 4xMIC

P. dioica 55.05 ± 3.23 b 60.66 ± 1.01 a 64.41± 1.4 a 58.01 ± 1.62 c 63.01 ± 0.53 b 70.25 ± 1.19 a

Eugenol 73.25 ± 2.68 A 75.31 ± 2.02 A 75.90 ± 1.76 A 67.25 ± 0.68 B 72.75 ± 0.92 A 73.79 ± 1.47 A

MIC: Minimal inhibitory concentration; MIC of P. dioica = 0.048 mg/mL; MIC of eugenol = 0.048 mg/mL. The
letters (a–c) and (A, B) indicate a significant difference according to Duncan test (p < 0.05).

The main compound, eugenol, was more active on sessile S. aureus ATCC 6538 isolate
adherent into polystyrene and glass than the essential oil. The effect of P. dioica essential oil
and eugenol on biofilm formed on polystyrene and glass was not variable depending on
the concentration and tested material. A 4 × MIC concentration of P. dioica EO inhibited
the S. aureus biofilm formed on glass and polystyrene with percentages of (64.41 ± 1.4%)
and (70.25 ± 1.19%), respectively. All these results are summarized in Table 4.

2.5. Violacein Inhibition Assay in C. violaceum

In qualitative analysis, P. dioica essential oil inhibited the production of violacein in
C. violaceum ATCC 12472 with a percentage of inhibition more than 50% (71.30 ± 1.5%) at
MIC value even at a low concentration (MIC/4) (Table 5).

Table 5. Percentage of violacein inhibition using C. violaceum ATCC 12472 strain.

Concentration
% of Violacein Inhibition

P. dioica Eugenol

MIC 71.30 ± 1.5 a 48.29 ± 0.9 a

MIC/2 67.87 ± 1.7 b 37. 78 ± 1.8 b

MIC/4 55.74 ± 0.71 c 33.91 ± 1.1 c

MIC/8 38.25 ± 1.8 d 0 ± 1.5 d

MIC/16 32.34 ± 1.3 e 6.65 ± 0.7 e

MIC/32 17.65 ± 0.7 f 3.41 ± 1.1 f

The letters (a–f) indicate a significant difference according to Duncan test (p < 0.05).

However, violacein production was inhibited only to an extent of 48.29 ± 0.9% when
we tested the eugenol (Table 5, Figure 5).

Figure 5. Effects of different MIC values of P. dioica essential oil and eugenol on violacein inhibition
(qualitative method with C. violaceum ATCC 12472).
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2.6. Anti-Swarming Assay

During this essay, we examined the anti-QS potential of P. dioica essential oil and
eugenol on swarming motility in PAO1 strain. The results indicated that P. dioica essential
oil and its main compound inhibited the swarming of PAO1 to different extents and at
the selected doses (50, 75 and 100 µg/mL). Moreover, 100 µg/mL were able to inhibit
swarming about 42.00% and 29.00% for P. dioica oil and eugenol, respectively (Table 6).

Table 6. Effect of 50, 75 and 100 µg/mL of P. dioica essential oil and eugenol on swarming motility
of PAO1.

Component
Concentration

50 µg/mL 75 µg/mL 100 µg/mL

P. dioica 17 ± 0 c 25 ± 0 b 42 ± 0 a

Eugenol 20.83 ± 1.17 B 29.17 ± 0.17 A 29.17 ± 0.17 A

The letters (a–c) and (A, B) indicate a significant difference according to Duncan test (p < 0.05).

3. Discussion

P. dioica has been used as an important spice for its culinary and medicinal uses [18].
This plant was used to reduce muscle pain, help digestion and stomach gases [19,20]. In
Cuba, this species can be cooked or ingested to treat stomach pain and colds [21]. The
leaves of Pimenta are used to reduce arthritis, fever and stress and in India [22].

Many compounds have been isolated from this plant such as tannins, glycosides,
phenylpropanoids and essential oils [23].

Many constituents found in P. dioica berries and leaves such as galloylglucosides
phenylpropanoids [24], tannins and flavonoids [25] showed several properties (antibacterial,
analgesic hypotensive and anti-neuralgic). Considering the phytochemical composition
and low cost of Pimenta berries, this spice may be used in the food preparation [26] (Table 7).

Eugenol represents the main compound of the oil (48.67%). Our results are similar
to previous literature [24]. These researchers identified 22 compounds in Pimenta oils.
The eugenol was the main component of both oils with 71.40% in leaves and 65.90% in
fruits [27].

Table 7. Chemical composition of essential oils of the genus Pimenta function of origin and plant organ.

Plant Species (Origin) Organ Extraction Method Main Compounds Reference

P. adenoclada (Cuba) Leaves Hydrodistillation
Caryophyllene oxide (15.4), α-muurolol

(9.4), humulene epoxide II (7.6),
trans-sabinol (5.6), β-pinene (5.3)

[28]

P. dioica (Jamaica) Leaves Steam distillation Eugenol (66.38–79.24), β-caryophyllene
(0.97–7.10) [29]

P. dioica (México) Berries Steam distillation Methyl-eugenol (48.3), myrcene (17.7),
eugenol (17.3), β-caryophyllene (6.2) [30]

P. dioica (Australia) Leaves Supercritical CO2
Eugenol (77.9), β-caryophyllene (5.1),

squalene (4.1) [31]

P. dioica (Brazil) Fruits Hydrodistillation Eugenol (76.98), β-pinene (6.52),
limonene (4.09) [32]

P. dioica Fruits Hydrodistillation Eugenol (48.67%), β-pinene (18.52%),
(1E)-Phenol-2-propenyl (7.61%) This study

Our study showed that the tested P. dioica essential oil was rich in eugenol (48.67%),
β-pinene (18.52%) and (1E)-Phenol-2-propenyl (7.61%). Other relevant components were
linalool (3.68%) and limonene (3.55%) (Table 7).

The essential oil of P. dioica fruits from Jamaica was composed of eugenol essentially
(68–78%) [33]. In addition, the volatile oil from P. dioica fruits originating from Mexico
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was rich in eugenol (90%) and α-terpineol (2%) [34]. The same result was obtained in
Guatemalan fruits [35].

P. dioica has been described for several years for its biological uses. Our results
demonstrated that its essential oil and eugenol were active against all tested foodborne
pathogenic strains. The essential oil of P. dioica berries inhibited L. monocytogenes, Salmonella
typhimurium, Pseudomonas putida, E. coli and S. aureus [36]. The essential oil of the same
plant extracted from its leaves demonstrated a strong antibacterial activity against Pseu-
domonas and Staphylococcus species [13].

The antimicrobial activity of P. dioica fruits and leaves extracts and essential oil has been
proved. P. dioica leaf extracts presented significant antimicrobial properties against many
genera of bacteria and fungi such as Escherichia coli, Streptococcus mutans, Staphylococcus
aureus, Bacillus cereus, Pseudomonas fluorescens, Salmonella typhimurium, Candida albicans,
Aspergillus niger and Penicillium sp. [37–39].

Mérida-Reyes et al. [27] tested the antibacterial activity of the essential oil of leaves of
P. dioica against B. subtilis, S. aureus, S. enterica and E. coli. Their results showed that this oil
is very active against B. subtlis and E. coli was the more resistant strain. The activity of the
oil against bacteria depends on the synthesis of the cell wall interfering in the formation
of the peptidoglycan molecule [40]. Some authors related to this antibacterial activity to
the presence of eugenol and (E)-caryophyllene since these two compounds were currently
found in P. dioica oil [40,41]. In addition, it has been demonstrated that eugenol is active on
the cytoplasmic membrane [30].

It has been demonstrated that eugenol can reduce the production of pyocyanin and
biofilm formation in E. coli and S. aureus [42].

Using the CRA test, 62.50% were slime-producing, characterized by a black colonies
and red with black centers. Pigmented colonies were considered as slime-producing strains,
whereas unpigmented colonies were classified as non-slime-producing strains [43].

Many works have proved the anti-biofilm potency of monoterpenoids on Gram-
negative and Gram-positive bacteria during the biofilm development [44].

Eugenol is largely used as a flavoring agent in the food industry due to its biological
properties such as anti-inflammatory, anti-microbial and antioxidant. This compound is
used against Gram-positive and Gram-negative bacteria. It is demonstrated that eugenol
presents strong inhibition against several anaerobic bacteria (Streptococcus mutans and
Prevotella intermedia), Listeria monocytogenes and Candida albicans. Several essential oils
are active against bacterial biofilm development such as clove and pimento berry oil [45].
This compound inhibits QS of P. aeruginosa [46]. Some studies reported that thymol and
carvacrol were responsible for the anti-QS activity [47].

Burt (2004) [48] demonstrated that essential oils containing phenolic compounds
such as eugenol thymol or carvacrol have the strongest antimicrobial activity. Gram-
negative bacteria are known to be more resistant to volatile oils than the Gram-positive
bacteria [48]. The same scientists proved that monoterpenes (limonene and α-pinene)
inhibited biofilm formation more than terpene alcohols such as linalool and terpinene-4-ol.
The most foodborne pathogenic bacteria such as the Pseudomonas produce biofilms [49].
The family Lamiaceae is considered as important aromatic plants with constituents having
anti-QS properties to combat different food pathogenic microorganisms [50]. Other studies
demonstrated that single constituents of essential oils such as eugenol, linalool, γ-terpinene
and limonene exhibited anti-QS effects [51].

4. Materials and Methods
4.1. Bacterial Strains

The antibacterial effect of the volatile oil of P. dioica and its main component the
eugenol was tested against eight food-borne pathogenic bacteria including four Gram-
positive (Staphylococcus aureus ATCC 6538, Bacillus subtilis CIP 5265, Vibrio vulnificus CECT
529, Listeria monocytogenes CECT 933) and four Gram-negative bacterial strains (Pseudomonas
aeruginosa PAO1, Escherichia coli ATCC 35218, Salmonella enterica CECT 443, Shigella flexeneri
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CECT 4804) were procured from American Type Culture Collection (ATCC) USA and
Spanish Type Culture Collection (CECT).

4.2. Chemical Characterization of the Essential Oil

P. dioica essential oil was purchased from Huile & Sens (Crestet, France) on 27 Novem-
ber 2014 (Product number B750N06). This oil was extracted from the dried unripe fruits by
hydrodistillation technique. The main compound (eugenol) was purchased from Sigma
(Sigma-Aldrich S.r.l. Milan, Italy). The essential oil was analyzed by gas chromatography–
flame ionization detector (GC–FID) and gas chromatography–mass spectrometry (GC–
MS) [52–55] and mass spectra on both columns with those of authentic compounds available
in our laboratories by means NIST 02 and Wiley 275 libraries [56].

4.3. Antimicrobial Activities
4.3.1. Disk-Diffusion Assay

Antimicrobial activity testing was performed according to the protocol described by
Noumi et al. [57]. Bacterial strains were enriched on a tube containing 9 mL of Mueller–
Hinton (MH) broth then incubated at 37 ◦C for 24 h. The inoculums were streaked onto
Mueller–Hinton agar plates using a sterile swab. Tetracycline was used in this study as
positive control. The antibiotic susceptibility was determined by using the Kirby–Bauer
method and Mueller–Hinton agar plates.

4.3.2. Microdilution Method for the Determination of the MIC and MBC

The MIC and the MBC values were determined for all bacteria as described by
Hajlaoui et al. [58]. The inoculums of the bacterial strains were prepared from an overnight
broth cultures (37 ◦C) and suspensions and were adjusted to OD600 (107 CFU/mL). The
essential oil dissolved in 10% dimethylsulfoxide (DMSO) with a high concentration about
50 mg/mL. Serial two-fold dilutions of the stock solution of the essential oil were prepared
in 96-wells plate containing 95 µL of Mueller–Hinton broth for bacteria. In fact, 100 µL
aliquot from the stock solution (50 mg/mL) was added to the first well containing 95 µL of
the correspondent broth. Then, a serial two-fold dilutions was prepared by transferring
100 µL from the first well into the 10 consecutive wells. The last well containing 195 µL of
Mueller–Hinton broth without essential oil and 5 µL of the inoculum on each strain was
used as the negative control. Finally, 5µL of the inoculum of each microorganism was added
to the wells with a final volume about 200 µL in each well. We have used the scheme pro-
posed for essential oils by Aligiannis et al. [52]: strong activity (0.05 < MIC < 0.5 mg/mL),
moderate activity (0.6 < MIC < 1.5 mg/mL) and weak activity (MIC > 1.5 mg/mL).

4.4. Biofilm Formation Ability of Tested Isolates
4.4.1. Phenotypic Characterization of Bacteria-Producing Slime

Detection of slime producing strains was carried out by culturing the isolates on Congo
Red Agar (CRA) plates as previously described by Touati et al. [53]. The plates were pre-
pared by mixing 36 g of saccharose (Sigma Chemical Company, St. Louis, MO, USA) with
0.8 g of Congo red in 1 L of Brain Heart Infusion (BHI) agar (Biorad, Hercules, CA, USA).
After incubation for 24 h at 37 ◦C, black colonies and colonies red with a black center were
considered as positive slime producers [53].

4.4.2. Test Tube Method

Slime production on glass tubes was determined using the Safranin staining as de-
scribed for coagulase negative staphylococci by incubating bacterial culture into a glace test
tube containing 10 mL of LB broth supplemented with 8% of glucose [54]. Slime production
was interpreted as negative, weak (1+), moderate (2+) or strong (3+).
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4.4.3. Biofilm Formation in 96-well Polystyrene Plates and Glass

Biofilm production by foodborne pathogenic bacterial strains grown in BHI (Bio-Rad, France)
was assessed using crystal violet staining assay [55]. Biofilm formation was interpreted as
highly positive (OD570 ≥ 1), low grade positive (0.1 ≤ OD570 < 1) or negative (OD570 < 0.1).

For biofilm formation on glass, the strips (1.5 cm2) were disinfected by dipping in 70%
alcohol for 30 min and was held with sterile distilled water. Biofilm quantification was
made with crystal violet 1% staining. Moreover, 125 µL of each well were transferred on
96-well microtiter plate and the OD at 570 nm was measured [16].

4.5. Determination of Anti-Biofilm Activity on Polystyrene and Glass

MIC, 2 × MIC and 4 × MIC of P. dioica essential oil and eugenol were tested for their
anti-Staphylococcus biofilm formation. Only S. aureus ATCC 6538 strain was selected for this
test. The crystal violet staining was employed to test the effects on biofilm formation. One
hundred µL of fresh bacterial suspension was added to each well. Growth control, media
control and blank control were included. The biofilm formation was evaluated using the
crystal violet staining method as described previously [16,57].

4.6. Violacein Inhibition Assay

Various concentrations of P. dioica essential oil and eugenol (MIC = 10 mg/mL until
MIC/32 = 0.3125 mg/mL) were added to 10 µL of C. violaceum ATCC 12472 and incubated
at 30 ◦C for 18 h for the qualitative screening of violacein inhibition [57,59].

4.7. Swarming Assay

P. aeruginosa PAO1 strain were point inoculated on plates (1% peptone, 0.5% Na Cl,
0.5% agar and 0.5% D-glucose) with various concentrations of P. dioica essential oil and
eugenol (50, 75 and 100 µg/mL) [59,60].

4.8. Statistical Analysis

All the experiments were conducted in triplicate and average values were calculated
using the SPSS 16.0 statistics package for Windows. The differences in mean were calculated
using the Duncan’s multiple-range tests for means with 95% confidence limit (p ≤ 0.05).
Values were expressed as means ± standard deviations.

5. Conclusions

In this work, we reported the isolation of eugenol (48.76%) and β-pinene (18.52%)
as the main phytocompounds in P. dioica essential oil. Shigella, Vibrio, Listeria, Bacillus,
Salmonella, Escherichia, Pseudomonas and Staphylococcus foodborne pathogenic bacteria were
highly sensitive to the tested oil with mean diameter of growth inhibition zone ranging
from (8.00 ± 0.01) mm to (26.66 ± 0.57) mm. Low concentrations of P. dioica essential oil
and eugenol were necessary to inhibit the growth of all tested microorganisms. While
concentrations as low as 12.5 mg/mL for Pimenta essential oil and 3.125 mg/mL for eugenol
are needed to kill the tested strains. Additionally, P. dioica essential oil and eugenol were
able to inhibit the biofilm formation on abiotic surfaces (Polystyrene and glass) by almost
all tested foodborne strains. Moreover, the tested essential oil and eugenol were able to
regulate the production of some virulence related properties controlled by the quorum
sensing mechanism in C. violaceum and P. aeruginosa PAO1 starter strains. Hence, these
findings highlighted the potential use of this essential oil as a potential candidate for food
preservation, biofilm prevention and bacterial cell to cell communication inhibitor.
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