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Abstract: Plant diversity is critical to the functioning of human societies, and evidence shows that
plant conservation success is driven by integrative approaches that include social and biological
factors. Plants have a unique capacity to reproduce asexually, and propagation practices can yield
large numbers of plantlets. These plantlets can be used in several ways to fulfil conservation goals
including the repopulation of regions with declining densities of threatened species that hold cultural
meaning. However, the potential of in vitro technologies in the conservation of plants that hold
cultural meaning is understudied. In this paper we focus upon the roles of in vitro technologies in
the conservation of plants relevant to biocultural environments and provide an overview of potential
knowledge gaps at the interface of in vitro and plants used traditionally, including those meaningful
to Indigenous Peoples. We conclude that in vitro technologies can be powerful tools in biocultural
conservation if they are deployed in a manner respectful of the socio-cultural context in which plants
play a role, but that further research is needed in this regard. We suggest several epistemological
points to facilitate future research.

Keywords: plant micropropagation; Indigenous; biodiversity; social ecological interactions; science
and technology studies

1. Introduction

Plants are pivotal to ecosystem resilience and the functioning of human societies, but
they are increasingly threatened. The current rate and magnitude of plant diversity loss is
partly attributed to how science and technology are used along with other anthropogenic
drivers. Plants have a unique capacity to reproduce asexually, and in vitro propagation
technology allows one to produce large numbers of plantlets that can be effectively used
to repopulate threatened and endangered species with cultural significance [1] Therefore,
in vitro propagation can play a role in the conservation of biocultural diversity [2]. How-
ever, the benefits and detriments of deploying in vitro technologies in the conservation
of biocultural diversity are understudied. Biocultural diversity allows framing the prob-
lem of biodiversity loss under socio-cultural and ecosystem components, blurring the
human–nature divide. This view acknowledges that the degradation of life’s diversity
indiscriminately affects humans and other organisms, and that conservation interventions
impact human and ecosystem dimensions. In this review, we discuss key points of the
human dimension at the interface of plant diversity loss, in vitro technologies, and bio-
cultural conservation, focusing on plants meaningful to Indigenous Peoples. We describe
potential knowledge gaps and current challenges in the human-plant-technology relations,
concluding that in vitro technologies are potentially useful tools in biocultural conservation
if they are deployed in a way respectful of the socio-cultural context in which plants play a
role. We also suggest that future scholarship should include discussion on how to define
Indigenous plants, and that these efforts be conducted in consultation with Indigenous
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Peoples. Respectful and just collaboration can facilitate a shared research space among
plant biologists, social scientists, and Indigenous Peoples to better understand the role of
in vitro technology in the successful conservation of biocultural environments.

2. The Loss of Plant Diversity: Threats, Drivers, and Magnitude

Plants play a pivotal role in maintaining ecosystem resilience, and their diversity is
considered critical to the survival of human societies, and yet, plant diversity is increasingly
threatened [2–7]. Plant diversity, framed here as a sub-theme of biodiversity, is defined as
the variability of plant life on Earth at the genetic, species, and ecosystem levels [8]. Biodi-
versity loss, commonly understood as the reduction of variability from genes to ecosystems,
includes the extirpation and extinction of species and the degradation of habitats [9,10]. The
loss of diversity has been connected to the weakening of ecological food webs, agricultural
decline, and economic losses [7,9,11]. Thus, biodiversity loss can be regarded as a complex
problem with no linear solutions and as a common denominator to biological and societal
challenges [6,12,13]. Biodiversity loss is a global phenomenon occurring despite numerous
conservation initiatives and innovations initiated since the 1970s, when the importance of
biodiversity loss was formally acknowledged [9,14,15]. Although there is no wide consen-
sus on the metrics to assess biodiversity loss, current scientific studies and global policy
reports agree that anthropogenic factors such as human population growth, current rates
of natural resource exploitation, and pollution are important drivers of the contemporary
rate of this loss [5,11–13]. The current loss of plant diversity has been triggered by land
use changes initiated by deforestation, desertification, intensive monocultures, invasive
species, and urban sprawl [14,15]. Furthermore, the interrelations between humans and
nature have supported the argument that humanity is driving the sixth mass biological
extinction [16]. Anthropogenic actions have increased the rate of biodiversity loss by at least
100 times the background extinction rate i.e., the naturally occurring rate as observed in the
geological record [16–18]. In terms of plant loss, it is estimated that anthropogenic drivers
are causing the loss of one potential medicinal plant species every 2 years. Some species
are disappearing before being known to science, and their loss is projected to occur within
the next decades [11,19,20]. Given the complexity and wide-ranging negative outcomes
of biodiversity loss, involving stakeholders and rightsholders and partnering with local
communities offer advantages for identifying and protecting plants of ecological and social
significance [2,21–23].

Biodiversity loss has also been linked to climate change, which further emphasizes
the role of plants and the interactions among diverse traditional knowledge systems, tech-
nologies, and social perspectives [24]. Mayhew and colleagues presented the first scientific
evidence directly connecting global climatic changes with fluctuations in biological diver-
sity across time, finding higher extinction rates in both terrestrial and marine environments
during the warmest planetary phases [25,26]. Although climate change is considered a
determinant of biodiversity loss, these two phenomena are now understood as part of a
feedback loop in which climate change exacerbates biodiversity loss and vice versa [27–29].
While this relationship is observed in nature across the geological scale and pre-dates
modern humanity, it is the precipitous nature of the human-triggered climate change
and biodiversity loss that underpins the sense of urgency in current scientific and policy
matters [20,30]. These two phenomena are inflicting further evolutionary pressures on
plants, while at the same time plants are considered fundamental in mitigating the effects
of climate change [31,32]. On the one hand, trees are primary producers that act as carbon
traps reducing atmospheric CO2 and have heat-holding effects, simultaneously support-
ing heterotrophs. At the human scale, plants provision foods, medicines, and sources of
income, which help attain sustainability goals [33–36]. Thus, projects that focus on plant
components for retaining and restoring the integrity of forests and other ecosystems are
gaining attention in conservation [28,37]. On the other hand, changes to plant diversity
in boreal and high-altitude regions have been found to exacerbate the vulnerability of
cold-adapted plant populations, increasing the risk of their extinction [31,38]. Species
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adapted to cooler environments are susceptible to warmer temperatures and respond to the
stressors through in-situ adaptations, including shifting their geographical location from
warmer to cooler ranges to avoid extirpation and possible extinction [39,40]. Several plant
species that were thought to occupy lower altitudes have been recently mapped at higher
altitudes, forcing them to interact with other plant species, soil biota and pollinators [41].
Modelling and mapping studies predict that by the end of the 21st Century, high-mountain
wild plants in the Alps, such as the medicinal species Salix reticulata L. (snow willow) and
Saxifraga spp. (saxifrages) may lose up to 40–50% of their present range as they move
to cooler environments at higher altitudes [42]. Similar changes have been observed in
the Medicine Mountains in the eastern Himalayas, depriving the Tibetan communities
of access to an estimated 61% of their unique plant medicines such as Saussurea laniceps
Hand.-Mazz. (snow lotus) [43]. As plants eventually reach areas with less suitable soil
and less room to grow, they compete for limited resources and struggle to re-establish and
maintain healthy populations [42,44], which can have negative implications for cultural
practices because many plant species are unique sources of medicine, food, and ceremonial
artifacts [32,45–47]. Therefore, the compounded effects of plant biodiversity loss and cli-
mate change weaken the structural and functional interconnections between the biological
and cultural components of life [7,48,49]. In this regard, deploying plant-focused technolo-
gies, not exclusively as technofixes but as part of integrated schemes, can contribute to
safeguarding both biological and cultural diversity [50–52].

Conservation is among the activities implemented to deal with biodiversity loss.
The term conservation is generally understood as the science and practice of describing,
explaining, appreciating, protecting, and perpetuating biological diversity, which is an
inherently interdisciplinary and deliberate undertaking [53]. Conservation science has
its roots in the western worldview that originated in Europe and assumes that human
agency aided by the scientific method and technology can remediate biodiversity loss [54].
Technology refers to the body of knowledge available to a culture or society to design,
produce, maintain, and use physical objects (tools, instruments, or artifacts) to extract,
collect, produce, or distribute materials, energy, or information, providing a benefit [55–57].
The way technology is deployed reflects societal values and priorities, so tool use can
carry social meaning [58,59]. The close association between science and technology gave
rise to the concept of technoscience, which in the social sciences is useful in analyzing
wide-ranging technologies and scientific discoveries such as biotechnology along with
the social context in which they operate [60]. Within this scope, the way science and
technology are used in conservation is a novel research theme in the field of science and
technology studies (STS), a discipline exploring the meanings and interactions between
science, technology, societies, and the natural environment [61–63]. Several STS concepts
are used in the following sections to explain human-technology-plant interactions. But first,
it is important to introduce the concept of biocultural diversity to better assess the role of
in vitro technology in the conservation of plants that hold biological and cultural value.

Biocultural Diversity and Plant Conservation

It has been argued that biodiversity also includes cultural diversity, giving rise to the
more comprehensive concept of biocultural diversity [23,64–67]. Cultural diversity refers
to the variety of cultures defined as systems of shared symbols, behaviors, beliefs, values,
norms, artefacts and institutions that the members of a society use to cope with their world
and with one another, and that are transmitted from generation to generation through
learning [49,68,69]. The inclusion of the socio-cultural dimension emphasizes that societies,
their cultures, and nature are in constant interactions, which are integral to human survival
in the biosphere [70,71]. Biodiversity and language loss have also been linked to the loss
of unique medicinal plants, uses, and meanings especially among peoples who practice
oral and land-based teachings [72,73]. Biocultural diversity conservation aims at sustaining
the biophysical and sociocultural integrity of life systems, including the protection of
species that reflect long-held relations with nature and help shape cultural identity [52,74].



Plants 2022, 11, 503 4 of 20

Furthermore, all technologies including in vitro methods have sociocultural dimensions,
and their deployment in biocultural environments requires a deep understanding of their
impacts upon human societies and their ways of life [75,76]. In this context, there is a need
to build a common epistemological space in which biocultural conservation themes can be
approached alongside plant sciences and technologies [77,78].

While all human societies are coupled with the ecologies around them, biocultural
diversity loss has disproportionally affected some populations more than others and has
been qualified as a crisis among Indigenous communities [74,79]. There is no universally
accepted definition of Indigenous Peoples; however, there are some general criteria to
identify and distinguish Indigenous Peoples from the dominant society. The United Nations
has proposed to refer to Indigenous Peoples as those in independent countries who self-
identify at the individual level and are accepted by the community as their member. They
are regarded as Indigenous on account of their descent from the populations that inhabited
the country or a geographical region to which the country belongs, at the time of conquest
or colonization or the establishment of present state boundaries and who, irrespective of
their legal status, retain some or all of their own social, economic, cultural and political
institutions [80]. Indigenous Peoples have developed their own unique ways of interacting
with their traditional environments [81]. Although a generalized Indigenous system does
not exist, Indigenous knowledge systems (IKS) are not just knowledge but encapsulate
a way of life [82]. IKS are based on the beliefs, assumptions, and understandings of non-
western people developed through long-term associations with a specific place offering a
holistic (i.e., interconnectedness of the cosmos) view of the world and of themselves [78].
Therefore, IKS are inseparable from Indigenous Peoples, who maintain the relationships
with living human and non-human entities, spirits, ancestors, and future descendants [82].
Indigenous languages can also reflect and help perpetuate intimate practical environmental
knowledge and intrinsic values that contribute to biodiversity protection and its sustainable
use within IKS [81,83,84]. In this view, Indigenous Peoples have advocated the use of a
holistic conservation perspective informed by local knowledge while also considering
the potential of western technoscience [85,86]. Some Indigenous experts argue that the
integration of Indigenous knowledge and western-rooted technoscience can occur under
approaches such as the Two-Eyed Seeing, or Etuaptmumk in Mi’kmaw [87]. This refers
to a view informed by two lenses used together without exerting dominance to generate
solutions that are good for people and the environment [88,89]. Responsible and just
bilateral approaches such as Two-Eyed Seeing can be advantageous in plant conservation
because they consider that many plants encapsulate sacred and linguistic values as well as
being foundational to ecological functioning [90,91].

In plant conservation, biotechnology including in vitro methods offers advantages
in propagating and storing plant germplasm especially benefiting species for which seed-
based or other conservation methods are ineffective [92]. However, biotechnology in
conservation has had varying degrees of success and social acceptance [93]. This is in part
because the processes behind how the technology is perceived, implemented, regulated,
and funded at cross-cultural scales remain little understood and documented [94]. In this
context, the conservation of the American chestnut (Castanea dentata Borkh.) presents an
interesting example. This tree is the first plant species to undergo genetic engineering
for conservation using a wheat gene resistant to chestnut blight [95]. The goal is to rein-
troduce the species into the wild. American chestnut was a dominant species in eastern
North America but is now functionally extinct in the United States due to the accidental
introduction of the fungus from Asia in the early 1900s [96]. However, Hodinöhsö:ni’
(Haudenosaunee) communities inhabiting lands where now-extinct chestnut trees used to
exist were not initially consulted on the use of genetically engineered organisms (GMOs)
for chestnut restoration [97]. Collaboration is encouraged in the UN Declaration on the
Rights of Indigenous Peoples, but consultation is often carried out after designing or con-
ducting laboratory experiments [1,96]. However, the modified chestnut trees are projected
to be re-introduced in environments shared with Haudenosaunee Peoples [97]. This is an
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issue of concern for some Haudenosaunee Peoples because in their view, a new kinship
bond would need to be built between people and the new trees [93]. This illustrates that
technological introductions can engender socio-cultural tensions or alter human–plant
relationships that can be counterproductive to the success of plant conservation and the
wellbeing of people [73].

3. Plant Conservation and Social Dimension of Technoscience

In STS scholarship, it has been argued that technology mediates the interactions
between humans and their environments, which can be beneficial or detrimental [48,75].
Mediation in this context refers to facilitating certain interactions over others and to helping
shape understandings about the world that would not happen in the absence of technology.
This means that tools are not simply passive objects that lack influence over humans and
the world, which in the case of this review refers to the human–plant relationships [59]. For
example, tools allow humans to transform entire landscapes at rates much higher than by
using hands alone. Simultaneously, the transformed environments and the tools themselves
change the way humans behave, because tools enhance abilities and widen the possibilities
of using plants [98]. However, there are several unknowns in the human-technology-plant
relationships due to slower progress in plant conservation scholarship compared to that of
animals [5], and due to limited evidence on the social aspects in the technoscience-plant
relationship [99]. These two issues are discussed in the next section.

3.1. Studies on the Conservation of Plants: Limitations and Opportunities

There are two socially related issues in the conservation of plants. First, scholars
have argued that plants take a backseat to animals as subjects of study, and as funding
and policy targets. Unsurprisingly, most charismatic species framed in conservation are
animals such as the orangutan (Pongo pygmaeus L.). This species has directed global
attention to Borneo while orchid species, many of them endemic, have not been fully
identified in that region [100]. This neglect has been called plant blindness and continues
to happen regardless of calls for action by scholars such as Amos [6], Thuiller et al. [31],
and Sharrock et al. [101]. Further, Wandersee points out that specific social attitudes and
conservation targets need to be developed to protect plant species [102]. Plants are generally
perceived as non-sentient beings, so people do not feel empathy for them [103,104]. In
conservation practice, empathy towards pain and suffering plays an important role in
conveying a public message of protection placing animals in an advantageous position
over plants [105]. The view of plants as capable of experiencing pain is hard to reconcile
with a western biological view because pain is generally defined as a neural response.
Plants do not have neurons, thus pain cannot be observed or measured with the tools
used for animals with nervous systems [104]. Second, in conservation science, policy, and
law, plants are generally seen either as resources or as components of nature that hold
intrinsic value [6]. In either case, plants may or may not warrant protection based on what
is prioritized and by whom. Margulies et al. argue that the relative neglect given to plants
in conservation along with limited views of plant-human relationships have contributed to
lax legal control and the indiscriminate illegal trade of many species [106]. Plants viewed
only as tangible resources are often illegally traded for essential oils, perfumes, exotic
foods, herbal remedies, and ornamentals, increasing the threat of their extinction. This
view can also cause human casualties in what Walters [107] defines as eco-crimes such as
targeted assassinations of locals and environmental activists who inhabit coveted lands
or oppose resource exploitation [108,109]. When these are Indigenous plants, it can lead
to the deprivation and extinction of related experiences among Indigenous Peoples [96].
Therefore, how plants are interpreted can pose limitations or advantages in conservation.

In this regard, there is a third view of plants that needs consideration. Their behavior
can be interpreted as resulting from agency, which attributes an active social role to plants.
In ethnobotany and folk psychology, agency generally indicates the ability of an entity to
act and influence other actors in the social world [110]. In biology, plant behavior such as
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growth towards sunlight is understood as a biochemical process. In contrast, in several IKS,
plants participate in networks of relationships with humans and other components of the
land [90]. For example, the Ngobe People, an Indigenous group in Panama, consider plant
growth as a means of communication with other entities including people, which indicates
plant agency. Growing towards sunlight or shedding seeds are interpreted as feelings such
as happiness and are expressed by specific Ngobe words. On the contrary, if the plant is not
shedding seeds in season, the plant is said to be in pain. Relating to plants in this manner
has allowed the Ngobe to reduce the harvesting of certain plants during drought years [111].
Although western scientific research about plants is widening, framing plants as social
participants or as capable of feeling places western plant biologists and policymakers in
uncomfortable epistemological situations [6,104]. Nonetheless, plant scientists who intend
to deploy in vitro technology in conservation should be aware that the socio-cultural roles
of plants in IKS diverge from western technoscientific visions [51,110].

3.2. Indigenous Plants

Ethnobotanical data has increasingly been incorporated in conservation scholarship
denoting an awareness of the socio-cultural roles of plants. Framing plants as biocultural
components demands a working definition of Indigenous plants. In plant sciences and
biogeography, native, endemic, or indigenous (i, not capitalized) refer to plants that are
present in a region due to natural evolution and dispersion, as opposed to invasive plants
that are introduced by anthropogenic means outside their native ranges [111]. This defi-
nition does not capture Indigenous plants (I, capitalized), loosely defined as plants that
hold traditional meaning to Indigenous Peoples. There are Indigenous plants that are not
indigenous to regions of cultural significance but that have been used traditionally for
many generations. For example, maize (Zea mays L.) was originally domesticated in central
Mexico, but its cultivation and cultural meaning disseminated to North and South America,
becoming a traditional plant and strong symbol of identity among numerous Indigenous
groups across the Americas. For the Haudenosaunee, maize is one of the three traditional
crops along with beans and squash, comprising the Three Sisters [112]. However, maize
is a domesticated crop that under a biogeographic definition can be interpreted as an
invasive species in northern and southern regions outside central Mexico; hence, it could
be excluded from ecological conservation efforts. However, from a biocultural perspective,
maize is an Indigenous plant of paramount importance to food security and the perpetua-
tion of traditional lifestyles. Due to high hybridization, maize is a very vulnerable crop and
introgressions with its wild relatives, the teosintes (Zea spp.), have been of interest. Even
if maize is not a focus of conservation, wild teosintes are all considered threatened [113].
Protecting the biodiversity of the domesticated and wild forms is, therefore, relevant in
biocultural conservation. This case exposes some of the challenges of generating defini-
tions that work at the interface of western technoscience and IKS. Unfortunately, scholarly
discussions on how to accurately define “Indigenous plants”, to the best of our knowledge,
are rare. In ethnobotanical literature, terms such as traditional, medicinal, or sacred are
commonly used to describe socio-cultural roles of plants, but these terms do not appear
to have been formally reviewed in conservation literature [109,114,115]. Traditional is a
term used informally and repeatedly in this review to denote actions or events that are
conventional, customary, and long-established, and which do not refer exclusively to In-
digenous contexts. We suggest that a discussion with Indigenous partners about how to
define Indigenous plants is warranted to capture plant meaning, and to create a common
language in biocultural conservation.

3.3. Social Dimension, Technoscience and Plant Relationships: Concerns

The outcomes from the deployment of conservation technology in Indigenous social
contexts are understudied [75,116,117], but hold potential benefits. For example, in Mexico,
several cacti of Turbinicarpus sp., known as peyotls (peyote) by the Huasteco and Huichol
peoples, are considered sacred and medicinal due to their psychoactive properties. At
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the same time, due to these properties and their ornamental appeal, these small cacti are
illegally traded with few legal deterrents [115]. Turbinicarpus species have a very slow
growth rate, so their populations have been rapidly depleted, leading to inclusion in
CITES Appendix 1 and the IUCN Red List [116]. Due to their rarity, traditional rituals
using peyote and the unique hand-carved vessels used in rites are also disappearing [117].
Beyond their sacred meaning within IKS, peyote conservation can open opportunities in
pharmacology. To this end, several recent studies have documented the use of in vitro
propagation to produce specimens for non-Indigenous use and to divert the exploitation
of wild populations [118–121]. However, the use of Indigenous plants by non-Indigenous
peoples is a contentious issue, so harvesting or manipulating plants must occur with just
and respectful consultation [1,76,96,97]. In sum, in vitro propagation technology can sit
at the interface of Indigenous and non-indigenous plant use, but its deployment must be
guided by socio-cultural narratives.

4. The Nexus of In Vitro Technology and Plant Conservation

Dating back about 10,000 years, humans began using living organisms to obtain prod-
ucts and solve problems, for example, animal or plant domestication, giving rise to biotech-
nology [122]. Biotechnology exploits a facet of a life cycle or a trophic relation between
organisms and includes selective breeding of plants [123]. At present, as a technoscience,
biotechnology is largely performed in laboratories and other controlled environments using
specialized equipment to observe and manipulate organisms. The term in vitro, meaning
in glass, is widely used in the life sciences [124]. In vitro technology for plant production
focuses on regenerating whole organisms from tissues and cells, producing genetically
identical specimens or clones. This technology manipulates plant components, called
explants, by isolating them from their natural environment and stimulating them to grow
in receptacles assisted by aseptic growth media, controlled light, temperature, and other
conditions [109,122–124]. Seminal work on plant tissue culture was published in 1902 by
Gottlieb Haberlandt, who predicted that artificial embryos (human-made) could be culti-
vated from vegetative cells in test tubes, culture boxes or Petri dishes [125–129]. Later the
ability to grow and multiply isolated shoots laid the foundation for large-scale propagation
of plants. Today, this technology has wide applications in agriculture, pharmacology and
increasingly in conservation [109,121].

4.1. Micropropagation and Cryopreservation Methods

In vitro technology of plant propagation includes a wide range of modifications and
practices such as micropropagation, somatic embryogenesis, slow-growth storage, and
cryopreservation, which can be used in integrated schemes (Figure 1). Micropropagation
refers to multiplying plants from tissues of wild-harvested or seed-grown plants with
the correct combination of nutrients and growth regulators. Regeneration from cultured
explants occurs via two different developmental pathways: organogenesis or somatic
embryogenesis. In organogenesis, multiple shoots emerge from explants that can be rooted
to develop whole plants (Figure 1), whereas somatic embryogenesis produces a bipolar
structure that resembles an embryo capable of forming an entire plant. Regardless of the
mode of regeneration, both processes are advantageous in producing numerous uniform
and healthy plants of desired genotypes with traits such as pest resistance, stress tolerance,
high medicinal content, etc. In addition, these methods may allow one to recover healthy
plants from those infected with parasites and pathogens [130,131]. For conservation,
micropropagation has been successfully used in the reintroduction of endangered species
into their native ecoregions. A few examples of the use of micropropagated plants in
conservation include (a) the medicinal plants Achillea occulta L. (yarrow), Amsonia orientalis
Decne. (European bluestar), Anthyllis splendens L., and Calamintha cretica Mill. (calamint)
in Greece [132]; (b) Prunus africana, Hook f. (African cherry), a medicinal tree, and the
ornamental Magnolia sirindhorniae Noot. & Chalermglin [133,134]; and (c) Cicer microphyllum
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Benth. (Himalayan chickpea), an endemic wild relative of the common chickpea (Cicer
arietinum L.) [135].
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matized plantlets reintroduced in their natural habitat (F), and normal plant growth observed after
1 year (G). In vitro shoots of Hill’s thistle (H) used to excise shoot tips for cryopreservation through
droplet vitrification method, with one shoot in each droplet placed on aluminum foil (I) immersed
directly in liquid nitrogen (J). A surviving shoot tip transferred on shoot growth medium (K) for
further multiplication and plant regeneration as shown in (C–E). Many different genotypes of Hill’s
thistle and other endangered species as well as economically important crop plants can be stored for
decades in a cryobank (L). Images taken by M. Shukla.

Cryopreservation allows for long-term tissue storage in cryo-tanks containing liquid
nitrogen (LN, −196 ◦C), and the subsequent regeneration of plants from these tissues
following rewarming [126,136,137]. Under cryopreserved conditions, explants are stored in
a state in which cellular divisions and metabolic activities are minimal, thus preserving the
genetic integrity for potentially indefinite time [126,138,139]. The process of freezing plant
tissues in liquid nitrogen requires substitution of water content in the tissues with cryopro-
tectants that are anti-freezing substances capable of inhibiting ice formation and protecting
cellular structure. Cryopreservation protocols are often specific to each plant species [136].
Commonly used explants such as meristems, nodes, buds, roots, and seeds can be used
for plant species with irregular seed production and for species in which seed collection
is limited due to dwindling populations [137,140]. Cryobanking has been used for plant
reintroductions in natural habitats in species such as golden paintbrush (Castilleja levisecta
Greenm.) [141], cherry birch (Betula lenta L.) [142], and the critically endangered pearl-like
androcalva (Androcalva perlaria Wilk.) [143]. Recently, Streambank lupine (Lupinus rivularis
Lindl.), an endangered plant in Canada, has also been micropropagated and cryopreserved
successfully [144]. Table 1 shows several traditional plants in which micropropagation and
cryopreservation have been applied for conservation purposes.
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Table 1. Examples of plants that hold meaning to Indigenous Peoples for which in vitro methods
have been applied. We avoided the label “Indigenous” and chose instead “traditional uses” in column
two to denote social and cultural roles, because the cited references do not define Indigenous.

Scientific Name Traditional Uses In Vitro Method Used Geographical Location Reference

Castanea americana food, wood transgenic *
modification * Northeastern USA [145]

Turbinicarpus sp. medicinal, ceremonial tissue culture *ˆ Mexico [118]

Gentiana kurroo medicinal shoot culture * India [146]

Eucalyptus spp. medicinal tissue culture * Australia, Tasmania [147]

Rhinacanthus nasutus medicinal, dye tissue culture * Southwest Bengal [148]

Gethyllis multifolia medicinal hydro culture * Worcester,
South Africa [149]

Agathosma betulina medicinal, food micropropagation * Western Cape,
South Africa [150]

Wrightia tinctoria medicinal stem cuttings * India [151]

Aristolochia ringens medicinal root,
stem cuttings * Nigeria [152]

Manihot esculenta medicinal, food micropropagation * Global distribution [153]

Artemisia tridentata medicinal, ceremonial micropropagation * Western
North America [154]

Swertia mussotii medicinal, ceremonial micropropagation * Qinghai-Tibet Plateau,
China [155]

Nardostachys jatamansi medicinal micropropagation * Himalayan region [156]

Sequoiadendron giganteum ornamental meristem culture Sierra Nevada,
USA [157]

Artocarpus altilis medicinal, food meristem culture *ˆ Pacific Islands [158]

Solanum tuberosum food, ceremonial

nodal explant
tissue culture *ˆ

shoot tip,
micro tuber

cryopreservation

Global distribution [159–162]

Hordeum vulgare food embryo
cryopreservation *

SW Asia,
Himalayas [163]

Ceiba pentandra medicinal, wood apical shoot
culture

Tropical forests,
global distribution [164]

Zea mays food, ceremonial embryo, seed
cryopreservation Global distribution [165,166]

* Indicates in vitro methods have been documented for conservation purposes. ˆ Denotes in vitro projects carried
out in explicit collaboration with Indigenous Peoples; unmarked reports do not disclose this information.

4.2. Advantages of In Vitro Technology

In vitro technology for plant conservation generally promotes the protection, reintro-
duction, and restoration of species in cases where seed banks or traditional propagation
are not sufficient or adequate. Introducing clones from another population into isolated
populations can contribute to genetic rescue in conservation by increasing genetic variabil-
ity, although this issue needs further study [167]. Using clones made from selected mother
plants has the goal of replenishing dwindling or extant populations. Although research is
ongoing on the role of clones in conservation, asexual reproduction remains a widespread
strategy observed in plant reintroductions [131,168]. There are three main applications of
in vitro technology in conservation:
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1. In vitro methods facilitate tapping into the abilities of plant tissue to reproduce vege-
tatively from limited starting material, thus reducing the need to harvest whole plants
or numerous plants from the wild, preventing the depletion of vulnerable populations
in their natural habitats. Plant multiplication by in vitro technology is achieved by
proliferation of the apical or axillary meristems, which consist of rapidly growing cells,
are generally genetically consistent, relatively virus-free, and bear greater capacity for
multiplication compared to non-meristematic tissues. Alternately, plants can be prop-
agated by regeneration, in which individual plant cells express their inherent capacity,
referred to as “totipotency”, to divide and differentiate to form complete plants. Both
modes of plant propagation have specific advantages. While multiplication using
pre-existing meristems is known to produce genetically identical clones that can be
used to enrich a specific population, the plants produced by regeneration may exhibit
genetic variations that can be exploited to create genetically diverse plant populations.
Thus, in vitro technology allows regeneration of fully functional specimens from small
amounts of tissue, saving time and money and reducing the need to harvest numerous
specimens. The mass production of rare or useful plants via micropropagation diverts
from overexploitation of wild specimens for commercial use [131,169].

2. In vitro grown specimens of threatened or rare plants can also help populate ex situ
collections in botanical gardens and other research institutions that can be later re-
introduced in natural habitats [92,170,171]. This allows for the short and long-term
storage of germplasm, which protects it from current threats, and also facilitates the
selection of genotypes for future use [172].

3. These techniques allow for an unlimited amount of explant production to supply mate-
rial for scientific experiments, allowing one to replicate tests ad-lib under rigorous stan-
dards and to engage in large trial-and-error conservation interventions [129,173,174].

Conservation in general has never been without disagreement about what to prioritize,
and this has produced several research approaches to reverse the loss of biodiversity [53].
Overall, conservation aims at removing existing threats, preventing further negative im-
pacts, reinforcing remaining populations and restoring ecological processes [53,175]. These
processes generally translate into four main approaches that reflect which phenomena or
conditions are prioritized: (a) the protection and preservation of existing species or habitats
from direct human-led harm, (b) the sustainable management of species or habitats that are
considered resources for humans, (c) the restoration of threatened species populations or
habitats to viable and functional conditions, including reintroduction of extirpated species
(re-wilding), and (d) the re-birth or de-extinction of species that have gone extinct along
with the re-creation or emulation of disappeared habitats, so species can be brought back to
viable self-preserving populations in self-sustaining habitats [53]. These approaches are not
exclusive of each other; for example, management and preservation can be implemented
simultaneously as part of larger restoration projects. Moreover, preservation is a concept
used at several scales, from preservation of intact natural spaces or full landscapes to the
preservation of isolated genetic material, tissues, or seeds in vitro or in seed banks [176].
These four main approaches relate to several conceptualizations of interventions across
timelines. In other words, they focus on past, present, or future visions of natural envi-
ronments that can be achieved through human agency. On the one hand, they emphasize
cataloging, protecting, or restoring what is present today or in the recent past. This is done
by tapping into technologies for ex-situ or in-situ conservation including monitoring and de-
marcating protected areas. Moreover, this includes maintaining botanical gardens, herbaria,
seed banks, and in vitro collections [40,125,139,177]. On the other hand, de-extinction and
re-wilding projects rely on cryopreserving specimens to be reintroduced in the future or
use genetic manipulation to restore deep-past environments [177–179]. Figure 2 depicts
in vitro technologies that are applicable in all these strategies and timelines [92,139,140].
For example, preservation of germplasms in controlled environments and cryopreservation
intend to capture present diversity as insurance in case natural populations degrade due to
harsh anthropogenic conditions.
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4.3. Limitations of In Vitro Technologies

There are also some limitations and disadvantages of in vitro technologies. For exam-
ple, it can be difficult to extrapolate adaptation success from results obtained in wet labs
back into in vivo and wild environments, particularly because plants in the wild survive
along with prevailing abiotic factors and microbiomes including a range of bacteria and
fungi and the coping with predators. Thus, conservation projects can require long, multi-
season or multi-year timelines [131,180]. Additionally, each species needs to be studied
individually to find the optimal conditions necessary to survive and grow in vitro, with a
few reports warning that the composition of micropropagation media and supplementation
with growth regulators can alter morphological, physiological, and genetic integrity in
some plants [125]. Further, in vitro culture is a reductionistic practice because it isolates
explants from their original ecological context. Thus, the complexity of plant interactions
bound in ecosystems or social networks is minimized [77], as is the case with many scien-
tific studies that isolate components to minimize uncertainty [60]. Plant processes in this
context are alterable by one-directional human-to-plant influence, dismissing the possibility
that plants hold agency.

4.4. Challenges and Opportunities at the Interface of Plant Conservation, In Vitro Technology, and
Indigenous Plants

In biocultural conservation, reductionism and control of life processes can challenge
holistic visions of the world. For example, in the case of the genetic modification of Ameri-
can chestnut, the Haudenosaunee community is concerned about the kinship ties that need
to be developed with the newcomer tree and not merely about the form of the tree [96].
Barnhill-Dilling and Delborne speculated that laboratory manipulation may strip the heal-
ing attributed to non-modified (or original, natural) trees, making the transgenic trees
suitable only for food or carving [1]. Determining who may access in vitro-raised plants as
well as who benefits from them can be a contentious issue, especially when focusing on
endangered and endemic plant species meaningful to Indigenous Peoples. The Nagoya
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Protocol in 2010 was adopted to make explicit the fair and equitable sharing of benefits
arising from biotechnology at the global scale [181]. Nonetheless, the mining of plant
knowledge from Indigenous Peoples without just and culturally appropriate benefit shar-
ing continues for many endangered medicinal species [36]. Although in vitro technologies
require less plant material at the harvesting stage, benefit sharing is in many cases still
lacking, especially in countries where the Nagoya Protocol has not been ratified or is simply
ignored [182]. For example, green criminology or the illegal trade of endangered species
such as orchids is underreported and understudied [183]. Illegal harvest of specimens
occurs through in vitro operations to produce seedlings or explants, which are then ex-
empted from CITES control to procure the rare orchid market [184,185]. On a positive side,
tissue analysis of suspected plants can be used to trace provenance to enforce conserva-
tion protocols [186], and the availability of micropropagation and cryopreservation for
many orchid species contributes to their long-term conservation [187]. This illustrates how
biotechnologies can sit on both sides of conservation efforts. It means that conservationists
operate under ever-shifting biological and socio-cultural contexts where technology can
play contradictory roles [188].

One well-documented case of successful use of in vitro technology in collaboration
with Indigenous communities is from the Peruvian Andes. Quechua farmers, whose cul-
tural practices reflect an intimate relationship with the highland biodiversity in the Andes,
are embracing in vitro techniques to better understand gene flow across domesticated and
wild potatoes in the midst of climate change [40]. These farmers, relying on their traditional
knowledge, have cultivated thousands of potato varieties (Solanum sp.), but pests adapted
to warmer climates are now creeping up the mountains and devastating both crop and wild
potato diversity. For the Quechua, the spirit of the potato is sacred and acting as stewards
of its diversity is ingrained in their identity. Thus, collaboration with in vitro scientists is
seen as a positive strategy [162]. In Mexico, several efforts are on-going to optimize tissue
culture for several peyote species, so bioactives can be obtained from hairy roots to support
pharmacology research while leaving wild specimens intact [118,189]. In Patagonia, several
projects have been developed in consultation with the Mapuche to restore Araucaria spp.
populations via seed banks and vegetative means. However, the potential of in vitro tools
remains understudied, and the success rate of plantlet establishment in the wild is still
unknown [190]. In the Thar Desert in India, another environment highly susceptible to
climate change, a unique collaboration between the Indian government and local commu-
nities has been developed to protect endemic species by combining traditional practices
with in vitro technologies. Specimens harvested under the supervision of local groups are
grown in laboratories to fulfil local needs while diverting the harvest of threatened wild
populations [191,192].

5. Final Considerations about In Vitro Technology in Biocultural Conservation

Although the social and natural sciences have evolved through different paradigms
and methodologies with respect to the approach to conservation, there is growing consen-
sus that including the human social dimensions of conservation is critical to intervention
success [193,194]. Conservation projects that ignore the socio-cultural dimensions can
unintentionally end up with negative consequences for biodiversity. Responsible and just
collaboration between technoscientists and Indigenous Peoples is growing, but there are
challenges in reconciling biological and socio-cultural conservation goals. Biotechnology in
general is reductionistic and dependent on controlled environments, making it exclusion-
ary or inclusionary depending on the social context in which it is deployed [195]. In vitro
technology includes a wide variety of practices that require specialized personnel, instru-
ments and facilities that can be inaccessible to Indigenous communities. Nonetheless, some
practices can be transferred and adopted with the limited resources available [196]. Lastly,
awareness of the human-technology-plant interactions can guide biocultural conservation
strategies and lead to innovation, but the social implications of technology deployment
need further study.
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