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Abstract: We analyze the application filed for the marketing and cultivation of genetically engineered
Bt cowpea (event AAT 709A) approved in Nigeria in 2019. Cowpea (Vigna ungiguiculata) is extensively
grown throughout sub-Saharan Africa and consumed by around two hundred million people. The
transgenic plants produce an insecticidal, recombinant Bt toxin meant to protect the plants against the
larvae of Maruca vitrata, which feed on the plants and are also known as pod borer. Our analysis of
the application reveals issues of concern regarding the safety of the Bt toxins produced in the plants.
These concerns include stability of gene expression, impact on soil organisms, effects on non-target
species and food safety. In addition, we show deficiencies in the risk assessment of potential gene
flow and uncontrolled spread of the transgenes and cultivated varieties as well as the maintenance of
seed collections. As far as information is publicly available, we analyze the application by referring
to established standards of GMO risk assessment. We take the provisions of the Cartagena Protocol
on Biosafety (CPB) into account, of which both Nigeria and the EU are parties. We also refer to the
EU standards for GMO risk assessment, which are complementary to the provisions of the CPB.

Keywords: Bt cowpea; transgenic plants; environmental risk assessment; biodiversity; gene flow;
food safety; GMOs; LMOs; Cartagena Protocol on Biosafety

1. Introduction

Cowpea (Vigna ungiguiculata) is a legume that is extensively grown throughout sub-
Saharan Africa. Millions of African farmers grow cowpea and some two hundred million
Africans consume it. Cowpea is one of the most ancient crops known to man. Its origin and
domestication occurred in Africa near Ethiopia and was subsequently developed mainly
in the farms of the African Savannah. Nowadays, it is a legume widely adapted and
grown throughout the world [1]. At the same time, Nigeria is one of the centers of origin
maintaining the largest cowpea germplasm collection, with more than 15,000 landraces
and over 2000 wild relatives [2].

Genetically engineered cowpea was approved for cultivation in Nigeria in 2019 [3].
The transgenic plants produce an insecticidal recombinant (r-)Bt toxin (originally derived
from soil bacteria, Bacillus thuringiensis). This toxin is meant to protect the plants against
the larvae of Maruca vitrata (Lepidoptera: Crambidae), which is a pod borer feeding on
cowpea.

Our attention was drawn to Bt cowpea as it is the first transgenic legume to be grown
on a large scale in Africa. Cowpea is also traditionally grown on other continents such as
Asia, South America and Europe. It is, therefore, worthwhile to see which hazards were
identified in these locations and how they were dealt with in the risk assessment. However,
we encountered some obstacles in our research, e.g., risk assessment data categorized as
confidential business information.
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We analyzed the application for the marketing and cultivation of the insect-resistant
cowpea event AAT 709A [4]. We assessed the publicly available information and data,
taking into account the provisions of the international Cartagena Protocol on Biosafety
(CPB), of which both Nigeria and the EU are parties. According to the CPB, “the objective
of risk assessment, under this Protocol, is to identify and evaluate the potential adverse
effects of living modified organisms (LMO) on the conservation and sustainable use of
biological diversity in the likely potential receiving environment, taking also into account
risks to human health” (Annex III, Objective of [5]). We also refer to the EU standards of
GMO risk assessment [6], which are complementary to the provisions of the CPB and in
line with the Nigeria biosafety guidelines [7].

Our analysis showed two major issues of concern in regard to the risk assessment
performed and concluded in Nigeria: (i) the safety of the Bt proteins produced in the
plants and (ii) the potential environmental spread of the genetically engineered plants,
including gene flow. Given the importance of cowpea for the diets of millions of Nigerians,
our assessment also includes risks at the stage of consumption. We identify and describe
potential hazards and risks which should have been taken into account in the GE cowpea
risk assessment.

2. Results

The analysis of the available information led to the identification of deficiencies in
the safety assessment of the Bt toxins produced in the plants. These concerns include: the
expression of the additionally inserted genes, the impact on non-target organisms, and the
impact on bio-geochemical processes and food safety.

2.1. Gene Expression of the Inserted Genes

Article 15 and Annex III of the CPB request data on the recipient and the donor
organism, the vector and the inserts [5]. Regarding the methodology, the CPB requests “an
identification of any novel genotypic and phenotypic characteristics associated with the
living modified organism that may have adverse effects on biological diversity in the likely
potential receiving environment, taking also into account risks to human health” (page 28
of [5]). According to EU standards, which reflect the provisions of the CPB, data on the
expression of the inserted genes are part of the molecular characterization and a starting
point for risk assessment [6,8].

2.1.1. Relevant Issues for Risk Assessment

Agrobacterium tumefaciens was used for the transformation of the recipient plant. It
is, therefore, not possible to predict the insertion site, the number of inserted copies, or
the final structure of the inserted DNA [9]. Consequently, each event resulting from the
transformation has to be assessed case-by-case, taking into account the gene construct,
the number of inserted copies, the insertion site, the expression of the transgene, and the
stability of its function as well as its inheritance in offspring generations. The genetic
engineering techniques can cause additional specific unintended effects [9–15], including
epigenetic effects [16]. As a result, these unintended effects also have to be assessed on
a case-by-case basis and cannot be deduced from other events. Moreover, experience
gained from conventional breeding cannot simply be extrapolated to the risk assessment of
GE organisms. According to the scientific literature [17–25], the expression of r-Bt genes
can, for example, be impacted by the genetic or epigenetic background of the varieties
into which the transgenes are inserted, by interactions with environmental factors and
stressors or by the different stages of vegetation (i.e., growing, flowering, ripening). As
far as hazards are concerned, unintended effects caused by the insertion of the transgenes
may trigger unexpectedly high or low levels of r-Bt toxins in various plant tissues with
significant consequences for the environment and food production. Furthermore, the
number of gene constructs, the insertion site, and their interaction with the plant genome
can cause unintended changes in plant composition and phenotypical characteristics, e.g.,
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seed dormancy, number of pollen and seeds, pollen viability and response to biotic or
abiotic stressors.

2.1.2. Risk Assessment Performed Regarding Gene Expression

The data submitted by the applicant show that the transgenic cowpea is engineered
to express two gene products: in addition to Bt toxins (r-Cry1Ab, the original gene was
derived from Bacillus thuringiensis), the plants express the enzyme Neomycin phosphotrans-
ferase (NptII), which confers resistance to several antibiotics. The data also provide some
information on gene expression in the plant. Table 6 (page 34) of the application [4] gives
an overview of expression data for r-Bt proteins in the genetic background of two cowpea
varieties. Expression data from only one variety were provided for the nptII gene. Data are
provided for both of the two varieties (including leaf, flower, pods, green cotyledon and
dry seed) that could be used to compare the expression of the r-Bt gene. Raw data were
not available, only the mean of replicate samples with the lowest and highest individual
values in parentheses (Table 6, page 34, of [4]). At least two groups of the data (flower
and pods) point to differences between the two varieties that are likely to be of statistical
relevance since their range does not overlap. A third group of data (green cotyledon) is
also likely to show significant differences, with only a small overlap range in data from the
two varieties. These findings indicate that the expression of the r-Bt gene in the transgenic
cowpea is substantially impacted by the genetic background and might, in addition, also
be influenced by environmental factors. However, no further data were available for r-Bt
gene expression if inserted or crossed into the genome of other varieties, landraces or wild
relatives.

The concentration of r-Cry1Ab toxin measured in the flowers (22,8 µg/g FW) is high
compared to the plant tissue of other transgenic plants developed so far (see Table 7, page 35
of [4]). As further data from the applicant show [4], the concentration of the r-Bt toxins
varies substantially during the stages of plant growth and maturation. The applicant gives
some explanation stating: “Cry1Ab accumulation largely parallels the accumulation of
total protein during leaf development and maturation, a result that is consistent with the
fact that Cry1Ab expression is driven by the promoter of a gene encoding a major protein
constituent of photosynthetically active tissue (small subunit of Rubisco) promoter used to
drive expression of Cry1Ab” [4] (p. 80). In addition, the applicant correctly explains that
the promoter which controls the expression of the r-Bt proteins in the transgenic plants
(the Arabidopsis Rubisco Small Subunit promoter) is known to be influenced in several
plant species by signaling pathways involving abscisic acid and jasmonates [26]. The
phytohormone, jasmonate, and its derivates have important roles as signaling molecules in
plant defense, particularly against insect herbivores [27,28]. If these signaling pathways
interact with r-Bt gene expression, then environmental factors, such as biotic and abiotic
stressors, may substantially influence Bt gene concentration in the transgenic plants. The
applicant is aware of this problem and states that “there is little evidence available to
indicate that under field conditions the Rubisco Small Subunit promoter is significantly
affected by environmental factors” [4] (p. 80). However, the absence of conclusive evidence
is not sufficient to disregard this concern. Based on the data presented, it has to be assumed
that the r-Bt content in the plants can be significantly impacted by the genetic background
as well as by environmental conditions during cultivation.

In our opinion, further data should have been requested to conduct an in-depth risk
assessment. However, the National Biosafety Committee (NBC) did not see the need to
request further data [29].

2.2. Impact on Non-Target Organisms

As mentioned, Annex III of the CPB requests the identification of characteristics
associated with LMO that may have adverse effects on biological diversity in the likely
potential receiving environment [5]). According to EU standards, potential adverse effects
of the GE plants on biodiversity and its functioning at several levels have to be assessed. In
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particular, interactions with non-target organisms (NTOs) have to be taken into account in
environmental risk assessment. These NTOs include pollinators, beneficial insects as well
as protected species, and may also include wildlife species feeding off the plants. It is not
only the managed terrestrial agro-ecosystem that should be taken into consideration, but
also their margins and the wider environment [6].

2.2.1. Relevant Issues for Risk Assessment

The selectivity and efficacy of the r-Bt toxins introduced and expressed in plants can be
extensively impacted and modified in comparison to Bt toxins from natural sources [30–33].
Relevant factors here include the structure of the toxin and the combination with other
stressors or plant components. Furthermore, the expression of Bt toxins in the plant tissue
results in new paths of exposure and accumulation, including changes in quality and
quantity when compared to the natural variants of Bt toxins (for overview see [34]). In
addition, with cowpea, plant compounds, such as the protease inhibitors (PI) produced in
the plants, can cause Bt toxins to degrade more slowly than in isolation. This can result in
higher toxicity of the r-Bt toxins if taken up together with the plant tissue when compared
to toxins in isolation [35–39]. Indeed, there is evidence that the toxicity of Bt toxins is
increased if combined with PI [40–44]. It is known that co-factors that enhance the toxicity
of Bt proteins can also impact their selectivity (for overview, see [32]): if synergistic or
additive effects occur that increase the efficacy of Bt toxins, its selectivity may be decreased
and a wider range of non-target organisms may become susceptible. Some publications
do indeed indicate effects of PI combined with Bt toxins on non-target insects, which will
need further research [45–48]. Apart from this, there are several modes of action under
discussion for Bt proteins. As [12,32,49] show, there are complex modes of action that have
to be taken into account.

These findings need to be carefully considered during risk assessment. They show that
a very detailed risk assessment is needed to address potential adverse effects in non-target
organisms. As a result, due to the complexity outlined, risk assessment of Bt cowpea cannot
be concluded by testing the protein in isolation, or from data stemming from other events,
or other plant species, but requires a case-specific approach. The OECD provides in Table
8 a list of non-pest arthropods associated with cowpea, including many pollinating and
beneficial species that are natural enemies of cowpea pests and general predators [50]
(p. 34). In regard to the food web, it has to be taken into account that Bt toxins might
accumulate in higher concentrations within the tiers of the food web, especially if taken
up by predatory insects, e.g., beneficial predator wasps feeding on the larvae of Maruca
vitrata [51–54]. An extensive list of parasitoids and entomoviruses that attack the pod borer,
Maruca vitrata, in West Africa can be found in Table 7 in OECD [50] (p. 34). As stated in [50],
in addition to parasitoids, generalist predators also feed on cowpea insect pests. These
include mites, beetles, ants, bugs and spiders. Therefore, a list of organisms in Nigeria that
could potentially be exposed, directly or indirectly, to the plant material should have been
provided before any field trials were authorized or cultivation allowed. These organisms
should be subjected to specific tests in the laboratory, or a greenhouse, to provide the
relevant data on the toxicity and impact of the plant material. The investigations should
include synergistic effects of Bt toxins and PI as described and evidenced [35–44]. As far as
hazards are concerned, the effects on non-target organisms need to be fully investigated, as
plant material from the Bt cowpea may have unexpected and severely adverse effects on
ecosystem services, the food web and biodiversity of exposed insects or wild species, e.g.,
birds or other non-target organisms.

2.2.2. Risk Assessment Performed on Non-Target Organisms

As explained above, several modes of action of Bt proteins have been under discus-
sion [30–32,49]. As a result, a broader range of potentially affected organisms has to be
taken into account than was originally assumed [34,55]. However, the application [4] (see
also the diagram on page 53) only refers to one single mode of action. Further, the applicant
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makes no acknowledgement of the fact that not all the steps for activation as observed with
natural toxins are necessary for the ones produced in the r-Bt cowpea. Consequently, the
mode of action of Bt toxins presented by the applicant is not only outdated, but also mis-
leading: “The spectrum of insecticidal activity of Cry1Ab is extremely narrow, with activity
only against Lepidoptera [43]. The insecticidal specificity of Cry1Ab is the result of the
numerous essential steps involved in producing an active protein toxin and its subsequent
interaction with the epithelial cells in the insect midgut. To exert its insecticidal activity,
Cry1Ab must: (i) be ingested by the insect and solubilized in the insect gut, (ii) be activated
by specific proteolytic cleavage by insect midgut enzymes, (iii) bind to specific receptors
on the surface of the insect midgut, and (iv) form ion channels in the gut membrane. The
completion of all four of these processes results in damage to the insect midgut, leading to
gut paralysis and death of the insect [56]. The series of events leading to toxicity against
Lepidopteran insects is highly specific to Lepidoptera, and does not occur in mammals,
other vertebrates or other orders” [4] (p. 52).

Indeed, the data submitted by the applicant show that the r-Bt toxins expressed in the
plants are not identical to Bt toxins found in natural soil bacteria. Rather, it was modified by
Monsanto to improve its expression in the plant cell [57]. As described in the application,
“the nucleotide sequence of the cry1Ab gene was codon-optimized for plant expression
and encodes a 615-amino acid protein (68.9 kDa) corresponding to the trypsin-resistant
insecticidally active core protein following cleavage of the 1155-amino acid native Cry1Ab
protoxin” [4] (p. 31). In other words, the naturally occurring bacterial Bt pro-toxin was
truncated so that the Bt plants produce the toxin in its activated form. Therefore, the first
step in the activation of the toxin, which takes place naturally in the intestine of the insects,
is not needed for the Bt toxins produced in the plants. It is important to note that this
activation is crucial for the specificity of Bt proteins [58]. Therefore, changing the toxin’s
structure might have changed its selectivity and efficacy as well, rendering it toxic for a
broader range of non-target organisms [30–33]. Besides the truncation, there are further
changes in the structure of the r-Bt proteins produced in the plants [57]. It is not clear from
the data presented by the applicant if this specific r-Bt protein is produced in any other
transgenic plants.

As the citation above shows, the applicant is also aware of the findings of MacIntosh
et al. [43], who report higher toxicity of Bt toxins if these are combined with PI produced in
cowpea. However, the reference to the publication was not integrated into the reference list
in the application. Whatever the case may be, despite being aware of relevant publications
showing specific risks, the applicant did not deliver any data to demonstrate the safety of the
Bt cowpea in regard to non-target organisms. Instead, the applicant refers to publications
reporting experiments with non-target organisms from other continents, not involving
materials from the Bt cowpea (such as those mentioned in [59] or [60]). It is plausible that
the synergistic effects described by [40–44] may also impact non-target organisms and the
food webs. As mentioned, there are some publications indicating effects of PI combined
with Bt toxins on non-target insects, which will need more research [45–48]. However,
no data are presented on the wide range of organisms that interact with the Bt cowpea,
including insects, mites, nematodes and parasitic plants as well as birds, rodents and other
mammals, which feed on or interact with the plants. None of the relevant species (apart
from Maruca vitrata) that are abundant in Nigeria was tested in a targeted study. There
seems to be a general lack of empirical risk assessment studies. A more recent Bt cowpea
study [61], which was compiled by experts who had already contributed to [59], does not
mention any empirical testing of non-target organisms that are specific to Nigeria.

In summary, the applicant did not acknowledge empirical findings showing toxicity
of r-Bt toxins beyond the expected range of organisms. In addition, the existing scientific
evidence on the factual complexity of the mode of action of Bt toxins was not taken into
account. Furthermore, the applicant did not take into account the existing evidence showing
an increase in the toxicity of Bt proteins if these are combined with PI. It is likely that a
broader range of non-target organisms will be affected by the cultivation of the Bt cowpea
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than assumed by the applicant. This can severely impact ecosystems and biodiversity.
However, the National Biosafety Committee (NBC) did not request additional data, which
would have been necessary to derive substantiated conclusions in regard to non-target
organisms, nor did it call the statements made by the applicant into question [29].

2.3. Impact on Bio-Geochemical Processes

As mentioned, Annex III of the CPB requests the identification of characteristics
associated with LMO that may have adverse effects on biological diversity in the likely
potential receiving environment [5]). According to EU standards, plant-associated and soil
microbial communities (e.g., rhizosphere) perform vital biotransformations for sustainable
soil fertility, and therefore any negative impact(s) on these organisms should be carefully
evaluated on a case-by-case basis, with particular reference to the characteristics of the
introduced trait and the consequences of genetic alteration in the GE plant [6].

2.3.1. Relevant Issues for Risk Assessment

Publications on field trials with other Bt crops show that changes in the microbial
community are to be expected [62–68]. Experiments showing a delay in the degradation of
Bt toxins in the soil if combined with cowpea trypsin inhibitor [63] are especially relevant
in this context. The presence of this cowpea PI significantly delayed the degradation
of r-Bt proteins produced by the transgenic cotton. Under these conditions, the repeated
cultivation of transgenic cotton had considerable negative effects on the microbial properties
and enzymatic activities in rhizosphere soil compared to those in the rhizosphere soil of
non-transgenic cotton [63]. As far as hazards are concerned, there needs to be an assessment
of repeated cultivation of transgenic cowpea, as this could have negative effects on the
microbial properties and enzymatic activities in rhizosphere soil, thus affecting soil fertility
and plant health.

2.3.2. Risk Assessment Performed on Bio-Geochemical Processes

Cowpea has unique symbiotic relations with specific communities of soil microorgan-
isms (i.e., rhizobia, mycorrhizae) [50]. It is also known that cowpea is a symbiont to specific
endophytes (see, for example, [69]). Furthermore, r-Bt toxins are also produced in the roots
and, additionally, plant material, such as that left after the harvest, will also contribute
to additional r-Bt toxins in the soil. However, this was not considered and no empirical
tests were conducted by the applicant to assess changes in the associated endophytes, or
other communities within the plants’ microbiome, or in the soil rhizosphere. Neither was
any data presented on the wide range of microorganisms that interact with the Bt cowpea,
including symbionts (e.g., mycorrhizae, rhizobia, endophytes) or pathogens (bacterial, viral
and fungal microorganisms). Instead, the occurrence of soil bacteria naturally producing Bt
toxins is used by the applicant to claim that a specific risk assessment would not be needed.
While it is true that some soil bacteria do produce Bt toxins naturally (see, for example, [70]),
these findings do not imply that the influence of r-Bt toxins produced by the transgenic
plants on microbial communities does not need to be investigated during risk assessment.
There are several reasons: investigations of Bt cotton and Bt corn show that transgenic
plants produce a much greater amount of Bt toxins compared to soil microorganisms [71].
Compared to Bt toxins produced by soil bacteria, r-Bt toxins produced in the cowpea differs
extensively in structure and pattern of exposure to the environment [34]. Furthermore, Bt
toxins naturally occurring in soil bacteria are not produced in combination with PI as is
the case with the Bt cowpea. Experiments showing a delay in the degradation of Bt toxins
in the soil if combined with cowpea trypsin inhibitor [63] are especially relevant in this
context (see above). Therefore, empirical testing of the relevant microbial species, including
the plant microbiome and long-term impact on the soil rhizosphere, is necessary before
concluding on the environmental safety of Bt cowpea. The experiments should also take
into account synergistic effects such as those made evident by several publications [35–44].
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In summary, we are of the opinion that the environmental safety of Bt cowpea was
not demonstrated since no data were provided by the applicant on its impact on the
relevant microbial communities. It is not unlikely that r-Bt toxins expressed in the plants
can adversely impact microbiomes, including endophytes, mycorrhizae and other soil
organisms. The National Biosafety Committee (NBC) did not see the need to request further
data [29]; it was possibly not aware of the specific hazards triggered by the combination of
PI and the r-Bt toxins on bio-geochemical processes.

2.4. Food Safety

Article 15 and Annex III of the CPB request that risks to human health also be taken
into account. According to EU GMO regulation, the toxicological impact of any changes
in whole food and feed resulting from genetic modification, such as the introduction of
new genes, gene silencing or over-expression of an endogenous gene, must be assessed.
In addition, the applicant must also provide an analysis of key toxins inherently present
in the recipient plant, which may adversely affect human or animal health as well as
anti-nutritional compounds, such as digestive enzyme inhibitors and already identified
allergens [8].

2.4.1. Relevant Issues for Risk Assessment

As mentioned above, there are many publications showing that Bt toxins have several
modes of action which impact a broad range of non-target organisms, irrespective of the
boundaries of taxonomy. This is also the case with Cry1Ab. Furthermore, selectivity and
efficacy can be influenced by co-factors and changes in the structure of the r-Bt proteins.
In the case of cowpea, plant compounds, such as PI, can cause the r-Bt protein to show
higher toxicity than it would in isolation. As shown, there are specific findings evidencing
an increase in the toxicity of Bt proteins if combined with PI present in cowpea [35–44].
Such synergetic effects not only enhance the effectivity (toxicity) of Bt toxins but may
also impact their selectivity (for overview, see [32]). Whatever the case may be, these
synergistic effects are likely to result in a higher toxicity of Bt toxins if these are taken
up together with the plant tissue, when compared to the toxin in isolation (see also [72]).
It is evident that neither feeding studies using the isolated protein nor feeding studies
using other Bt staple food, such as maize or soybean, are reliable when assessing the
potential health effects of Bt cowpea at the stage of consumption. Whole plant feeding
studies should instead be conducted with Bt cowpea. In this context, there is also some
cause for concern that Bt toxins can trigger non-allergic immune responses, e.g., adjuvant
effects [73–84], which might contribute to chronic diseases or enhance immune responses.
It is largely acknowledged that more data are needed on adjuvant and other potential
immune responses caused by Bt proteins (see, for example, [82,84]. The synergistic effects
between Bt proteins and PI causing higher toxicity of the Bt toxins are also relevant to
risk assessment in regard to the immune system: the combination with PI is likely to be
associated with a delay in the degradation of the Bt toxins after consumption. In regard
to hazards that need to be assessed, this delay in degradation extends the exposure of the
intestinal immune system to Bt toxins, and may trigger or enhance chronic inflammation
and allergies.

There are additional and specific reasons why the Bt toxins (r-Cry1Ab) expressed in the
cowpea should undergo detailed testing for potential immune responses: according to [85]
and [86], some proteins naturally produced in cowpea beans are regarded as potential
allergens. The occurrence of some allergies has been identified, although these are still
rare for cowpea: research published in 2000 investigated serum from six patients allergic
to cowpea 41 kDa and 55 kDa proteins, which were identified as cowpea allergens [86].
These proteins were detected in subspecies of Vigna unguiculata grown in Asia (Vigna
sinensis), which are thought to have a common origin with the African subspecies [87].
Thus, combining these proteins with immune reactive Bt proteins might foster allergenic
allergies via adjuvant effects. In light of the findings on synergistic effects with PI (see
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above), it also has to be considered that in raw or less processed cowpea used for human
consumption, the toxicity and potential immune effects of Bt proteins are likely to be
significantly higher compared to heated beans, as heat may partially deactivate PI and Bt
toxins. This needs to be carefully addressed in risk assessment.

2.4.2. Risk Assessment as Performed in Regard to Food Safety

The applicant refers to mouse toxicity studies that aimed to assess short-term high
exposure to isolated Bt proteins. However, such studies are of little value as these experi-
mental conditions do not allow identification of synergistic effects, which are likely to occur
in the plant material and which might cause higher overall toxicity in the diet. The effects
caused by the PI described by [35–44] that leads to higher toxicity of Bt toxins show that
the approach chosen by the applicant is inadequate.

The studies indicating rapid degradation of the Bt toxins after ingestion referred to by
the applicant are contrary to other findings: Chowdhury et al. [88] and Walsh et al. [89]
found that r-Cry1A proteins could frequently and successfully still be found in the colon of
pigs at the end of digestion when they were fed with Bt maize. Thus, the r-Cry1A proteins
can show higher stability, at least in monogastric species, than predicted by digestion
experiments using isolated Bt proteins. In this context, it is important to note that plant
compounds in cowpea, such as the PI, can cause the Bt toxins to degrade more slowly than,
for example, in maize. Therefore, higher exposure to the r-Bt toxins after consumption
has to be expected if it is taken up together with the plant tissue in comparison to the
toxin in isolation. The delay in degradation also causes higher r-Bt toxin exposure of the
immune system via the intestinal tract. Under these conditions, immune responses, such as
chronic inflammation and allergies, may be triggered or enhanced (see also [72]). As shown
above, specific experimental evidence found that cowpea produced potential allergens [86].
However, no similar specific and experimental investigations were conducted by the
applicant [4]. Instead, the applicant [4] refers to the AllergenOnline database [90], without
any discussion of the specific findings of Rao et al. [86], also referenced by OECD (2018) [85].
Therefore, it cannot be excluded that combining allergenic proteins with immune reactive
Bt proteins might foster allergenic reactions via adjuvant effects.

In summary, a detailed investigation of potential health effects at the stage of consump-
tion is absolutely essential and should take into account all traditional usages, including
diets with raw cowpea ([85], see also below). However, the applicant did not even perform
a single feeding study with the whole food and feed derived from the Bt cowpea. It is
astonishing that National Biosafety Committee (NBC) did not request more data from the
applicant, for example, in regard to findings on potential allergens.

2.5. Gene Flow to Other Cultivated Varieties or Wild Relatives

Annex III of the CPB requests information on “the biological characteristics of the
recipient organism or parental organisms, including information on taxonomic status,
common name, origin, centres of origin and centres of genetic diversity, if known, and a
description of the habitat where the organisms may persist or proliferate” (page 29 of [5]).
According to EU standards, the potential persistence or invasiveness of the GE plant itself,
or of its compatible relatives, as a result of gene flow within either agricultural or other
production systems, or semi-natural and natural habitats, is an issue especially relevant to
environmental risk assessment [6].

2.5.1. Relevant Issues for Risk Assessment

The Vigna unguiculata species complex is currently divided into eleven subspecies. Ten
of the subspecies are perennial and one subspecies is annual [50]. There are no apparent
barriers to hybridization, or recombination between members of the different cultivar
groups or with the wild cowpeas (var. spontanea) in the subspecies unguiculata [50].
As stated in OECD (2015): “The overall message is that crosses appear possible among
all members of the Vigna unguiculata complex, but they vary from being easy to being
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difficult" [50] (p. 25). Wild relative subspecies belonging to the group Vigna unguiculata var.
spontanea are known to occur in Nigeria as well as in many other West African countries.
Vigna unguiculata var. spontanea can be found mostly in disturbed areas (such as fields, field
margins, roadsides and fallows) but also in natural ecosystems, such as those observed in
Cameroon, Uganda and Ethiopia [91]. While often considered a rare event, gene flow was
observed between cultivated and wild relatives in each of the populations investigated [92].
As summarized in OECD 2016 [91], cultivated cowpea readily crosses with wild cowpea
in the same subspecies (i.e., var. spontanea) and can be crossed with members of the other
subspecies of Vigna unguiculata, albeit with varying degrees of difficulty.

There are several pollinating insects involved in the distances and success rates of
gene flow, but in many cases, their specific role still needs to be investigated. As stated
in OECD (2015): "Cross-pollination is usually less than 1% but will vary somewhat with
the cultivar and, more particularly, with the population of some insects. In several cases,
the pollinators are not known, but honeybees (Apis mellifera) have been observed around
cowpea flowers and thus have been implicated in pollination ( . . . ) In coastal Kenya and
Burkina Faso, several large carpenter bee species (Xylocopa spp.) and leafcutter bee species
(Megachilidae spp.) were considered potential cross-pollinators of cowpea (...), and it was
shown that these same leafcutters and carpenter bees were the likely pollinators of the wild
progenitor of cowpea ( . . . ) Casual observations made in California, Texas and Nigeria
indicate that large bumblebees (Bombus spp.) may be responsible for the cross-pollination
that occurs in cowpeas in these regions” [50] (p. 22). Under these conditions, gene flow is
very likely to occur in the fields when the GE cowpea is grown in close vicinity to regional
varieties and without sufficient distance to wild relatives in other bio-geographical zones.
For example, as NEPAD’s African Biosafety Network of Expertise [93] explains on their
website, 90 % of the pollination in cowpea stems from self-fertilization. Consequently,
there is still a significant possibility of gene flow occurring within the remaining 10 %.
Therefore, it is likely that the cultivation of the Bt cowpea will lead to the introduction
of the recombinant genes into regional varieties, whether intentionally or unintentionally.
Gene flow to wild relatives is also very likely to occur in the longer term. This finding
is supported by Huesing et al. and reflects the perspective of experts affiliated with the
biotech industry. In regard to the gene flow of Bt cowpea, these experts state: “Based on
existing information, the panel determined that hybridization is likely to occur” [59] (p. 214).
Wild cowpea plants are often not uprooted from the field, and appear to be tolerated in
the agroecosystem. The hybrid progenies may even end up being used by farmers for
sowing, and may be considered as fodder landraces [91]. This poses substantial risks for the
protection of natural biodiversity and the maintenance of landraces and regional varieties
which might become contaminated by pertinent gene flow or seed contamination from Bt
cowpea. This risk is acknowledged by the International Institute of Tropical Agriculture
(IITA) in its conservation strategy for genetic resources of cowpea and its wild relatives,
which proposed urgent measures especially for Nigeria: “Collecting missions should take
place in the following four high priority regions: ( . . . ) Nigeria for wild cowpea (mainly
subsp. unguiculata var. spontanea), as it is underrepresented in ex situ collections. Moreover,
there is a risk of genetic contamination from the introduction of Bt cowpea in the country
(field trials started in 2009)” [94] (pp. 7–8).

Therefore, due to gene flow, the transgenes will be introduced into plants with largely
heterogeneous genetic and epigenetic backgrounds. There is evidence that the biological
characteristics of the offspring generation in many cases cannot be predicted from the
original genetically engineered event [95–100]; for overview see [101]. If the offspring can
persist and propagate in the environment, interactions with the environment or changes in
the environmental conditions can, in addition, play a major role in triggering unintended
biological effects [24,25,102–106]. As far as hazards are concerned, issues such as, e.g.,
changes in the plant composition of the hybrid offspring, need to be addressed. This can
involve changes in their metabolism and signaling pathways, impacting their interaction
with pollinators or associated soil organisms in a way that can impact essential ecosystem
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services. Other examples of potential adverse effects include the higher vulnerability of
the plants’ offspring to stressors, or enhanced gene flow and spread into the environment
causing potential invasiveness. Furthermore, effects observed in hybrid offspring may
include unexpectedly high or low levels of r-Bt toxins produced in the various tissues of
the plants.

2.5.2. Risk Assessment Performed in Regard to Gene Flow

As Figure 1 (page 19) of the dossier shows [4], wild relatives (var. spontanea) of do-
mesticated cowpea grow in the same regions where cowpea is cultivated. Under these
conditions, there is a high likelihood that viable hybrid offspring will occur not only in the
fields but also in adjacent areas. The applicant states that “the ecosystem into which AAT
709A could be disseminated is exactly the same as for conventional cowpea, namely man-
aged agricultural environments where cowpea is being cultivated, and areas adjacent to
managed agricultural environments” [4] (p. 50). Consequently, the exposure of traditional
varieties, landraces and wild relatives (var. spontanea) to gene flow from Bt cowpea will not
be limited in spatial or temporal dimensions. However, the applicant does not consider
this to be a problem since reference is made to experiences from field trials: “Apart from
the presence of the insect resistance trait, the similarity of event AAT 709A to conventional
cowpea based on extensive analysis including molecular characterization, protein expres-
sion, agronomic and phenotypic evaluation suggests that AAT 709A would not be expected
to have any unintended fitness enhancing traits as a result of the modification. While it
is possible that the insect resistance trait could confer a selective advantage to cowpea or
wild cowpea that has acquired the trait under specific conditions of: (i) high insect pressure
and (ii) presence of natural competitor plants that are significantly controlled by Maruca.
As with conventional cowpea it is highly unlikely that event 709A would adversely affect
the environment through persistence or invasiveness” [4] (p. 38).

This statement is based on several assumptions, but not on sufficient evidence: the data
derived from the field trials do not include any investigations of spontaneous crossings of
the Bt cowpea with more heterogeneous backgrounds, as would be the case if hybridization
with regional varieties or wild relatives were to occur. No experimental crossings were
performed with Vigna unguiculata var. spontanea. Instead, the applicant presented data
on the genetic stability of the Bt cowpea “prepared from progeny plants spanning ten
selfing generations in direct line of descent from the original transformant” [4] (p. 21).
Further, the applicant reports on crossings of individual plants from two segregating
generations in three genetic backgrounds only. By taking into account the findings on next
generation effects, which cannot be predicted from the characteristics of the original event
(for overview see [101]), the assumptions made by the applicant have to be called into
question. The claims by the applicant that there would be no threat of gene flow or potential
spread of the Bt cowpea to biological diversity, traditional crops, farmers’ varieties and
sustainable agriculture, are not sufficiently supported by the data and published evidence.

In summary, the consequences of gene flow for biodiversity, seed collections, seed
saving and traditional farming were not sufficiently taken into account by the applicant.
There is a substantial risk that cultivation of the Bt cowpea may endanger biodiversity in
one of the centers of origin of cowpeas. It is very likely that National Biosafety Committee
(NBC) was aware of the hazards to biodiversity, gene banks and landraces. Therefore, it
should have been a priority to request much more detailed risk assessment [29].

3. Discussion

We analyzed the application for marketing and cultivation of insect-resistant cowpea—
Event AAT 709A—and the respective recommendation of the National Biosafety Committee
(NBC) of Nigeria [3]. In this context, it is a generally accepted principle that genetically
engineered organisms (or LMOs as they are referred to by the CPB) can only be released
into the environment if adequate risk assessment is performed beforehand. To be consid-
ered adequate, risk assessment must be based on sound science, and take intended and
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unintended effects into account. It should, moreover, be sufficiently robust and conclusive.
This is necessary to address the precautionary principle underlying the Convention on
Biological Diversity and the CPB. Furthermore, the objective of risk assessment under the
Protocol is to identify and evaluate the possible adverse effects of LMOs on the conservation
and sustainable use of biological diversity, also taking into account risks to human health.

According to the CPB, “the objective of risk assessment, under this Protocol, is to
identify and evaluate the potential adverse effects of living modified organisms on the
conservation and sustainable use of biological diversity in the likely potential receiving
environment, taking also into account risks to human health” (page 27 of [5]). The require-
ments for carrying out the risk assessment are listed in Article 15 and Annex III of the
Protocol. In this context, uncertainties also need to be addressed: “Where there is uncer-
tainty regarding the level of risk, it may be addressed by requesting further information on
the specific issues of concern or by implementing appropriate risk management strategies
and/or monitoring the living modified organism in the receiving environment.” (page 29
of [5])

The provisions of the Protocol also address the tasks of the risk manager and require
“an estimation of the overall risk posed by the living modified organism based on the
evaluation of the likelihood and consequences of the identified adverse effects being
realized.” (page 29 of [5]).

Finally, Article 16 of the CPB requests risk management strategies that are “appropriate
mechanisms, measures and strategies to regulate, manage and control risks identified in
the risk assessment provisions of this Protocol associated with the use, handling and
transboundary movement of living modified organisms” (page 12 of [5].

In order to address these provisions more specifically, we also referred to standards
used in EU risk assessment. The standards applied by the EU in the risk assessment of
GMOs, can be regarded as an implementation of the CPB, of which the EU is a party.
Therefore, these standards can be seen as complementary to the CPB and are also in line
with the Nigeria biosafety guidelines [7]. The issues presented and discussed here are also
addressed in GMO regulation in other regions, and can also be relevant for other countries
in which these GE cowpeas are approved or where applications have been filed for release
and marketing, e.g., Ghana, which is also a party to the CPB. Our analysis is based solely
on the presented findings and reasoned considerations.

3.1. Molecular Data and Gene Expression

Cowpea is cultivated in several bio-geographical zones in Nigeria. Some field trials
were conducted between 2009-2015 (see [4], Table 8), but no specific ‘stress tests’ were per-
formed under defined conditions followed by detailed analysis of the interactions between
the genome and the environment (see, for example [23]). Therefore, the existing evidence
of transgenic cowpea responses to specific environmental conditions is very limited. Risk
assessment cannot, therefore, be regarded as sufficiently reliable and conclusive without
showing consistency in gene expression under a broad range of environmental conditions.
On the contrary, based on the data presented, it has to be assumed that sufficient stability in
gene expression is lacking. Furthermore, it is likely that the genetic background and envi-
ronmental conditions have a significant impact on the r-Bt content. In general, unintended
changes affecting gene expression, plant composition, metabolism, signaling pathways
and response to environmental conditions can affect agro-ecosystems, food production
and food safety as well as organisms responsible for essential ecosystem services, e.g.,
pollinators, associated soil organisms and biodiversity. More specifically, instability in the
expression of the additionally inserted genes may, for example, trigger unexpectedly high
or low levels of the r-Bt toxins in the various plant tissues, with significant consequences
for the environment and food production. An insufficient level for a “high-dose approach”
inducing a high degree of lethality in heterozygous individuals carrying single alleles for
recessive mutations for resistance against r-Bt effects can cause the plants to be insufficiently
protected against infestations of Maruca vitrata larvae. Under these conditions, the pest
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insects can evolve more rapidly to become resistant to the expressed r-Bt toxin [107]. A high
concentration of r-Bt toxins, on the other hand, is relevant for assessing risks to non-target
organisms and food safety. Moreover, if consistency in gene expression cannot be shown
and gene expression is highly impacted by environmental conditions or interactions within
the genome, this can cause a wide range of unintended and potentially unpredictable effects
on plant metabolism and response to environmental conditions. Under such circumstances,
risk assessment can hardly result in a favorable outcome. In regard to the assessment of
plant composition and agronomic characteristics, no specific conclusions can be presented
here. The applicant did not report any relevant differences between the GE cowpea data
compared to the conventional plants, and we did not have access to the data. In general,
the design of field trials, the environmental conditions, the agronomic practices and the
choice of comparators may all influence not only the gene expression of the additionally
inserted genes, but also the outcome of the comparative assessment of plant composition
and agronomic characteristics. Therefore, it is important that the design of the field trials
sufficiently represents the conditions under which the plants may be cultivated.

3.2. Impact on Non-Target Organisms

If the rich biodiversity in Nigeria and the current threats to its conservation [108]
are taken into account, these questions are highly relevant to GE cowpea environmental
risk assessment. Nigeria has several bio-geographical zones which need to be considered;
there are substantial differences between these zones regarding fauna and flora. “Each
of these ecosystems has its own unique characteristics of wild fauna, higher and lower
floral species and a huge collection of marine and freshwater aquatic species. In species
diversity and endemism, Nigeria is highly endowed” [108] (p. 20). There is already a
substantial threat to biodiversity: “However, overall, biodiversity in Nigeria is highly
threatened due to land-use changes from agriculture and overgrazing, overexploitation of
natural resources through extractive actors, invasive species and environmental pollution.
According to the IUCN Red list 2013, Nigeria has a total of 309 threatened species in the
following taxonomic categories: Mammals (26), Birds (19), Reptiles (8), Amphibians (13),
Fishes (60), Molluscs (1), other Invertebrates (14) and Plants (168)” [108] (p. 22). A total of
20,000 insect species, including more than 1000 butterfly species, are reportedly living in
the ‘Cross-River-National Park’ [109,110]. More specifically, Nigeria is the center of origin
for many endemic species and home to more than a thousand butterfly species belonging
to the same group of insects (Lepidoptera) as the target species. Further, it is known that
a large number of species interact with cowpea plants [50]. The risks for biodiversity are
especially relevant since there is considerable overlap between the centers of biodiversity
in Nigeria, especially in its northern and central regions where cowpea is cultivated [1]. In
addition, small-scale farmers, in particular, might cultivate Bt cowpea in the highly diverse
regions where gene flow is likely to expose ecosystems beyond the fields to r-Bt toxins.

Whatever the case may be, experience gained from the cultivation of plants into which
other constructs have been inserted, or which inherit other events, or belong to other species,
e.g., Bt maize and Bt cotton, cannot be used to demonstrate the safety of the Bt cowpea.
Nevertheless, the applicant claims that the cultivation of these other Bt crops supports their
assumptions on the safety of the Bt cowpea. It is evident that such general claims are not
sufficiently substantiated. Clearly, each event must undergo a case-by-case environmental
risk assessment, taking into account the molecular data, the biological characteristics of the
plants and the receiving environments. It is further evident that data on selectivity and the
toxicity of the natural variants of Cry1Ab toxin is not sufficient to demonstrate the safety of
the specific variant of the toxin expressed in the GE cowpea. As explained, small changes
in the structure of the protein can have a significant impact on its toxicity. Therefore, the
statements made by the applicant generally assuming a “narrow and specific toxicity” [4]
(p. 20) only affecting “interactions with susceptible Lepidopteran pests that feed upon
the plant” [4] (p. 69) are not sufficiently based on science, especially without presenting
specific experimental data regarding the r-Bt toxins produced in the plants. It is concerning
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that no such specific environmental data were presented. Despite the applicant being
aware that “cowpeas interact with a wide variety of other organisms including symbionts
(mycorrhizae, rhizobia), insects, mites, bacterial, viral, and fungal pathogens, nematodes
and parasitic plants” [4] (p. 20), no experimental data are presented to show that these
complex interactions and interrelations are not impacted, changed, disturbed or disrupted
by the r-Bt protein produced in the cowpeas.

The need for more detailed risk assessment is strongly supported by the findings of
MacIntosh et al. [43], Zhao et al. [44], Fan et al. [41], Gujar et al. [42], Cui et al. [40], who
all show the specific risks arising from the combination of Bt toxins with PI produced
in cowpea, thus causing higher toxicity of the r-Bt proteins through synergistic effects.
However, no empirical data were made available regarding the susceptibility of the species
listed, for example, by the OECD [50]. As a result, and because the applicant did not
provide any data on relevant non-target organisms that are abundant in the regions where
the Bt cowpea will be grown, no conclusion can be made regarding potential impacts on
non-target organisms. In addition, it is likely that more species are vulnerable to the r-Bt
toxins expressed in the plant than assumed by the applicant.

3.3. Impact on Bio-Geochemical Processes

As explained above, cowpea has unique symbiotic relations with specific communities
of soil microorganisms (rhizobia, mycorrhizae) which enhance the flow of reduced nitrogen
and phosphate into the cropping system [50]. Bt cowpea produces r-Bt toxin in the roots and,
therefore, the impact on soil organisms in the rhizosphere should have been investigated.
It is also known that specific endophytes are symbionts to cowpea (see, for example, 69]).
Endophytes and plants often engage in mutualism, with endophytes primarily aiding in
the health and survival of the host plant, including issues such as pathogens and disease,
water stress, heat stress, nutrient availability, poor soil quality, salinity and herbivory [111].
The diversity of the endophytic community varies with plant species, host genotype, type
of tissue analyzed, host age, climatic factors and geographic distribution (see, for example,
Farias et al. [112]). Therefore, if the genotype of the cowpea is changed and r-Bt toxins
are expressed in all tissues of the plant, the composition of endophytes might also change.
Consequently, plant response to the environment might also be altered. Given the crucial
role of endophytes for plant health, this may have a detrimental effect on the health of the
plants under specific environmental conditions.

Furthermore, the repeated cultivation of transgenic cowpea may have considerable
negative effects on the microbial properties and enzymatic activities in rhizosphere soil
compared to those in the rhizosphere soil of non-transgenic cowpea. The reason is the
presence of the cowpea PI, which delays the degradation of the r-Bt toxins produced by
the transgenic cowpea [63]. However, these effects were not taken into consideration by
the applicant. Therefore, it cannot be excluded that repeated cultivation of Bt cowpea will
have considerable negative effects on the microbial properties and enzymatic activities in
rhizosphere soil.

3.4. Food Safety

The consumption of cowpeas as a main staple food in many regions might result in
relatively high exposure of humans to r-Bt toxins when compared to other Bt plants (see
Table 7, page 35 of [4]). Therefore, risk assessment should take into account the concen-
tration of the r-Bt toxins and degradation throughout the relevant stages of processing of
all parts of the plants (pods, beans and leaves) intended for human consumption. As far
as human consumption is concerned, cowpea is mainly grown for grain (dry and fresh)
and sometimes also for fresh pods and leaves [85,113]. In general, the green and fresh
edible parts of the plants (pods, leaves and beans) will undergo less processing compared
to dried beans. Also in this context, it has to be taken into account that there are several
bio-geographical zones in Nigeria [109] which are substantially different not only in respect
to fauna and flora but also in agricultural and cooking practices and their huge ethnic
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diversity. For example, in Nigeria, the cooking time of cowpea is traditionally reduced
by cooking it with a naturally occurring alkaline rock-salt known as ‘kanwa’ [85]. Fur-
thermore, soaking the cowpea before cooking is also widely used to reduce heating time.
These traditional practices may possibly impact the degradation or non-degradation of
r-Bt proteins in the diet. It follows that any application for field trials or agricultural culti-
vation should be accompanied by data on food and feed safety, encompassing long-term
(chronic) feeding studies with whole plant food and feed. Fresh material and food that
is processed to a lesser extent than dried beans should also have been taken into account.
In this context, cowpea is reported to show allergenic potential [86] and Bt proteins are
suspected of enhancing or provoking immune responses (see above). Therefore, targeted
studies should have been performed to exclude risks for the immune system. Instead, the
applicant presents very general statements such as “cowpea is not considered toxic, nor
pathogenic to humans, and is not considered allergenic” [4] (p. 36), not mentioning that
some proteins with potential allergenicity were identified by experimental research in Vigna
unguiculata [86]. Furthermore, the applicant does not mention the immunogenic properties
of Bt proteins. Consequently, more detailed empirical investigations into the long-term
impact of Bt cowpea at the stage of consumption would be needed before risk assessment
can be concluded. However, the applicant did not even perform a single feeding study with
the whole food and feed derived from the Bt cowpea as requested by EU standards [6].

3.5. Gene Flow to Other Cultivated Varieties or Wild Relatives

West Africa is among the regions in the world with the earliest evidence of cowpea
cultivation, dating back more than 1500 years [114]. Therefore, cowpea is considered to be
a significant part of pan-African heritage that is closely related to the history of countries,
such as Ghana, South Africa and Nigeria. While the largest production area is in Africa,
also Brazil, West India, Myanmar, Sri Lanka, Australia, the United States, Bosnia and
Herzegovina all have significant production [1]. Cowpea is morphologically variable and
adapted to different environments, resulting in a wide range of local varieties [50]. The
nutritional composition of cowpea is impacted by genetic characteristics, agro-climatic
conditions, biotic stresses and postharvest management [85]. Interestingly, despite the
considerable morphological diversity, limited genetic diversity occurs among cultivated
cowpea varieties owing to a single domestication event that has given rise to all other
cultivated varieties [85]. However, publications also show that there are some genetic
differences depending on the region of cultivation, and these can be used in traditional
breeding to improve cowpea varieties [2,87,115–120]. It is known that there are barriers
to hybridization, or recombination between members of the different cultivar groups, or
with wild cowpea (var. spontanea) in the subspecies unguiculata [50]. However, these
mechanisms can only limit, and not prevent, gene flow within and beyond the fields.
Gene flow between wild subspecies has been observed; its frequency is largely dependent
on the subspecies, the size and location of the area of cultivation and the occurrence
of insects [50]. In this context, it is not only direct gene flow via pollen that has to be
considered, but also seed spillage, seed contamination and unintended distribution via
human activities. These activities can also involve cross boundary movements: for example,
seed exchange between farmers. Therefore, agricultural cultivation of the Bt cowpea will
lead to the introduction of the transgenes into regional varieties, whether intentionally or
unintentionally. Gene flow to wild relatives is also likely to occur in the longer term [59].
Consequently, the environmental effects of potential hybrid offspring are also relevant
in this context. Relevant risks include the effects on genetic stability, gene expression,
gene function, pleiotropic effects, persistence and invasiveness. Besides interactions with
the environment, these biological mechanisms are known to be impacted by the genetic
or epigenetic background of the genome into which the additional genes are introduced
via gene flow. As suggested in a previous review [101], the biological characteristics of
spontaneous hybrid offspring from transgenic plants cannot be predicted on the basis
of the data from the field trials with the original events. Therefore, hybrid crossings are
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needed to gather more data on the impact of the various genetic backgrounds on gene
expression, including crossings with Vigna unguiculata var. spontanea. Otherwise, it cannot
be excluded that crossings between the GE cowpea and other varieties or wild relatives, can
promote hybrid effects in ensuing generations, e.g., higher fitness and unexpected and non-
predictable biological characteristics, which may disturb or disrupt agro-ecological systems.
Therefore, risk assessment should consider the presence and occurrence of regional varieties
and wild relatives, their biological characteristics and their genetic differences compared to
the variety used for field trials and cultivation. Experimental crossings should be conducted
under contained conditions to gather reliable data, e.g., in a closed greenhouse, before
any field trials take place or cultivation is considered. If the cut-off criteria proposed by
Bauer-Panskus et al. [101] as an additional step for the assessment of spatio-temporal
controllability had been applied in this case, it is highly likely that the outcome would have
shown sufficiently reliable risk assessment to be impossible.

In this context, it has to be taken into account that Nigeria maintains the largest cowpea
germplasm collection at the International Institute of Tropical Agriculture (IITA), with more
than 15,000 landraces and over 2000 wild relatives [2]. Agricultural practices, such as
re-sowing the harvest, exchanging seeds and also storage and transport of seeds, will allow
the transgenic seed and its offspring to survive and persist in regional seed collections,
landraces and potentially also in the collections of the IITA. According to the African Network
of Expertise [93], wild cowpea has to be considered to be an invasive and allelopathic species
with a lengthier seed dormancy in comparison to cultivated varieties. This underlines the
risk of gene flow from Bt cowpea to wild cowpea becoming a pathway for replacing and
displacing natural populations as well as regional varieties of cultivated cowpea, with
potentially disruptive effects to ecosystems beyond the fields. This is especially relevant
since West Africa is a center of biological diversity for cowpea. The fact that Bt cotton is
spreading in Mexico [121] underlines the need for the precautionary principle to be applied
for GE plants with a potential to persist and propagate in the environment, and thus become
a threat to the center of biodiversity of the same plant species. A detailed investigation of
this case has revealed disturbances in the interactions between the transgenic offspring of
Bt cotton and their environment. The plants exhibit characteristics of invasive plants, such
as changes in defense mechanisms to fight herbivores, which could not be predicted on the
basis of the intended trait. These findings have serious implications for the protection of
wild cotton species because Mexico is one of the centers of origin for cotton.

The applicant also does not sufficiently substantiate the claims that there is no threat
of gene flow and potential spread of the Bt cowpea to biological diversity, traditional
crops, farmers’ varieties and sustainable agriculture. Such statements also appear to ignore
the risks to the importance of traditional seed saving for agro-biodiversity, seed bank
collections, informed choice of breeders and farmers, food sovereignty and organic farming
systems. The common heritage of Nigerian farmers and breeders who have cultivated
cowpea for thousands of years is likewise put at risk.

3.6. The NBC Risk Assessment

The risk assessment performed by the National Biosafety Committee (NBC) suffers
from several deficiencies; it did not call the statements made by the applicants into question
and it appears that no attempt was made to request further data. There might be several
explanations for these findings. For example, risk assessment of genetically engineered
plants in the EU involves experts from several institutions: it is not only the EFSA, but
also experts of the member states who contribute and comment on the risk assessment
of genetically engineered plants. This approach allows, for example, the identification of
data gaps or uncertainties which could otherwise escape attention. Furthermore, trans-
genic plants, before being applied for EU market approval, will very often have already
undergone prior assessment by authorities in other states, e.g., in the US. However, in
the case of the transgenic cowpea, it was the first time that an application for commercial
cultivation had to be assessed. Finally, the risk assessment standards in the EU are more
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detailed compared to those in the Cartagena Biosafety Protocol. In this regard, the CPB
might need further refinements which also might be beneficial for future updates of the
Nigeria biosafety guidelines [7].

Clearly, it has to be acknowledged that market approval in Nigeria was only given
for a limited period of time and that it will expire at the end of 2022 [3]. Thus, there
is room for further considerations and improvements before further decisions are taken.
Other countries, such as Ghana, where cultivation of Bt cowpea is under discussion, could
certainly benefit from lessons learned in Nigeria.

4. Materials and Methods

We analyzed the application for the marketing and cultivation of insect-resistant
cowpea—Event AAT 709A (Ref. No. AAT/DPS-18VUIR-NG)—filed by the African Agri-
cultural Technology Foundation and the Institute of Agricultural Research, Ahmadu Bello
University Zaria [4] to the government of the Federal Republic of Nigeria in 2018, and the
respective recommendation of the National Biosafety Committee (NBC) of Nigeria [3].

We assessed the publicly available data by taking into account the provisions of the
CPB, of which both Nigeria and the EU are parties. We also referred to EU standards
applied in the risk assessment of GMOs to obtain market approval [6,8] which are also in
line with the Nigeria biosafety guidelines [7]. The hazards that we identified and which
needed to be assessed were compared to the application [4] and the assessment made by
the Nigerian authorities [29].

The focus of our examination was on the following topics: gene expression of the
inserted genes; impact on non-target organisms; impact on bio-geochemical processes; food
safety; and gene flow to other cultivated varieties or wild relatives.

5. Conclusions

We conclude that the risk assessment as conducted in Nigeria is not sufficient to
exclude potential adverse effects resulting from the cultivation and consumption of Bt
cowpea. More data and more detailed assessment is needed to evaluate hazards in regard
to the environment and biodiversity, the cowpea gene pool, the livelihoods of farmers as
well as human and animal health.

In summary, the following reasons for concern were identified: (i) The expression of
the r-cry1Ab gene in the GE cowpea may lack sufficient stability; (ii) The toxicity of the
r-Bt proteins produced in the plants is increased by synergistic effects arising from the
combination with the PI produced in the cowpea. The enhanced toxicity of the protein may
affect its specificity and may be associated with unexpected adverse effects on non-target
organisms; (iii) The synergies between PI and r-Bt toxins expressed in the plants may also
affect microbiomes associated with cowpea, including endophytes, the mycorrhizae and
other soil organisms; (iv) Synergistic effects between PI and the r-Bt toxins may also impact
food safety, manifesting in enhanced immune responses, including responses to potential
allergens; (v) Gene flow to regional varieties and wild relatives is likely, and there is also a
substantial risk of Bt cowpea cultivation endangering biodiversity in one of the centers of
origin of cowpea; (vi) The consequences of gene flow for biodiversity, seed collections and
farmers may be severe.

Based on these findings and the data available, the following worst-case scenario
should be considered, individually or in combination, if Bt cowpea is cultivated long-
term and on a large scale: (i) damage to biodiversity, including non-target organisms;
(ii) decrease in soil fertility; (iii) increase in immune responses after consumption of cowpea;
(iv) damage to the gene pool of cowpea and its wild relatives.

These hazards and related adverse effects are plausible, and therefore the likelihood
of their occurrence has to be assessed in detail. However, the risk assessment conducted
in Nigeria failed to adequately address these issues. Based on the data available, we
conclude that the identified risks and uncertainties are too serious and, therefore, that



Plants 2022, 11, 380 17 of 22

the risk assessment of Bt cowpea should be reviewed and amended. We further suggest
suspending the authorization in Nigeria until the issues raised here have been addressed.
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