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Abstract: Tetracera loureiri (T. loureiri) is a woody climber inhabiting open deciduous or evergreen
forests in Southeast Asia. A decoction comprising its stem and other herbs is a traditional Thai remedy
for fatigue and jaundice, as well as to promote overall health. Anti-inflammatory effects induced by
T. loureiri extract have not been reported. In this study, we investigated the anti-inflammatory effect of
an ethanol extract of T. loureiri (ETL) on lipopolysaccharide (LPS)-induced inflammatory response in
RAW264.7 macrophages. We found that ETL treatment inhibited the production of nitric oxide (NO) in
LPS-stimulated RAW264.7 cells, without affecting cell viability. The effect of ETL on the expression of
various pro-inflammatory mediators was analyzed using reverse transcription-polymerase chain reac-
tion (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). We observed that
ETL inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)
at the mRNA and protein levels and decreased the production of prostaglandin E2 (PGE2) by COX-2
in RAW264.7 macrophages. ETL dose-dependently reduced the production of pro-inflammatory
cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6)
in LPS-induced RAW264.7 cells, in a dose-dependent manner. Furthermore, ETL suppressed the LPS-
induced nuclear translocation of the nuclear factor, NF-κB. Additionally, ETL was found to inhibit
the activation of mitogen-activated protein kinases (MAPK), such as extracellular signal-regulated
kinase, c-Jun-N-terminal kinase, and p38 MAPK. In conclusion, our findings demonstrate that ETL
inhibits the expression of pro-inflammatory mediators and cytokines, thereby downregulating NF-κB
and MAPK signaling pathways in LPS-stimulated macrophages, Consequently, ETL is a potential
therapeutic agent for the treatment of inflammatory diseases.

Keywords: Tetracera loureiri; inflammation; RAW264.7 macrophages; NF-κB; MAPK

1. Introduction

Tetracera, a genus in the Dilleniaceae family, comprises about 50 species, including
Tetracera loureiri. T. loureiri is a herb used in traditional medicine in Southeast Asia, including
Cambodia and Thailand. In traditional folk medicine, it has been used as a diuretic agent
and in the treatment of jaundice [1]. It has been reported to possess antioxidant and
free radical scavenging properties. Previous phytochemical investigations of this plant
revealed the presence of acylated-triterpenoid, flavonoids, and lignans in the stems [2].
These compounds exhibited multiple biological activities, such as anti-cancer, anti-HIV,
and bacterial biofilm inhibition [3–5]. As demonstrated in pharmacological studies, it
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prevents elevation of plasma ALT and AST levels in vivo, through its hepatoprotective
effect [6]. Along with antioxidant activities, high polarity extracts also exhibit α-amylase,
and α-glucosidase inhibitory activities [7]. However, the anti-inflammatory property of
T. loureiri extract has not been studied so far.

Inflammation is a defense mechanism against infection or pathogen entry into the
body. It is a biological response involving the modulation of immune cells along with
a variety of molecular mediators [8,9]. Macrophages enact complex immune responses,
including immune monitoring, chemotaxis, and removal of target antigens. They are
also involved in embryogenesis, wound healing, suicide elimination, and tissue remod-
eling during hematopoietic cell proliferation. Upon activation, macrophages induce an
inflammatory response, which stimulates nitric oxide (NO) and prostaglandin E2 (PGE2)
production and increases cytokine levels, including that of tumor necrosis factor alpha
(TNF-α), interleukin-1β (IL-1β), and IL-6 [10–12]. Nuclear factor-κB (NF-κB), an important
transcription factor consisting of p50 and p65 subunits, modulates the synthesis of a variety
of cytokines, chemokines, and growth factors. Once NF-κB is phosphorylated and translo-
cated to the nucleus, it leads to the synthesis of inducible nitric oxide synthase (iNOS),
cyclooxygenase-2 (COX-2), and various pro-inflammatory cytokines. The expression of
pro-inflammatory cytokines and NF-κB is further controlled by mitogen-activated protein
kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), p38 kinase (p38),
and c-Jun N-terminal kinase (JNK) [13–16].

In this study, we investigated the anti-inflammatory effect of quercetin and rhamnoc-
itrin isolated from an ethanol extract of T. loureiri (ETL) on LPS-stimulated inflammatory re-
sponses in RAW264.7 cells. Furthermore, we demonstrated the reduction in NO production
and the inhibition of the expression of iNOS, COX-2, PGE2, and pro-inflammatory cytokines
caused by ETL, through the suppression of the NF-κB and MAPK signaling pathways.

2. Results
2.1. Effect of ETL on Cell Viability and NO Production in LPS-Stimulated RAW264.7 Cells

T. loureiri stems were pulverized and dried, and the target compounds were extracted
using 70% aqueous ethanol and analyzed using high-performance liquid chromatography
(HPLC) and medium pressure liquid chromatography (MPLC) (Figure 1a). T. loureiri
contains two compounds, quercetin and rhamnocitrin. The structures of quercetin and
rhamnocitrin are shown in Figure 1b. Although quercetin has been widely known for a
long time, it was isolated and identified from T. loureiri for the first time [2]. We determined
the cytotoxic effect of ETL in the LPS-induced inflammatory response, using the MTT assay.
ETL treatment did not show any significant cytotoxic effect on LPS-stimulated RAW264.7
cells (Figure 2a). We determined the inhibitory effect of ETL on NO production in LPS-
stimulated RAW264.7 cells. As demonstrated in Figure 2b, ETL treatment significantly
inhibited NO production in LPS-stimulated RAW264.7 cells in a dose-dependent manner.
Treatment with 50 and 100 µg/mL of ETL decreased the NO concentration by 31.7% and
67.9%, respectively. These results indicate that ETL suppresses NO production without
inducing cytotoxicity in LPS-stimulated macrophages.
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Figure 1. High Pressure Liquid Chromatography (HPLC) of an ethanol extract of T. loureiri (ETL)
and chemical structures of two ETL compounds. (a) HPLC chromatogram (at 330 nm) of ETL.
(b) Structures of quercetin (1) and rhamnocitrin (2).
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Figure 2. Effect of ETL on cell viability and NO production in LPS-stimulated RAW264.7 cells. The
cells were pre-treated with ETL (25–100 µg/mL) for 1 h, followed by LPS (1 µg/mL) treatment for
24 h (the untreated control/LPS(-), the LPS-treated group/LPS(+)). (a) Cell viability, as determined
using the MTT assay. (b) NO production in the cell culture supernatant, as measured using Griess
reagent. Data are expressed as the mean ± standard deviation (SD) of three replicates; ** p < 0.01,
compared to the LPS-treated cells.

2.2. Effect of ETL on the Expression of iNOS, COX-2 and PGE2 Production

An increase in the expression of iNOS induces the production of NO in LPS-stimulated
cells. COX-2 stimulates the production of PGE2. Therefore, the anti-inflammatory effect of
ETL was evaluated by inhibiting the expression of iNOS and COX-2 [17,18]. We examined
the effects of ETL on iNOS and COX-2 expression in LPS-stimulated cells by reverse
transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. Both iNOS
and COX-2 play an important role in LPS-induced NO production, in the inflammatory
response [19]. As shown in Figure 3, ETL treatment inhibited the expression of LPS-induced
iNOS and COX-2 at the mRNA level in RAW264.7 cells, in a dose-dependent manner.
Additionally, we found that ETL reduced the protein levels of both iNOS and COX-2. We
also confirmed the effect of ETL on the production of PGE2, which is an inflammatory
mediator produced by COX-2 in RAW264.7 macrophages [13]. The production of PGE2
when cells were treated with ETL decreased in a dose-dependent manner in RAW264.7 cells,
compared to that in LPS-treated cells. ETL inhibited the production of PGE2 by 33.6% and
50.1% (Figure 4) in cells treated with 50 µg/mL and 100 µg/mL of ETL, respectively.
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Figure 3. Effect of ETL on the mRNA and protein expression of iNOS and COX-2 in LPS-stimulated
RAW264.7 cells. The cells were pre-treated with ETL (25–100 µg/mL) for 1 h, followed by
LPS (1 µg/mL) treatment for 24 h (the untreated control/LPS(-), the LPS-treated group/LPS(+)).
(a) mRNA expression of iNOS and COX-2, as evaluated by RT-PCR analysis. Glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) was used as the internal control. (b) Protein expression of
iNOS and COX-2, as determined by Western blot analysis. β-actin was used as the internal control.
Data are expressed as the mean ± SD of three replicates; * p < 0.05 and ** p < 0.01, compared to the
LPS-treated cells.
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2.3. Effect of ETL on the Production of Pro-Inflammatory Cytokines in LPS-Stimulated
RAW264.7 Cells

Cytokines like TNF-α, IL-1β, and IL-6 are considered pro-inflammatory cytokines as
they are involved in the regulation of inflammatory responses. This study investigated
any inhibitory effects of ETL on these pro-inflammatory mediators. We examined the
release of TNF-α, IL-1β, and IL-6 in LPS-induced cells, using RT-PCR and ELISA [20].
We found that ETL treatment significantly decreased the expression of TNF-α, IL-1β,
and IL-6 at the mRNA level (Figure 5a). Furthermore, ETL reduced the level of these
cytokines in cell supernatants, in a dose-dependent manner (Figure 5b). Treatment with
an effective dose of 100 µg/mL of ETL inhibited the production of TNF-α, IL-1β, and
IL-6 by 35.5%, 99.6%, and 74.0%, respectively. These results suggest that ETL effectively
controls the induction of inflammation and related factors by inhibiting the production of
pro-inflammatory cytokines.
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2.4. Effect of ETL on the Nuclear Translocation of NF-κB in LPS-Stimulated RAW264.7 Cells

NF-κB is a transcription factor involved in various pathways like cytokine response,
inflammation, and cell growth regulation. It has been reported to be involved in promoting
the production of major pro-inflammatory factors like TNF-α, IL-1β, and IL-6 [21,22]. Upon
activation, NF-κB activates the genes of various inflammation-associated targets like iNOS,
COX-2, TNF-α, IL-1β, and IL-6 in LPS-stimulated cells [23]. To verify the involvement of
ETL in the NF-κB pathway, we investigated the nuclear translocation of NF-κB (p65 and p50)
from the cytosol, in LPS-stimulated RAW264.7 macrophages, using Western blot analysis.
As shown in Figure 6, ETL markedly reduced the LPS-induced nuclear translocation of
NF-κB (p65 and p50). In this experiment, β-actin was used as the cytoplasmic control
and lamin B was used as the nuclear control. Our findings suggest that ETL inhibits the
NF-κB signaling pathway by blocking the LPS-induced nuclear translocation of the p65
and p50 subunits.
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2.5. Effect of ETL on LPS-Stimulated MAPK Phosphorylation

MAPKs are the one of the most important signaling factors involved in pathways
associated with cell growth, differentiation, and regulation of cellular response. Addition-
ally, they are involved in the production of various inflammatory mediators, and they
affect the activation of NF-κB [24–26]. Here, using Western blot analysis, we determined
the inhibitory effect of ETL on the phosphorylation of JNK, ERK, and p38 MAPK, which
are involved in the LPS-induced inflammatory response in RAW264.7 macrophages. As
presented in Figure 7, ETL suppressed the phosphorylation of JNK, ERK, and p38 MAPK
in LPS-stimulated RAW264.7 cells, in a dose-dependent manner. These findings suggest
that the inhibitory effect of ETL on the LPS-stimulated inflammatory response may be due
to the inhibition of MAPK phosphorylation in RAW264.7 cells.
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cells. The cells were pre-treated with ETL (25–100 µg/mL) for 1 h and then treated with LPS
(1 µg/mL) for 30 min (the untreated control/LPS(-), the LPS-treated group/LPS(+)). The cell lysates
were subjected to Western blot analysis using anti-phospho-JNK, anti-JNK, anti-phospho-ERK, anti-
ERK, anti-phospho-p38, and anti-p38 antibodies. The results shown are representative of at least
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2.6. Anti-Inflammatory Effects of Quercetin and Rhamnocitrin Isolated from ETL on
RAW264.7 Cells

To confirm the potential anti-inflammatory activity of ETL, we purified and identi-
fied the functional compounds in the T. loureiri extract. A total of 12 compounds were
identified: betulinic acid, erythro-carolignan E, threo-carolignan E, eucalyptolic acid, 3β-O-
trans-feruloyl-2α-hydroxyurs-12-en-28-oic acid, 3β-O-(trans-ρ-coumaroyl) maslinic acid,
jacoumaric acid, quercetin, europetin, kaempferol, rhamnetin, and rhamnocitrin [2]. Among
these compounds, we confirmed that quercetin and rhamnocitrin inhibited NO production
upon LPS-stimulation in RAW264.7 cells, in a dose-dependent manner. Treatment with
50 µM each of quercetin and rhamnocitrin decreased the NO concentration by 48.6 and
17.8%, respectively. Furthermore, neither of the two compounds (6.25, 12.5, 25, 50 µM
total) exhibited any cytotoxic effect (Figure 8). These results indicate that quercetin and
rhamnocitrin are important compounds for the anti-inflammatory nature of ETL.
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Figure 8. Effect of quercetin and rhamnocitrin on cell viability and NO production in LPS-stimulated
RAW264.7 cells. The cells were pre-treated with quercetin and rhamnocitrin (6.25–50 µM total)
for for 1 h, followed by LPS (1 µg/mL) treatment for 24 h (the untreated control/LPS(-), the LPS-
treated group/LPS(+)). (a) Cell viability, as determined by MTT assay. (b) NO production in the
cell culture supernatant, as measured using Griess reagent. Data are expressed as the mean ± SD of
three replicates; ** p < 0.01, compared to the LPS-treated cells.

3. Discussion

Various biochemical mechanisms and factors are involved in the generation of an
inflammatory response. Among them, macrophages, one of the key factors, act through the
production of NO, along with various pro-inflammatory mediators, such as iNOS, COX-2,
PGE2, and pro-inflammatory cytokines [27,28].

Previous studies on T. loureiri have reported on its antioxidant activity, hepato-protective
effect, and free radical scavenging property [6]. In the present study, we assessed the
anti-inflammatory effect of T. loureiri on macrophages. First, we demonstrated the dose-
dependent inhibition of NO production by ETL in RAW264.7 macrophages, without the
induction of cytotoxicity (Figure 2). The active compounds isolated from this extract were
identified as quercetin and rhamnocitrin; these compounds are being reported in T. loureiri
for the first time. On examination, we found that these two compounds also suppressed
NO production, without inducing cytotoxicity, in LPS-stimulated macrophages (Figure 8).

In the current study, we demonstrated the inhibitory effect of ETL on the expres-
sion of iNOS and COX-2 at the mRNA and protein levels (Figure 3), in LPS-stimulated
macrophages, and showed a reduction in the level of PGE2 that is synthesized by COX-2
(Figure 4). iNOS and COX-2 are the major macrophage-derived inflammatory media-
tors [28,29]. NO is produced by three isoforms of NOS. The level of iNOS, an isoform of
NOS, is increased by LPS-stimulation or by pro-inflammatory cytokines. COX-2 is involved
in the synthesis of PGE2 [29,30]. We observed that ETL decreased the levels of various
pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, in LPS-treated RAW264.7
cells (Figure 5). TNF-α, IL-1β, and IL-6 are the most important pro-inflammatory cytokines
in an inflammatory response. TNF-α is produced mainly by activated macrophages, and its
production is increased by LPS-stimulation. It is also produced in various cells, like mast
cells, lymphoid cells, NK cells, eosinophils, and endothelial cells [31,32]. IL-1β and IL-6 are
factors necessary for cell growth and homeostasis when present in low concentrations. Con-
versely, during an inflammatory response, they are secreted in large quantities, resulting



Plants 2022, 11, 284 8 of 13

in aggravated symptoms. The primary role of TNF-α, IL-1β, and IL-6 is the regulation of
inflammatory response when wounded, and during infection or immune stimulation [6,33].
Therefore, the inhibition of pro-inflammatory mediators including cytokines is essential for
the control of an inflammatory response.

This finding led us to investigate the effect of ETL on the expression of transcription
factors associated with inflammation. The transcription factor NF-κB plays an important
role in regulating the gene expression of inflammatory factors [34]. NF-κB is a heterodimer
composed of the p50 and p65 subunits. Following activation, NF-κB induces the expres-
sion of iNOS and COX-2 at the gene level and regulates their nuclear translocation [35].
According to many reports, LPS stimulation leads to NF-κB activation, which is associated
with the MAPK signaling pathway. According to many reports, LPS stimulation leads
to NF-κB activation, which is associated with the MAPK signaling pathway. MAPKs are
members of important signaling pathways in the inflammatory response. As a result of
the inflammatory response, there is increased phosphorylation of ERK, JNK, and p38 in
LPS-stimulated RAW264.7 cells. The activation of MAPKs, including ERK, JNK, and p38, is
associated with pro-inflammatory cytokines [15,24–26]. In our study, we found that ETL
treatment suppressed NF-κB activation and the translocation of its p65 and p50 subunits.
Additionally, it inhibited the phosphorylation of JNK, ERK, and p38 (Figures 6 and 7).
These findings suggest that ETL imposes an anti-inflammatory response by inhibiting the
NF-κB and MAPK signaling pathways.

In conclusion, the present study suggested that ETL opposes inflammation via the
inhibition of the expression of iNOS, COX-2, and cytokines, along with the downregulation
of the NF-κB and MAPK signaling pathways, in LPS-stimulated macrophages. In addi-
tion, this study is the first to show that quercetin and rhamnocitrin, isolated from ETL,
possess anti-inflammatory activity. These results suggest that ETL and its compounds
are potential candidates for the development of anti-inflammatory drugs to help prevent
inflammatory diseases.

4. Materials and Methods
4.1. Plant Materials

The dried stems of T. loureiri were obtained from Thnong, Kandol, Botum Sarkor,
Koh kong, Cambodia, in December 2014, and were identified by Dr. Jae-Shin Kang (Bio-
logical Genetic Resources Utilization Division, National Institute of Biological Resources,
Incheon, Korea). A voucher specimen (#153) of this plant was deposited at the Bio-Center,
Gyeonggido Business and Science Accelerator (GBSA), Suwon, Korea.

4.2. Preparation of T. loureiri Extract

T. loureiri stems (1 kg) were pulverized, and the dry material was percolated with
70% aqueous ethanol for 24 h at 20–22 ◦C. The extract was filtered and concentrated un-
der vacuum and reduced pressure (temperature, 40 ◦C; pressure, 10 hPa) using a rotary
flash evaporator (Büchi Labortechnik AG, Flawil, Switzerland), allowing for the complete
evaporation of ethanol. The remaining aqueous solution was concentrated under vac-
uum (temperature, −85 ◦C; pressure, 5 mTorr) and freeze-dried. The yield of the crude
T. loureiri stems extract was 3.88% (w/w). After solvent evaporation under reduced pressure,
the residues were suspended in water and then successively partitioned using n-hexane,
CH2Cl2, EtOAc, and n-BuOH to acquire yields of 14.6, 23.4, 47.1, and 91.0 g, respectively.
The EtOAc-soluble layer was subjected to reverse-phase silica gel flash column chromatog-
raphy (MeOH/water gradient, 3:7 to 1:0) to acquire six sub-fractions (#153E-1~6). Fraction
#153E-4 (2.94 g) was subjected to HPLC [MeOH/water (0.05% trifluoroacetic acid) gradient,
45:55 to 9:1; 30 min] to yield compound 1 (quercetin, 35.4 mg). Compound 2 (rhamnocitrin,
10.8 mg) was isolated from fraction #153E-6 (1.44 g) using MPLC [column: silica gel, 40 g;
40 mL/min; CH2Cl2/MeOH = 1:0 to 1:1; 45 min].

Quercetin (compound 1): yellow amorphous powder; 1H-NMR (700 MHz, DMSO-d6)
δ 12.49 (1H, s, 5-OH), 10.77 (1H, s, 7-OH), 9.58 (1H, s, 4′-OH), 9.36 (1H, s, 3-OH), 9.30 (1H, s,
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3′-OH), 7.67 (1H, d, J = 2.1, H-2′), 7.54 (1H, dd, J = 8.4, 2.1, H-6′), 6.88 (1H, d, J = 8.4, H-5′),
6.40 (1H, d, J = 2.1, H-8), 6.18 (1H, d, J = 2.1, H-6); 13C-NMR (175 MHz, DMSO-d6) δ 175.8
(C-4), 163.9 (C-7), 160.7 (C-5), 156.1 (C-9), 147.7 (C-4′), 146.8 (C-2), 145.0 (C-3′), 135.7 (C-3),
121.9 (C-1′), 119.9 (C-6′), 115.6 (C-5′), 115.0 (C-2′), 103.0 (C-10), 98.2 (C-6), 93.3 (C-8); ESI-MS
(m/z) 303 [M + H]+ (Figures S1–S3). The structure of quercetin is presented in Figure 1b [2].

Rhamnocitrin (compound 2): yellow amorphous powder; 1H-NMR (700 MHz, DMSO-d6)
δ 12.49 (1H, s, 5-OH), 10.15 (1H, s, 4′-OH), 9.53 (1H, s, 3-OH), 8.10 (2H, d, J = 8.4, H-2′, 6′),
6.94 (2H, d, J = 8.4, H-3′, 5′), 6.76 (1H, d, J = 2.1, H-8), 6.36 (1H, d, J = 2.1, H-6); 13C-NMR
(175 MHz, DMSO-d6) δ 176.0 (C-4), 164.9 (C-7), 160.4 (C-5), 159.3 (C-4′), 156.1 (C-9), 147.2
(C-2), 136.0 (C-3), 129.6 (C-2′, 6′), 121.6 (C-1′), 115.5 (C-3′, 5′), 104.0 (C-10), 97.5 (C-6),
92.0 (C-8), 56.0 (7-OCH3); ESI-MS (m/z) 299 [M − H]− (Figure S4–S6). The structure of
rhamnocitrin is presented in Figure 1b [2].

4.3. Apparatus and Chromatography Conditions

HPLC analysis was performed on a SHIMADZU (Shimadzu Scientific Instrument
Incorporated, Kyoto, Japan) system consisting of an LC-20AT pump, a CTO-20A thermostat
column compartment, and SPD-M20A diode array detector. Separation was performed on a
Kromacil C18 column (250 × 4.6 mm internal diameter, 5 µm particle size) (SHISEIDO Co.,
Tokyo, Japan). The mobile phase consisted of water–TFA (99.95:0.05; v/v) (solvent A) and
acetonitrile (solvent B). Elution was performed using the following gradient: initial—90:10
(A:B; v/v); post 40 min—60:40 (A:B; v/v); post 60 min—0:100 (A:B; v/v). The mobile phase
was freshly prepared, filtered through a 0.45 mm, WTP 0.5 mm membrane (Whatman,
Maidstone, UK), sonicated prior to use, and delivered at a flow rate of 1.0 mL/min. The
injection volume was 10 µL, and the column temperature was 35 ◦C. All operations,
including the acquisition and analysis of data, were controlled by LabSolutions, LC system
software (Shimadzu Scientific Instrument Incorporated, Kyoto, Japan).

4.4. Cell Culture

Murine macrophage RAW264.7 cells (TIB-71) were obtained from the American Type
Culture Collection (ATCC, Manassas, VA, USA). The cells were cultured at 37 ◦C with 5%
CO2 in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine serum,
100 U/mL of penicillin, and 0.1 mg/mL of streptomycin (Thermo Fisher Scientific, Inc.,
Waltham, MA, USA).

4.5. Cell Viability Assay

The viability of murine macrophage RAW264.7 cells was determined using the
3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT; Duchefa Biochemie B. V.,
Haarlem, Netherlands) assay. RAW264.7 cells were seeded at a density of 5 × 104 cells/well
in a 96-well plate. Following incubation for 24 h, the cells were treated with ETL (25, 50,
100 µg/mL) or quercetin and rhamnocitrin (6.25, 12.5, 25, 50 µM) for 1 h and treated with
1 µg/mL LPS (Sigma Aldrich, St. Louis, MO, USA) or left untreated for 24 h. The medium
was removed, and MTT solution (5 mg/mL in PBS) was added to each well, followed by
incubation for 2 h. The supernatant was removed and dimethyl sulfoxide (DMSO; Duchefa
Biochemie B. V.) was added to each well. Subsequently, the plate was shaken to dissolve
the formazan formed. Absorbance was measured at 540 nm using a SpectraMax 190PC
microplate reader (Molecular Devices, Sunnyvale, CA, USA) [36,37].

4.6. Measurement of NO Production

RAW264.7 cells were seeded at a density of 5 × 104 cells/well in a 96-well plate.
Following incubation for 24 h, the cells were treated with ETL (25, 50, 100 µg/mL) or
quercetin and rhamnocitrin (6.25, 12.5, 25, 50 µM) for 1 h and treated with 1 µg/mL LPS or
remained untreated for 24 h (untreated control cells without LPS remained as the control
group) [38,39]. The amount of NO generated was analyzed using the Griess reaction. Equal
volumes of cultured medium and Griess reagent (Sigma Aldrich, St. Louis, MO, USA) were
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mixed and used to incubate the cells in at room temperature for 10 min. Subsequently,
absorbance was measured at 540 nm using a SpectraMax 190PC microplate reader.

4.7. ELISA

RAW264.7 cells were seeded at a density of 1 × 106 cells/well in a 6-well plate.
Following incubation for 24 h, the cells were treated with ETL (25, 50, 100 µg/mL) for 1 h
and treated with 1 µg/mL LPS or left untreated for 24 h. The concentrations of PGE2 (cat.
no. KGE004B, R&D Systems, Minneapolis, MN, USA) and the pro-inflammatory cytokines,
TNF-α (cat no. BMS607/3, Invitrogen, Thermo Fisher Scientific, Inc., Waltham, MA, USA),
IL-1β (cat. no. BMS6002, Invitrogen), and IL-6 (cat. no. BMS614/2, Invitrogen) in the
culture medium were measured using ELISA, according to the manufacturer’s instructions.

4.8. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

RAW264.7 cells were seeded at a density of 1 × 106 cells/well in a 6-well plate.
Following incubation for 24 h, the cells were treated with ETL (25, 50, 100 µg/mL) for 1 h
and treated with 1 µg/mL LPS or left untreated for 24 h. The cells were harvested and
washed using PBS, and the total RNA was extracted using TRIzol reagent (Invitrogen).
cDNA synthesis was performed on 1 µg of the extracted total RNA using the SuperScript®III
first-strand synthesis system (Invitrogen). The cDNA was amplified using specific primers
and AccuPower® Pfu PCR premix (Bioneer Corporation, Daejeon, Korea). The following
conditions were used for the PCR reaction: 95 ◦C for 5 min (1 cycle); 95 ◦C for 30 s, 55 ◦C
for 40 s, and 72 ◦C for 1 min (30 cycles); and final extension at 72 ◦C for 10 min. The primer
(Bioneer Corporation, Daejeon, Korea) sequences used for RT-PCR are shown in Table 1.
The band intensity was visualized on a ChemiDoc XRS system using the Quantity One
software version 4.6.3 (Bio-Rad Laboratories, Inc., Hercules, CA, USA). GAPDH was used
as the invariant control.

Table 1. Primer sequence for the reverse transcription-polymerase chain reaction.

Gene Primer Sequences Accession No.

TNF-α forward
reverse

5′-AGCCTGTAGCCCACGTCGTA-3′

5′-TCTTTGAGATCCATGCCGTTG-3′ NM_013693

IL-1β forward
reverse

5′-CTTTGAAGAAGAGCCCATCC-3′

5′-TTTGTCGTTGCTTGGTTCTC-3′ NM_008361

IL-6 forward
reverse

5′-CACTTCACAAGTCGGAGGCTT-3′

5′-GCAAGTGCATCATCGTTGTTC-3′ NM_031168

iNOS forward
reverse

5′-GAGTTCGAGACTTCTGTGA-3′

5′-GGCGATCTGGTAGTAGTG-3′ NM_010927

COX-2 forward
reverse

5′-GGAGAGACTATCAAGATAGTGATC-3′

5′-ATGGTCAT AGACTTTTACAGCTC-3′ NM_011198

GAPDH forward
reverse

5′-GTATGACTCCACTCACGGCAAA-3′

5′-GGTCTCGCTCCTGGAGAGATG-3′ NM_008084

4.9. Preparation of Nuclear Extract

RAW264.7 cells were washed using PBS and harvested. The cells were re-suspended
in 200 µL lysis buffer (10 mM HEPES at pH 7.9; 10 mM KCl; 1 mM DTT; 0.5 mM PMSF; and
0.1 mM EDTA) and centrifuged at 20,000× g for 5 min at 4 ◦C. Subsequently, 10% NP-40
was added and the cells were lysed on ice for 10 min. The cells were then centrifuged at
20,000× g for 2 min at 4 ◦C, and the supernatant was collected. This formed the cytosolic
extract. The pellet was re-suspended in 50 µL extraction buffer (20 mM HEPES at pH 7.9;
0.4 M NaCl; 1 mM DTT; 1 mM PMSF; 1 mM EDTA; and 1% NP-40) and incubated on ice for
10 min. The nuclear extract was obtained by centrifugation at 15,000× g for 15 min at 4 ◦C.

4.10. Western Blot Analysis

RAW264.7 cells were seeded at a density of 1 × 106 cells/well in a 6-well plate, treated
with ETL (25, 50, 100 µg/mL) for 1 h, and treated with 1 µg/mL LPS for different time
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periods, as indicated in the legends of Figures 3 and 7. The cells were lysed on ice for
30 min in RIPA buffer (Sigma Aldrich) consisting of a protease inhibitor and phosphatase
inhibitors (Sigma Aldrich). The cells were centrifuged at 16,000× g for 30 min at 4 ◦C, and
the supernatant was collected. The total proteins were separated on an 8% gel using sodium
dodecyl sulfate polyacrylamide gel electrophoresis and transferred onto nitrocellulose
membranes (Sigma Aldrich). Protein expression was analyzed by immunoblotting with
antibodies against anti-iNOS (cat. no. ab3523; dilution, 1:500), anti-COX-2 (cat. no. ab3523,
Abcam, Cambridge, UK) and anti-Lamin B (cat no. sc-6216, Santa Cruz Biotechnology,
Inc., Dallas, TX, USA), β-actin (cat no. 5125), anti-NF-κB p65 (cat no. 8242), anti-NF-κB
p50 (cat no. 12540), anti-phospho-JNK (T183/Y185; cat no. 4668), anti-JNK (cat no. 9252),
anti-phospho-ERK (T202/Y204; cat no. 9101), anti-ERK (cat no. 9102), anti-phospho-p38
(T180/Y182; cat no. 9211), and anti-p38 (cat no. 9212) primary antibodies (dilution, 1:1000,
Cell Signaling Technology, Inc. Danvers, MA, USA). Horseradish peroxidase-conjugated
anti-rabbit antibodies (cat no. 7074; dilution, 1:2000; Cell Signaling Technology) and
anti-goat antibodies (cat no. sc-2354; dilution, 1:5000, Santa Cruz Biotechnology) were
used as secondary antibodies. The proteins were detected with SuperSignal® West Pico
chemiluminescent substrate (Thermo Fisher Scientific) using the Amersharm image 600
(GE Healthcare Life Sciences, Chicago, IL, USA).

4.11. Statistical Analysis

The data obtained were analyzed for statistical significance using a one-way analysis
of variance (ANOVA) and Student’s t-test. The data are expressed as mean ± SD. * p < 0.05
and ** p < 0.01 were considered statistically significant.

Supplementary Materials: The following are available online at http://www.mdpi.com/xxx/s1,
Figure S1: 1H NMR spectrum of 1, Figure S2: 13C NMR spectrum of 1, Figure S3: ESI-MS spectrum of
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of 2.
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