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Abstract: Gan-Mai-Da-Zao (GMDZ) is a well-known product in Chinese traditional medicine and
includes three major plants: blighted wheat (Fu Mai), licorice (Gan Cao), and jujube (Da Zao).
GMDZ is widely used as an efficacious and well-tolerated prescription for depression in clinics.
The present study was designed to investigate the main plant of GMDZ for its antidepressant-like
effect using the unpredictable chronic mild stress (UCMS) model on rats who received an injection
with p-chlorophenylalanine (PCPA) to produce the chemical model. In rats subjected to the UCMS
model, forced swim tests, open field tests, and sucrose preference tests were applied to estimate the
chronic effect of GMDZ. We found that the oral administration of GMDZ for 21 days significantly
alleviated the behavior in rats with depression induced by either UCMS or PCPA. The expression
levels of the serotonin transporter (5-HTT) and brain-derived neurotrophic factor (BDNF) in the
hippocampus of the rats with depression were markedly increased by GMDZ. Additionally, rats that
received the herbal mixture without licorice showed a markedly lower response than GMDZ. These
results suggest that GMDZ may alleviate the depressive-like behaviors in depressive rats, possibly
via licorice (Gan Cao), to increase 5-HTT and BDNF signals in the hippocampus. The present study
confirmed the antidepressant-like effects of GMDZ. Additionally, licorice (Gan Cao) may play a key
role in the effectiveness of GMDZ.

Keywords: Gan-Mai-Da-Zao; depression; brain-derived neurotrophic factor; serotonin transporter;
unpredictable chronic mild stress

1. Introduction

Major depression is a common psychiatric disorder and it may lead to emotional
depression, suicidal tendencies, and a recurrence of morbidity [1]. Dysfunction of the
serotonin (5-HT) system is commonly considered to be the cause of depression. Depres-
sion has been shown as the negative factor that affects the rate of adult hippocampal
neurogenesis. The serotonin transporter (5-HTT) responsible for the reuptake of 5-HT is
related to the role of 5-HT in neurodevelopmental processes [2]. The evidence from animal
models and human studies indicates that reduced function of 5-HTT is associated with the
decreased expression of brain-derived neurotrophic factor (BDNF) [3]. Additionally, BDNF
is highly expressed in the adult hippocampus and hypothalamus [4], and is involved in
the etiopathology of mood disorders [5]. In depressive patients, serum BDNF levels are
markedly decreased [6] that can be restored by antidepressant treatment [7]. Although
today’s treatments for depression have greatly improved, it is still necessary to find more
safe and effective agents to prevent depression.
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Traditional Chinese medicine (TCM) has shown the therapeutic effects of depres-
sion [8,9]. GMDZ is one of the well-known products in TCM and it has widely been used
to treat depressive patients in Asia. Despite the large variety of TCM patterns among
participants, dozens of herbal formulas for depression were GMDZ-based [10]. This was
first documented in the Chinese medical book Jin-Gui-Yao-Lue (Synopsis of Prescriptions
of the Golden Chamber) written by Dr. Zongjing Zhang (AD 152-219) [11]. GMDZ is
believed to be effective for depression [12]. Clinical studies indicated that GMDZ decoction
is an efficacious and well-tolerated antidepressant prescription for depressive disorders,
even postpartum depression [13–15]. Moreover, GMDZ could protect hippocampal neu-
rons against glutamate toxicity in depression-like rats [16,17]. The composition of GMDZ
includes three major plants: blighted wheat (FuMai, M), licorice (GanCao, G), and jujube
(DaZao, D) [16]. The combination of three plants may enhance the efficiency and/or reduce
toxicity in clinical applications. However, the role of these components in GMDZ is still vague.

To investigate the antidepressant-like effects of GMDZ, unpredictable chronic mild
stress (UCMS) was used in the present study. The behavior tests, including a forced
swimming test (FST), open field test (OFT), and sucrose preference test (SPT), were then
performed. Moreover, we compared the variations between one herb-deleted mixture and
GMDZ to understand the main plant in GMDZ using the rats with depression induced
by pretreatment with a serotonin synthesis inhibitor, p-chlorophenylalanine (PCPA). The
levels of 5-HTT and BDNF in the hippocampus of rats were also assessed to obtain further
insight into the mechanism(s) regarding the antidepressive effects of GMDZ.

2. Results
2.1. Chronic GMDZ Treatment Ameliorated Depression-Like Behaviors in UCMS Rats and PCPA
Treated Rats

FST shows a high predictive validity for antidepressant activity. OFT is classically used
to assess anxiety in rodents. In the present study, the UCMS group significantly prolonged
the immobility time in the FST (Figure 1a); and also reduced the time spent at the center
and decreased the total distance traveled in the OFT compared with the control group
(Figure 1b,c). Similar results were observed in depressive rats induced by PCPA in FST
(Figure 1e) and OFT (Figure 1f,g). To assess the antidepressant-like effects of GMDZ, rats
were orally administrated GMDZ for 21 days while fluoxetine (10 mg/kg) was included as
the positive control. The results showed that GMDZ produced a significant reduction in
the duration of immobility as well as the time in the center and distance of traveling in OFT.
It indicated that GMDZ significantly ameliorated depression-like behaviors compared with
the vehicle-treated animals. Additionally, fluoxetine showed marked effects on FST and
OFT in the UCMS group which were not observed in the PCPA-induced model.

The SPT is a procedure which is used to measure the hedonic value of sucrose, typically
reduced in animals with depression-like disorders. Both the UCMS and PCPA groups
(Figure 1h) showed a significant decrease in sucrose consumption as compared with the
control. However, the sucrose consumption in both models was significantly restored by
the chronic administration of GMDZ. PCPA-induced stressed rats treated with fluoxetine
did not differ in sucrose preference from the vehicle-treated group. Therefore, GMDZ
produces antidepressant effects through different mechanisms to fluoxetine.

2.2. Effects of Two-Herb Mixture of GMDZ on Behavioral Tests in PCPA-Induced Rats

To understand the major plant in GMDZ, a one-plant deletion from the mixture was
prepared. Then, five groups of PCPA-induced rats were administered with GMDZ, G and
M, M and DZ, G and DZ, and the vehicle, respectively, for 21 days. In both G and M and G
and DZ groups, rats showed a shorter immobility time in FST (Figure 2a), a longer central
zone duration and a greater total distance in OFT (Figure 2b,c), and a higher sucrose intake
in SPT (Figure 2d) which ameliorated the depression-like behaviors. However, M and DZ
did not show an obvious effect in FST, OFT, or SPT, respectively. These results suggest that
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G seems to play a crucial role in the effect of GMDZ using PCPA-induced rats showing
depression-like behavior.
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Figure 1. GMDZ ameliorated depression-like behaviors in two rat models induced by the UCMS or 
PCPA injection. (a) The changes of immobility time in FST in UCMS model; (b) the changes of time 
in central in OFT in UCMS model; (c) the changes of traveling distance in OFT in UCMS model; (d) 
the changes of sucrose solution consumption (%) in SPT in UCMS model; (e) the changes of immo-
bility time in FST in PCPA treated groups; (f) the changes of time in central in OFT in PCPA treated 
groups; (g) the changes of traveling distance in OFT in PCPA treated groups; (h) the changes of 
sucrose solution consumption (%) in SPT in PCPA treated groups. Responses to fluoxetine used as 
the positive control. Data are expressed as mean ± SE (n = 8). * p < 0.05, ** p < 0.01 compared with the 
normal control group; # p < 0.05 compared with vehicle-treated group. 

The SPT is a procedure which is used to measure the hedonic value of sucrose, typi-
cally reduced in animals with depression-like disorders. Both the UCMS and PCPA 

Figure 1. GMDZ ameliorated depression-like behaviors in two rat models induced by the UCMS
or PCPA injection. (a) The changes of immobility time in FST in UCMS model; (b) the changes of
time in central in OFT in UCMS model; (c) the changes of traveling distance in OFT in UCMS model;
(d) the changes of sucrose solution consumption (%) in SPT in UCMS model; (e) the changes of
immobility time in FST in PCPA treated groups; (f) the changes of time in central in OFT in PCPA
treated groups; (g) the changes of traveling distance in OFT in PCPA treated groups; (h) the changes
of sucrose solution consumption (%) in SPT in PCPA treated groups. Responses to fluoxetine used as
the positive control. Data are expressed as mean ± SE (n = 8). * p < 0.05, ** p < 0.01 compared with
the normal control group; # p < 0.05 compared with vehicle-treated group.
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2.3. Chronic GMDZ Treatment Restores the 5-HTT and BDNF Levels in the Hippocampus of 
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To investigate the potential mechanism(s) underlying GMDZ-induced antidepres-
sant effects, we determined the gene expressions and protein levels of 5-HTT (Figure 3a,b) 
and BDNF in the hippocampus of PCPA-treated rats (Figure 3c,d). The mRNA and protein 
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Figure 2. Effects of the one herb-deleted mixture of GMDZ in depression-like behaviors using the
PCPA treated rats. (a) The changes of immobility time in FST; (b) the changes of time in central in
OFT; (c) the changes of traveling distance in OFT; (d) the changes of sucrose solution consumption
(%) in SPT. Data are expressed as mean ± SE (n = 8). * p < 0.05, ** p < 0.01 compared with the normal
control; # p < 0.05 compared with vehicle-treated group.

2.3. Chronic GMDZ Treatment Restores the 5-HTT and BDNF Levels in the Hippocampus of
PCPA Treated Rats

To investigate the potential mechanism(s) underlying GMDZ-induced antidepressant
effects, we determined the gene expressions and protein levels of 5-HTT (Figure 3a,b) and
BDNF in the hippocampus of PCPA-treated rats (Figure 3c,d). The mRNA and protein
levels of 5-HTT were significantly decreased in the PCPA-treated group, which was restored
by GMDZ. Additionally, chronic treatment with GMDZ also increased the protein and
mRNA levels of BDNF in the hippocampus of PCPA-treated rats.

Same as the results in behavior experiments, G and M or G and DZ treatment signifi-
cantly restored the mRNA and protein levels of 5-HTT. Moreover, as shown in Figure 3,
G and M or G and DZ treatment also restored the protein level and mRNA level of
BDNF. However, the treatment of M and DZ did not modify the expressions of 5-HTT
and BDNF in the hippocampus. It supports that G played an important role in GMDZ for
depression improvement.

2.4. Effects of Glycyrrhizic Acid on 5-HTT and BDNF Expression in the Corticosterone-Treated
H19-7 Cell Line

We hypothesized that licorice played a major role in GMDZ mixture, since the
antidepressant-like effect in G and M and G and DZ treatments seemed to be more signifi-
cant than that in the M and DZ treatment group. In addition, long-term exposure to stress
or high glucocorticoid levels leads to depression-like behavior in rodents [18]. Therefore,
we investigated the potential mechanism of glycyrrhizic acid (the active component of
licorice) for corticosterone-induced stress injury in cells. Our results show that the in vitro
findings correlate with the vivo results. It showed that chronic exposure of H19-7 cells to
corticosterone markedly decreased the gene expressions of 5-HTT (Figure 4a) and BDNF
(Figure 4b). Interestingly, glycyrrhizic acid significantly reversed these expressions in a
dose-dependent manner.
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Figure 4. Effects of glycyrrhizic acid (GA) on 5-HTT and BDNF expressions in the corticosterone-
treated H19-7 cells. H19-7 cells were incubated under normal differentiating conditions in the
presence or absence of corticosterone (Cort) at concentration of 1 µM for five days. Then, cells were
respectively incubated with glycyrrhizic acid at 1 µM, 3 µM, or 10 µM for 24 h. (a) The mRNA
levels of 5-HTT; (b) the mRNA levels of BDNF. Data are expressed as mean ± SE (n = 8). * p < 0.05
compared to the cells without treatment of corticosterone (control). # p < 0.05 compared with the
vehicle-treated group.
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3. Discussion

UCMS rats exhibited a significantly increased immobility time in the FST, decreased lo-
comotor activity in OFT, and reduced sucrose intake in the SPT, as described previously [19].
In the present study, we demonstrated that chronic administration of GMDZ ameliorated
depression-like behaviors in UCMS rats. Moreover, depletion of 5-HT by PCPA failed to
block the antidepressant action of GMDZ, indicating that the action mechanisms of GMDZ
varied from fluoxetine which is one of SSRI. Otherwise, we found that GMDZ may promote
the BDNF signaling pathway and enhance 5-HTT expression in the hippocampus in the
depressive rats.

Serotonin (5-HT) released from the axon terminalis is selectively taken up from the
synaptic cleft into these terminals via the 5-HTT [2]. The decrease of 5-HTT expressions is
associated with stress-induced anxiety and depression-like behaviors [20]. It demonstrates
an interaction between 5-HT and BDNF [21]. The loss of BDNF appears to exacerbate
neurochemical and behavioral abnormalities in 5-HTT mutant mice [22]. BDNF modulated
the 5-HTT gene promoter to influence the function of 5-HTT [23]. Our results are consistent
with previous findings that 5-HTT-gene and protein expressions were suppressed in PCPA
rats [16]. Administration of GMDZ reversed the expression level of 5-HTT compared
with the vehicle-treated UCMS group. Additionally, chronic GMDZ administration the
stress-induced reversed the decrease of BDNF level [24] in the hippocampus. Therefore,
GMDZ may play an important role in the 5-HTT and BDNF regulation. GMDZ promoted
the increase of 5-HTT and BDNF expressions, which may contribute to the antidepressant
effect [7].

The effects of GMDZ may include improved cerebral microcirculatory regulation,
mood stabilization, and the alleviation of impatience, as noted in a previous report [15]. As
the herbal mixture of GMDZ seems highly complex, the present study aimed to understand
the main plant that played a major role in the therapeutic effects of GMDZ. Using the
deletion of one plant from the original mixture in GMDZ, three products (G and M, G
and DZ, and M and DZ) were administrated to PCPA-treated rats, respectively. This
showed that G and M and G and DZ treatments, but not M and DZ treatment, produced
significant antidepressant-like effects in the PCPA-induced model, same as the effects of
GMDZ. Additionally, G and M or G and DZ administration also reversed the decreased
5-HTT and BDNF levels in depression. As the antidepressant-like effect in the G and M and
G and DZ treatments seemed more significant than that in the M and DZ treatment group,
licorice (G) might play a major role in the effectiveness of GMDZ. It has been documented
that licorice induces an antidepressant-like effect in animals [25,26]. GanCao (licorice)
contains triterpenoid glycosides and flavonoid glycosides. Glycyrrhizin or glycyrrhizic
acid as the active ingredient in licorice has been extensively studied [27]. Glycyrrhizic acid
has been reported to show anti-inflammatory and anti-nociceptive activities in mice [28].
The present study found that glycyrrhizic acid increases the 5-HTT and BDNF expressions,
both were reduced in H19-7 cells treated with corticosterone [23]. Therefore, glycyrrhizic
acid as one of the active principles in GanCao (licorice) seems to have participated in the
alleviation of depressive disorders in animals. However, the real action mechanism(s) shall
be clarified in the future.

According to the traditional TCM theory, the blighted wheat seems to have a predomi-
nant function in GMDZ. It seems possible that the active constituent from blighted wheat
is through the conversion of gut microbiota in animals. Stress leads to anxiety/depression
by altering the gut microbiota, and it is possible to improve anxiety and depression by
probiotics modulation [29]. The blighted wheat seems beneficial for the protection of
exhaustive physical exercise, oxidative stress injury on brain tissues [30]. However, it
needs more investigations for the blighted wheat in the future. Otherwise, Dazao contains
various triterpenoids (e.g., betulinic acid and oleanolic acid) and glycosides [31]. But it
seems only plays a supporting role in the regulation of depression. However, the systemic
administration of betulinic acid and the oral administration of oleanolic acid show analgesic
effects on acetic acid-induced writhing in the animal model [32,33].
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4. Materials and Methods
4.1. Preparation of Extracts of the GMDZ Decoction

GMDZ is mainly prepared from three dried raw plants: licorice (Glycyrrhiza uralensis
fisch, GanCao, G), blighted wheat (Triticum aestivum L, FuMai, M), and jujuba (Ziziphus
jujuba Mill, DaZao, DZ). In the present study, the used GMDZ was a commercial product
purchased from Sun Ten Pharmaceutical Co., Ltd. (Taipei, Taiwan). The specification of the
GMDZ preparation is as follows: Glycyrrhiza uralensis (root and rhizome): 18.75%; Triticum
aestivum (fruit): 62.50%; Ziziphus jujuba (fruit): 18.75%. After extraction in distilled water
(ratio 1:10), the product of GMDZ was similar to that in a previous report [34]. To identify
the major plant in GMDZ, the commercial product of each plant in GMDZ was also
purchased. Then, we used the single deletion method to mimic the original prescription
and new mixtures in three, such as GanCao + FuMai (G and M), FuMai + DaZao (M and
DZ), GanCao + DaZao (G and DZ), were obtained. Each product has the same ratio as that
in GMDZ decoction. The amount of each deleted plant was replaced by the starch to reach
the same amount of GMDZ. Then, the treated doses were expressed as the dried weight of
each product per bodyweight of the animals (g/kg body weight).

4.2. Experimental Animals

Male Sprague-Dawley rats (250–300 g) obtained from National Animal Center (Taipei,
Taiwan) were maintained in the animal center of Chi-Mei Medical Center (Tainan, Taiwan).
In brief, they were housed in pairs on a 12/12-hr light/dark cycle (light beginning at
7:00 am)) with ad libitum access to food and water except during behavioral tests. The
project was approved by the Institutional Animal Care and Use Committee of Chi-Mei
Medical Center (No. 105122622). All the animal procedures were performed according
to the Guide for the Care and Use of Laboratory Animals published by the US National
Institutes of Health (NIH Publication No. 85-23, revised 1996).

4.3. Experimental Design

To investigate the antidepressant-like effect of GMDZ, rats were randomly divided into
four groups (eight rats in each group): control group, UCMS model group, UCMS + fluoxetine
group, and UCMS + GMDZ group. Additionally, to find the major herb, rats induced by
PCPA were also used as PCPA + fluoxetine group, PCPA + GMDZ group, PCPA + G and M
group, PCPA + M and DZ group, and PCPA + G and DZ group.

PCPA (Sigma, St. Louis, MO, USA), a specific inhibitor of serotonin (5-HT) biosynthe-
sis, was administered (100 mg/kg) once a day for seven days, as described previously [35].
PCPA has shown a high degree of 5-HT depletion (>90%) yielded by similar treatment [36].
On the seventh day, changes in 5-HTT expression in the hippocampus were confirmed
by Western blots. Two days after the model induced by PCPA, rats were administered
with GMDZ (2.5 g/kg) [34], G and M mixture (2.5 g/kg), M and D mixture (2.5 g/kg),
G and D mixture (2.5 g/kg) and fluoxetine (10 mg/kg) once daily by oral gavage for a
three-week period.

4.4. UCMS Procedure

According to the previous report [37], the UCMS-induced depressive animal model
was induced. Experimental rats (n = 8 per group) were exposed to unpredictable mild
stressors randomly every day in four weeks. The stressors applied included the following:
physical restraint (1h), 1 min tail pinch (2.5 cm from the end of the tail), reversed light/dark
cycle (24 h), overnight illumination (12 h), soiled cage (12 h), and cage tilt (18 h, 45◦). Each
stressor was randomly assigned two or three times over the experimental period. The
non-stressed control rats were normally housed in groups (three to four per cage) in the
other room, and the stressed rats were singly housed [37]. At least 12 h of rest was provided
between a stressor and a test to avoid effects of acute stress [38].
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After the first week, the animals were administered with GMDZ (2.5 g/kg) or fluoxe-
tine (10 mg/kg) by oral gavage once a day for three weeks. The dosage was applied accord-
ing to a previous study [34]. Behavioral tests were performed 2 h after the last treatment.

4.5. Behavioral Tests

The sequence of the behavioral test was SPT, OPT, and FST. There was a three-day
time interval between these tests.

SPT: To evaluate the anhedonia response [39], rats were exposed to two identical
bottles (one containing tap water and the other 1% sucrose solution) for 1 h, followed by
12 h of tap water and food deprivation [40]. The bottles were weighed before and after the
1 h test period; the sucrose preference (%) was then determined. Animals were habituated
three days to the two-bottle choice (both bottles were filled with tap water and placed
through the top of the cage lid) before the test.

OPT: To measure locomotion and anxious behaviors, rats were placed in an open
field area made of a 70 × 70 × 40 cm wooden box and equipped with an infrared floor to
measure locomotor activity [41]. The arena was subdivided into a central and a peripheral
zone. Rats were placed in the open field boxes for 5 min under normal light conditions, and
the locomotor activity and time stay in central was tracked with a video system (Viewpoint,
Lyon, France). Individual animals were gently placed in the same corner of the apparatus
in all trials.

FST: To assess learned-helplessness, rats were gently placed in a clear plastic cylinder
(height = 40 cm; diameter = 30 cm) filled with water to 30 cm high at 24 ◦C ± 0.5 ◦C for
6 min [42]. Immobility time was calculated by subtracting active time from the total time.
The behavior experiments were recorded using a side-mounted camera and assessed using
a video tracking software.

4.6. Tissue Preparation

Rats were sacrificed 24 h after the behavior experiments. The treatments continued
during these days. Rats were euthanized by intraperitoneal injection (IP) of a lethal dose of
pentobarbital. The brain was quickly removed and immediately frozen in liquid nitrogen
for further analysis.

4.7. Cell Cultures

Rat-derived hippocampus H19-7 cell line cells (CRL-2526; American Type Culture Col-
lection, Manassas, VA, USA) were maintained at 37 ◦C and 5% CO2 in Dulbecco’s modified
Eagle’s medium (DMEM; HyClone, South Logan, UT, USA) with 4 mM l-glutamine that
was adjusted with sodium bicarbonate (1.5 g/L), glucose (4.5 g/L), G418 (200 µg/mL), and
puromycin (1 µg/mL) and supplemented with 10% fetal bovine serum [43]. Cells (1 × 106)
were plated on 60-mm culture dishes, and at 80% confluence. H19-7 cells were incubated
with or without the rat stress hormone, corticosterone, at the concentration of 1 µM, in
differentiating medium for five days, as described previously [44]. Then, glycyrrhizic acid
at various concentrations was pretreated with the corticosterone-incubated H19-7 cells for
24 h. Finally, the H19-7 cells were collected for assay as described below.

4.8. Western Blotting Analysis

The protein concentration of the total protein lysates was determined using the BCA
protein assay kit (Pierce Biotechnology, Rockford, IL, USA). The protein lysates (30 µg)
were separated by electrophoresis and transferred to a polyvinylidene difluoride mem-
brane (Millipore, Billerica, MA, USA). After blocking and washings, the following primary
antibodies were incubated at 4 ◦C overnight: anti-BDNF (1:1000; Abcam, Cambridge, UK),
anti-5-HTT (1:1000; Millipore, Billerica, MA, USA), anti-β-actin (1:5000, Sigma-Aldrich,
St. Louis, MO, USA). The protein bands were visualized using the enhanced chemilumi-
nescence kit (PerkinElmer, Boston, MA, USA). The quantification was determined using
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software (Gel-Pro Analyzer version 4.0 software (Media Cybernetics Inc., Silver Spring,
MD, USA).

4.9. Real-Time Reverse Transcription-Polymerase Chain Reaction

According to our previous method [45], the mRNA expression levels of each signal
were determined. In brief, total RNA was extracted from the cell lysates with TRIzol reagent
(Carlsbad, CA, USA). Total RNA (200 ng) was reverse-transcribed into cDNA with random
hexamer primers (Roche Diagnostics, Mannheim, Germany). All PCR experiments were
performed using a LightCycler (Roche Diagnostics GmbH, Mannheim, Germany). The
concentration of each PCR product was calculated relative to a corresponding standard
curve. The relative gene expression was subsequently indicated as the ratio of the target
gene level to that of β-actin. The primers for BDNF, 5-HTT and β-actin are listed as follows:

BDNF F: 5′-GCAGTCAAGTGCCTTTGGAG-3′;
BDNF R: 5′-CGGCATCCAGGTAATTTTTG -3′;
5-HTT F: 5′-CATCAGCCCTCTGTTTCTCC -3′;
5-HTT R: 5′-CGGACGACATCCCTATGC -3′;
β-actin F: 5′-CTAAGGCCAACCGTGAAAAG-3′;
β-actin R: 5′-GCCTGGATGGCTACGTACA-3′.

4.10. Statistical Analysis

Data are presented as the mean ± standard errors (SE). Statistical analysis was con-
ducted by using SPSS Version 21. Comparisons between groups were performed using the
one-way analysis of variance (ANOVA) with Bonferroni’s posthoc method. The p values of
less than 0.05 were considered statistically significant.

5. Conclusions

The present study demonstrated that GMDZ ameliorated depression-like behaviors
in rats. GMDZ regulated the 5-HTT and BDNF expression in the depression model. In
addition, GanCao (licorice) played a crucial function in GMDZ decoction for antidepression.
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