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Abstract: This current investigation was designed to synthesize Ag nanoparticles (AgNPs) using both
the fresh (Fbf) and boiled (Bbf) Korean mountain vegetable fern (named Gosari) extracts and make a
comparative evaluation of its multi-therapeutic potentials. The screening of phytochemicals in the
fern extract was undertaken. The synthesized fern-mediated silver nanoparticles are characterized
and investigated for their bio-potential like α-glucosidase inhibition, antioxidant, and cytotoxicity
prospects. The obtained AgNPs were characterized by the UV-Vis Spectra, SEM, EDS, XRD, FTIR,
DLS, Zeta potential analysis, etc. The synthesis of the Fbf-AgNPs was very fast and started within
1 h of the reaction whereas the synthesis of the Bbf-AgNPs synthesis was slow and it started around
18 h of incubation. The UV-Vis spectra displayed the absorption maxima of 424 nm for Fbf-AgNPs
and in the case of Bbf-AgNPs, it was shown at 436 nm. The current research results demonstrated
that both Fbf-AgNPs and Bbf-AgNPs displayed a strong α-glucosidase inhibition effect with more
than 96% effect at 1 µg/mL concentration, but the Bbf-AgNPs displayed a slightly higher effect with
IC50 value slightly lower than the Fbf-AgNPs. Both Fbf-AgNPs and Bbf-AgNPs displayed good
antioxidant effects concerning the in vitro antioxidant assays. In the case of the cytotoxicity potential
assay also, among both the investigated Fbf-AgNPs and Bbf-AgNPs nanoparticles, the Bbf-AgNPs
showed stronger effects with lower IC50 value as compared to the Fbf-AgNPs. In conclusion, both
the fern-mediated AgNPs displayed promising multi-therapeutic potential and could be beneficial
in the cosmetics and pharmaceutical sectors. Though the synthesis process is rapid in Fbf-AgNPs,
but it is concluded from the results of all the tested bio-potential assays, Bbf-AgNPs is slightly better
than Fbf-AgNPs.

Keywords: comparative; biological potential; fern; gosari; silver nanoparticles; antioxidant;
α-glucosidase inhibition; cytotoxicity

1. Introduction

Nanotechnology has emerged as an important tool, which involves the synthesis or
fabrication of large molecules (particles) in nanoscale sizes, called nanoparticles. Due to
their numerous properties, such as their reactivity, physical properties (size in nanometer
ranges), and their possible applications in disease diagnostics, and drug delivery, also in
antimicrobial and antioxidant studies, the use of metal nanoparticles is beneficial [1]. It
has become a central part of modern diagnostic and management technologies [2]. Owing
to their unique physicochemical properties, silver nanoparticles (AgNPs) are among the
most attractive nanomaterials in biomedicine. It is well-known for its biological activities,
like promoting bone healing, repairing wounds, and enhancing the immunogenicity of
vaccines broad-spectrum. It is highly useful in medical applications [3]. The bio-fabricated
silver nanoparticles can be more reliable and helpful in disease diagnosis and prevention.
In recent times, a number of applications of silver ions have been reported to be used in
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the management of food hygiene, water purification, and dental work for bacterial growth
including catheter disinfection, etc. [4].

The synthesis of metal nanoparticles is mainly accomplished by the reduction of
the metal salts in a mixture solution or accumulation of the atoms [5]. For nanoparticle
synthesis, three different approaches are followed namely, physical, chemical, and bio-
logical approaches. However, there are associated harmful effects such as more energy
consumption and toxic waste materials by using both the physical and chemical methods
of synthesis. Therefore it is preferred to use the biogenic methods of nanoparticle synthesis
(green synthesis) that are environmentally friendly, cost-effective, and above all, a one-step
method [5–7]. In recent times, there is an increasing interest among scientists in using plants
in the biosynthesis of nanoparticles due to their high bioactive potential, easy synthesis
process, and nonpathogenicity [5,7]. It is reported that a crude plant extract contains plenty
of phenolic compounds, flavonoids, alkaloids, etc., which can play a substantial part in the
biosynthesis, covering, and equilibrium of the nanoparticles [8,9]. Considering this, the use
of plant materials in the biosynthesis of silver nanoparticles could be an ideal option in the
current investigation.

Ferns or mountain vegetables are the major divisions of the pteridophytes. Ferns have
been reported to be rich in essential omega-6 and omega-3 fatty acids and antioxidant
compounds [10,11]. The P. aquilinum contains amino acids, lignin, pectin, glucose, fructose,
sucrose, ribose, caffeic acid, citric acid, aconite acid, minerals, vitamins like vitamin A,
vitamin C, vitamin E, and B-Carotene, etc. [12]. The fern extracts were reported to have
antimicrobial, antioxidant, antiviral, anti-inflammatory, and antiviral effects [13,14]. Con-
cerning the pteridophytes-mediated green synthesis of AgNPs, only very few reports are
available to date, so this much needs to be explored [15–18]. There is one report on the
synthesis of Ag nanoparticles from the P. aquilinum leaf extract and its mosquitocidal and
anti-plasmodial activity [19]. However, presumably, there is no report on the synthesis of
silver nanoparticles (AgNPs) from both fresh and boiled P. aquilinum and no comparison of
their biological activities to date. Therefore, in the current research, an effort has been made
to synthesize the silver nanoparticles (AgNPs) using phytochemically rich fresh and boiled
extracts of the mountain vegetable (fern) and investigate and compare their α-glucosidase
inhibition, antioxidant, and cytotoxicity activities.

2. Results and Discussion
2.1. Biosynthesis and Characterization of Fbf and Bbf-AgNPs

Silver metals have high surface plasmon resonance (SPR), which is important in
nanoparticle synthesis. There is an increasing demand for green synthesis of nanoparticles
using biocompatible sources as it is safe, non-toxic, and economical [20]. Additionally, there
is information on the toxic effect of biosynthesized AgNPs [21], so it is necessary to ensure
a safety survey in depth that, bio-synthesized nanoparticles for a human being are out of
side effects.

Application of plants and their extracts for the green biosynthesis of nanoparticles
offers a wide-ranging benefit over different synthesis techniques as it is cost-effective,
environmentally friendly, and can offer large-scale manufacture of nanoparticles. Silver
nanoparticles’ green synthesis, using plant extracts holding phytochemicals or bioactive
compounds has received considerable attention, as the Ag nanoparticles have various
medicinal and other applications [22]. Biosynthesis of Fbf-AgNPs and Bbf-AgNPs was
attained in this research, by using fresh and boiled mountain vegetables or P. aquilinum fern
aqueous extracts. In the beginning, to identify the presence of phytochemicals or bioactive
compounds, the phytochemical analysis of the fresh and boiled extracts of Fbf and Bbf was
carried out. In both Fbf and Bbf extracts, phytochemicals like flavonoids, saponins, and
carbohydrates are found to be commonly present. Whereas some other phytochemicals
were also found which were not common in both extracts (Table 1).
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Table 1. Preliminary phytochemical screening of Fbf and Bbf aqueous extracts.

Name of Phytochemicals Fbf Aqueous Extract Bbf Aqueous Extract

Tannin + -
Flavonoids + +
Terpenoids - +
Saponins + +
Steroids + -

Carbohydrates + +
Cardiac steroidal glycoside - +

+ = detected; and - = not detected.

In terms of the change of pigment of the test solution from colorless to brown color,
biosynthesis of both Fbf and Bbf-AgNPs was proven by visual assessment (Figure 1A) [23].
After visual confirmation of the test solution of Fbf, and Bbf-AgNPs, it was analyzed under
a UV-Vis spectrophotometer. The absorbance value was constantly monitored at regular
intervals up to 18 h. The SPR value of the Fbf-AgNPs was found to as 424 nm whereas
the SPR value of the Bbf-AgNPs was found to as 436 nm (Figure 1B), which also confirms
the biosynthesis of both Fbf-AgNPs and Bbf-AgNPs. This result corroborates with the
previously published nanoparticle synthesis results [24]. A change in the SPR of Bbf-AgNPs
prepared with the Bbf extract was observed compared to that of the Fbf-AgNPs prepared
with the Fbf extract might be due to the blue shift due to the decrease in the refractive
index of the dielectric environment surrounding the synthesized nanoparticles [25,26].
The basic morphology, characteristics, and elemental composition of both the Fbf-AgNPs
and Bbf-AgNPs were estimated by SEM and EDX assessment. The SEM study results of
both biosynthesized Fbf-AgNPs, and Bbf-AgNPs were based on nanometer-scale imaging
(Figure 2A). Similar results were also mentioned in earlier reports [27,28]. The biosynthe-
sized Fbf-AgNPs and Bbf-AgNPs elemental arrangement was known by the EDS analysis,
and it showed the presence of nanoparticles (Ag). The EDS results of the Fbf-AgNPs and
Bbf-AgNPs identified the presence of the element (Ag) (Figure 2B). The present results are
analogous to previous research reports [29].

The XRD showed the physical structure and nature of the generated nanoparticles.
From the XRD peaks, it was clear that the Fbf-AgNPs and Bbf-AgNPs were crystalline.
The peak values were equivalent to the Ag0 standard JCPDS card no. 04-0783(fccp.) [29]
(Figure 3). In the case of Fbf-AgNPs, the diffraction peaks were visible at 38.06, 46.18,
64.51, and 76.95 which are equivalent to (111), (200), (220), and (311) as per the JCPDS card
no. 04-0783 (Figure 3A). However, in the case of Bbf-AgNPs, the diffraction peaks were
detected at 38.01, 46.02, 64.64, and 76.88 which were also equivalent to (111), (200), (220),
and (311), detailed and presented in Figure 3. Apart from the specified peaks, few other
peaks were observed in both cases, which might be due to the phytochemicals or bioactive
compounds prevailing in the Fbf and Bbf extracts that might have acted as both reducing
and capping agents during biosynthesis of Fbf-AgNPs and Bbf-AgNPs [30–33]. Similar
results on the XRD peaks of the biosynthesized silver nanoparticles are also presented in
the previously published literature [20,29,34].

By FTIR analysis, the main functional groups present in the Fbf-AgNPs, Bbf-AgNPs,
and the Fbf and Bbf extracts were identified. The shift of peak values observed in the
synthesized AgNPs suggests their active contribution to the fabrication of Ag nanoparticles.
FTIR results displayed different stretching modes with different peak standards (Figure 4A).
The Fbf extract peak standards were observable at 3307.38, 2124.22, 1641.58, 1102.37, and
693.26 cm−1. These numbers were possibly shifted to 3304.44, 2112.91, 1632.19, 1072.21, and
693.26 cm−1, respectively, in the case of Fbf-AgNPs, whereas in the case of Bbf extract, the
peak value that was visible at 3349.68, 1637.81, 1417.22, and 683.83 cm−1 probably shifted
to 3340.26, 1637.81, 1059.01, and 695.14 cm−1, correspondingly, in Bbf-AgNPs (Figure 4B).

For Fbf-AgNPs, the peak at 3304.44 cm−1 states the O-H bond, and H-bonding stretch-
ing, which comes under functional groups, alcohols, and phenols [35]. The next peak at
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2112.91 cm−1 postulates the presence of the C≡N bond, of nitrile groups. The 3rd peak
at 1632.19 cm−1 postulates the N-H bonds of the primary amine functional group. The
4th resultant peak value at 1072.21 cm−1 stipulates the C-N stretch bond of the aliphatic
amines functional groups. The last resultant peak at 693.26 cm−1 signifies the -C≡C-H:
C-H bend bond of alkynes functional groups.
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For Bbf-AgNPs, the peak values at 3340.26 cm−1 designate the N-H stretch bond of
1◦, 2◦ amines, and amides functional group. The second peak at 1637.81 cm−1 specifies,
the presence of the C=O stretch bond of α, β-unsaturated aldehydes, and ketones. The 3rd
peak at 1059.01 cm−1 specifies the presence of the C-O stretch of alcohols, carboxylic acids,
esters, and ethers groups. The last peak at 695.14 cm−1 states the presence of a strong =C-H
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bend bond of the alkenes group [35]. The change in the observed peak value of the Fbf
extract and Fbf-AgNPs, Bbf extract, and Bbf-AgNPs could be responsible for the stability
and outer coating of both the generated nanoparticles [29]. The analogous consequence has
been stated in the previous investigation [36].

The Fbf-AgNPs and Bbf-AgNPs hydrodynamic diameter or distribution of size and
surface charges were evaluated through DLS and Zeta potential study. The hydrodynamic
diameter or size distribution (average size) of Fbf-AgNPs and Bbf-AgNPs is 91.09 d.nm
and 122.9 d.nm, respectively, with the PDI value of 0.233 mV and 0.301 mV (Figure 5). This
confirms that both the synthesized nanoparticles are in the nanometer range. Similar results
were stated in previously published research articles [37]. The zeta potential of Fbf-AgNPs,
and Bbf-AgNPs was highly negative, i.e., −31.1 and −26.3, respectively (Figure 5). The
highly negative charge supports the long time stability of the synthesized AgNPs [38,39]. It
also confirmed the colloidal nature of both the synthesized nanoparticles [40]. This result is
similar to earlier published articles [41–43].
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2.2. Comparative Study of the Bio-Potential Effect of Fbf-AgNPs and Bbf-AgNPs
2.2.1. α-Glucosidase Inhibition Potential of Fbf-AgNPs and Bbf-AgNPs

The obtained Fbf-AgNPs and Bbf-AgNPs were investigated for their α-glucosidase
inhibition potential. Both AgNPs showed a significant α-glucosidase inhibition effect. At
two different tested concentrations of 0.5 µg/mL and 1.0 µg/mL, the Bbf-AgNPs showed
a slightly higher α-glucosidase inhibition effect than the Fbf-AgNPs (Figure 6). In the
case of 0.5 µg/mL concentration, the Fbf-AgNPs displayed (5.97%) inhibition, whereas the
Bbf-AgNPs displayed slightly higher (6.5%) inhibition at the same concentration. At the
highest tested concentration (1.0 µg/mL), both the generated AgNPs displayed maximum
inhibition with values of more than 90%. The Fbf-AgNPs displayed 96.71% inhibition
(at 1.0 µg/mL concentration) whereas the Bbf-AgNPs displayed 96.80% inhibition (at
1.0 µg/mL concentration). The calculated IC50 value of Bbf-AgNPs and Fbf-AgNPs was
determined as 1.44 µg/mL and 1.56 µg/mL, respectively, which indicates that the Bbf-
AgNPs have a slightly higher α-glucosidase inhibition effect than that of the Fbf-AgNPs
(Table 2). Both synthesized AgNPs displayed better α-glucosidase inhibition potential
at lower concentrations than earlier reported biosynthesized nanoparticles [18,44]. It is
believed that the phytochemicals present in the Fbf and Bbf extracts that performed as
the reducing agent in the biosynthesis of the nanoparticles, could have also acted as the
capping agents and might have been present in the surface of the nanoparticles that are
responsible for its strong α-glucosidase inhibition potential. A similar assumption is also
provided in the previously published literature [45,46].

Table 2. IC50 values of, Fbf-AgNPs and Bbf-AgNPs in the antioxidant, α-glucosidase inhibition, and
cytotoxicity studies.

Parameters IC50 Value (µg/mL)
Fbf-AgNPs

IC50 Value (µg/mL)
Bbf-AgNPs

α-glucosidase inhibition 1.56 1.44
Cytotoxicity 26.96 17.35

DPPH scavenging 72.59 82.56
ABTS scavenging 332.40 206.68

Reducing power (* IC0.5 value) * 231.07 * 292.66
* is IC0.5.
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2.2.2. Cytotoxicity Study of Fbf-AgNPs and Bbf-AgNPs

Nano-biotechnology is an energetic scope of science that exhibits possible application
in cancer therapy, molecular imaging, molecular diagnosis, targeted chemotherapy, etc. [47].
The significance of ferns has been established previously and the medicinal usage such
as anticancer, antidiabetic, and antioxidant potentials, etc. of several Pteridophytes was
already reported [48]. As cancer claims millions of individual lives yearly, the develop-
ment of therapeutics from natural or biological sources for treating cancer is increasing
significantly [49]. In controlling cancer-related conditions, nano-medications have been
acknowledged to be extremely effective [50,51]. In this investigation, the biosynthesized
Fbf, and Bbf-AgNPs exhibited significant cytotoxicity potential. Both Fbf-AgNPs and Bbf-
AgNPs displayed dose-dependent cytotoxicity activity. The cytotoxicity effect of the silver
nanoparticles might be affected by many things such as shape, size, and configuration of
nanoparticles. The change in the above things may change the cytotoxicity effect [52,53].
For biomedical uses biosynthesized NPs are desired which are eco-friendly and toxic-
free [54]. In this research, in the cell viability study as the concentration of the tested AgNPs
decreased, it was detected that the HepG2 live cells increased, and the cell death decreased
(Figure 7). The morphology of HepG2 cancer cell lines treated with different concentrations
of Fbf-AgNPs and Bbf-AgNPs was observed under an inverted light microscope. Both syn-
thesized AgNPs showed effective cytotoxicity potential. The Fbf-AgNPs and Bbf-AgNPs
at 100 µg/mL were significantly toxic to the treated HepG2 cancer cell lines. The alive
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cell lines percentage escalates when the concentration of both the treated Fbf-AgNPs and
Bbf-AgNPs was reduced (Figure 7). The cytotoxicity potential showed slightly higher in
the case of Bbf-AgNPs in comparison with Fbf-AgNPs at maximum (100 µg/mL) tested
concentration as the viability or live HepG2 cancer cells percentage was lower (17%) in the
case of Bbf-AgNPs, whereas it was slightly higher (45%) in case of Fbf-AgNPs (Figure 7).
Additionally, the IC50 value of Bbf-AgNPs was lower which showed that the Bbf-AgNPs
have slightly higher effectiveness than Fbf-AgNPs (Table 2). The cytotoxicity potential of
both the obtained AgNPs was higher or parallel with earlier reported results [53,55]. It
was also reported earlier that the electrostatic pull amid nanoparticles and the cells might
be important for the existing cytotoxicity of the Ag nanoparticles against the cancerous
cells [56]. The phytochemicals present in the Fbf and Bbf extracts, which are capped on the
nanoparticle surface, could have been responsible for their strong cytotoxicity potentials.
These results corroborate previously published results, which reported that nanoparticles
have broad-spectrum anticancer effect [57].
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2.2.3. Antioxidant Study of Fbf-AgNPs and Bbf-AgNPs

Further, both the Fbf-AgNPs, and Bbf-AgNPs were investigated for their antioxidant
effects such as reducing power, scavenging of the DPPH (1,1-diphenyl-2-picrylhydrazyl),
and ABTS ([2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)]) free radicals at altered
concentrations (25, 50, and 100 µg/mL), and the effects are presented in Figure 8. The
study results displayed concentration dependency that increases with the upsurge in the
concentration of the treated Fbf-AgNPs, and Bbf-AgNPs. In the reducing study, the Fbf-
AgNPs showed a slightly higher effect than Bbf-AgNPs at 100 µg/mL concentration. In
the case of the DPPH assay, the Fbf-AgNPs also showed a slightly higher scavenging
percentage than the Bbf-AgNPs at 100 µg/mL concentration. However, in the ABTS assay,
the Bbf-AgNPs showed a slightly higher scavenging percentage than the Fbf-AgNPs at
100 µg/mL concentration) Figure 8. Overall, both the Fbf-AgNPs and Bbf-AgNPs showed
moderate antioxidant scavenging potential. However, Fbf-AgNPs showed a slightly higher
effect than that of the Bbf-AgNPs in reducing power and DPPH assays. Both the Fbf-AgNPs
and Bbf-AgNPs displayed moderate antioxidant potentials which are comparable to the
earlier reported results [44,58]. The IC50 or the IC0.5 values of the three antioxidant assays
are presented in (Table 2). For reducing power assay, the IC0.5 value is 231.07 µg/mL for
Fbf-AgNPs, and 292.66 µg/mL for Bbf-AgNPs, and BHT (Butylated hydroxytoluene) the
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IC0.5 value was 103.82 µg/mL. In the case of the DPPH assay, the IC50 values of Fbf-AgNPs
and Bbf-AgNPs were 72.59 µg/mL and 82.56 µg/mL, respectively, and for BHT, it was
34.46 µg/mL. In the case of the ABTS assay, the IC50 values of Fbf-AgNPs and Bbf-AgNPs
were 332.40 µg/mL and 206.68 µg/mL, respectively, and for BHT, it was 40.24 µg/mL
(Table 2). Further, the correlation curves between the different antioxidant parameters
of both the Fbf-AgNPs and Bbf-AgNPs are plotted against each other (Figure 9). The
results showed a more significant positive trend between the antioxidant parameters of
Bbf-AgNPs as compared to that of Fbf-AgNPs with the r2 value of 0.950 between the
DPPH and ABTS assay. It is conferred that the Bbf-AgNPs might possess more antioxidant
potential and protection against the reactive oxygen species [59]. The bioactive compounds
or phytochemicals like flavonoids, phenolics, and other active components present in the
Fbf and Bbf extracts that played a momentous role in the outer covering and steadiness
of the synthesized nanoparticles could also have significantly participated in the existing
antioxidant potential of both nanoparticles [57,60]. Besides, the antioxidant potential of
both the Fbf-AgNPs and Bbf-AgNPs could mainly be accredited to the redox potential of
the phenolic compounds present in the Fbf and Bbf extracts that were used as the reducing
agent in the biosynthesis of the nanoparticles [61]. The acquired results could prove the
hypothesis that the capping of Fbf and Bbf extracts on the surface of the nanoparticles
might have enhanced their antioxidant properties.
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3. Materials and Methods
3.1. Plant Materials and Preparation of Extracts

The fresh and boiled mountain vegetables or P. aquilinum fern, i.e., termed Fbf and Bbf,
respectively, were obtained from the local market. The commercial boiled fern was prepared
by completely drying the fresh fern followed by soaking them in room temperature water
for 12 h, then boiling for 5 min, and then the fern is packaged and sold to markets.

For preparing the plant extracts, both these samples after collecting were, rinsed
properly, dried using tissue paper, and cut into tiny pieces. About 50 g of each sample were
transferred to two separate glass flasks (1 Lt) with 250 mL double distilled water, boiled for
approximately 30 min with continuous stirring, cooled down and sieved, and the liquid
sample was stored in an airtight container for use.
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3.2. Primary Phytochemical Study of Fbf and Bbf Extracts

The primary phytochemical study of the Fbf and Bbf extracts was done to investigate
the occurrence of a variety of bioactive compounds or phytochemicals such as carbohy-
drates, tannin, terpenoids, flavonoids, saponins, steroids, and cardiac steroidal glycoside,
etc. Earlier standard conventional procedures were followed with slight modifications to
carry out the experiments. For the flavonoids test: 1 mL of both Fbf and Bbf extracts in two
separate test tubes were taken and to them, and 1 mL of diluted NaOH was added. The
appearance of gloomy precipitation confirms the presence of the flavonoid [62]. In the case
of the carbohydrate test: two test tubes were taken with 2 mL of extract from each. Next,
Molisch’s reagent (5% 1-naphthol in alcohol, 2 drops) was added and mixed by shaking.
Around 1 mL of the concentrated H2SO4 was added slowly in the test tubes towards its
side wall. The formation of a red-violet or purple ring at the middle junction of both the
liquid layers stipulates the presence of carbohydrates [63].

For the Tannin test: 5 mL of the filtered extracts of both Fbf and Bbf were taken in two
separate test tubes and a few drops of FeCl3 (0.1%) were added to them. The appearance
of brownish-green or bluish-black color indicates the existence of tannin. In the case of
the terpenoids test: the extracts of Fbf and Bbf (5 mL) were taken in two test tubes and
2 mL of chloroform was mixed with them followed by the addition of concentrated sulfuric
acid (3 mL). The appearance of a reddish brown color interface confirmed the presence of
terpenoids [64]. For the saponins test, the 2 g sample of both Fbf and Bbf were boiled in
20 mL of double distilled water using a hot water bath and were then filtered. Next, 5 mL
of the filtrated sample was mixed with 2.5 mL of double distilled water and vigorously
shaken for a steady persistent froth. On the froth, a few drops of olive oil was added, again
shaken vigorously, and then the development of emulsion which confirmed the existence
of saponins was witnessed [65]. The steroid test was carried out by following the standard
protocol with slight alteration [63]. Both Fbf and Bbf extract (1 mL each) were added in
two test tubes, and to them, around 2 mL each of acetic anhydride and sulfuric acid were
carefully poured one after the other and observed for color change. The appearance of
violet-blue or green color indicates the existence of steroids. The cardiac steroidal glycoside
test was done by following the protocol of [66] with slight variation. A solution of 4 mL
of glacial acetic acid with a drop of 2%Fecl3 was mixed with 10 mL each of Fbf and Bbf
sample extract and concentrated H2SO4 (1 mL). A brown ring formed in the middle of the
layers confirmed the presence of cardiac steroidal glycosides.

3.3. Biosynthesis of Fbf and Bbf Extracts-Mediated AgNPs

The biosynthesis of Fbf-AgNPs and Bbf-AgNPs was attained by using the fresh and
boiled mountain vegetable P. aquilinum fern as the only reducing agent in the reaction, by
following the standard protocols [67,68] with slight variation. In brief, in two separate
250 mL conical flasks, AgNO3 (1 mM, 80 mL) and Fbf and Bbf extracts (20 mL each) were
mixed separately and slowly with continuous stirring. The synthesis of Fbf-AgNPs and
Bbf-AgNPs was examined by observing the variation in the coloration of the mixture.
The reaction was allowed to continue till 24 h. After that, the synthesized Fbf-AgNPs
and Bbf-AgNPs were collected and centrifuged for 30 min (at 12,000 rpm), followed by
3–4 times washing with distilled water in order to remove any unbound Fbf and Bbf
extracts. The collected palate was dried at 40 ◦C and stored in airtight containers until
further characterization.

3.4. Characterizations of Bio-Synthesized Fbf-AgNPs and Bbf-AgNPs

The characterization of Fbf-AgNPs and Bbf-AgNPs after synthesis was done by fol-
lowing different standard analytical methods like UV-Vis spectroscopy, SEM, EDS analysis,
XRD analysis, size, FT-IR, and zeta potential study, etc. by following the previously stated
standard protocols [67,69–71]. The Ag+ ion reduction to form Fbf-AgNPs and Bbf-AgNPs
was studied by assessing the reaction solution absorption spectra through a UV-VIS spec-
trophotometer (Thermo Scientific, Waltham, MA, USA). The Fbf-AgNPs and Bbf-AgNPs
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preliminary synthesis were established as a result of UV-VIS spectrophotometric scanning
for 24 h in between 300–700 nm. The nature of synthesized Fbf-AgNPs and Bbf-AgNPs
was described through the XRD analyzer at a setup of CuKα radians at 30 kV and 40 mA at
2θ angle (Panalytical, Almelo, The Netherlands). The powdered samples (Fbf-AgNPs and
Bbf-AgNPs) were uniformly placed on the glass slide sample holder. In the XRD machine,
the sample holder was positioned properly and scrutinized using the inbuilt software.
The synthesized Fbf-AgNPs and Bbf-AgNPs morphology was investigated by the SEM
analyzer (Hitachi S-3000N, Tokyo, Japan). On the sample holder, both of the samples were
evenly spread and sputter coated in a platinum ion coater for 120 sec. Next, the elemental
configuration of Fbf-AgNPs and Bbf-AgNPs was determined by using an EDS analyzer
(EDAX Inc., Mahwah, NJ, USA) linked with the SEM. The Fbf extract, Fbf-AgNPs, Bbf
extract, and Bbf-AgNPs FTIR spectra were evaluated through the FTIR spectrophotome-
ter (ThermoFisher Scientific, Waltham, MA, USA), at 400 to 4000 cm−1 wavelengths for
investigating the existence of the related functional groups contributing the synthesis of
nanoparticles. The samples/2 µL of Fbf extract, Fbf-AgNPs, Bbf extract, and Bbf-AgNPs
were placed one by one separately at the instrument receiver and analyzed through various
modes of vibration in computer software attached to the FTIR instrument. The Fbf-AgNPs
and Bbf-AgNPs dynamic light scattering (size distribution) and zeta potential analysis were
carried out by using a Zetasizer machine (Malvern Zetasizer, Malvern, WR14 1XZ, UK) as
per the standard established protocol of Clogston and Patri [72]. The data were analyzed
using the zetasizer software.

3.5. α-Glucosidase Inhibition Potential of Fbf-AgNPs and Bbf-AgNPs

The α-glucosidase inhibition effect of Fbf-AgNPs and Bbf-AgNPs was assessed by
using the standard methods with slight variation [73,74]. Briefly, 50 µL of the mixture
solution contains Fbf-AgNPs and Bbf-AgNPs (10 µg/mL), sodium phosphate buffer (0.02 M,
pH 6.9) was aliquoted to a 96 well plate successively. To this mixture solution, 50 µL of
α-glucosidase (0.5 U/mL concentration) was mixed. Then, it was kept at room temperature
for 10 min. Next, 50 µL of P-nitrophenyl-glucopyranoside (3 mM concentration), used as
substrate was added to it. The solution was rested for another 20 min at 37 ◦C followed by
the addition of sodium carbonate (50 µL of 0.1 M), and the reaction was stopped. By using a
microplate reader, the optical density (the value) of the reaction solution (test solution) was
measured at 405 nm wavelength. The α-glucosidase inhibition was calculated as mentioned
in the equation.

Percentage e f f ect =

(
Cg − Tg

)
Cg

× 100 (1)

where Cg is the value (control absorbance value) and Tg is the value of (tested sample
absorbance value).

3.6. Antioxidant Effect of Fbf-AgNPs and Bbf-AgNPs

The antioxidant effects of Fbf-AgNPs and Bbf-AgNPs were estimated through the
reducing power assay, DPPH scavenging assay, and ABTS free radical scavenging assays
using standardized methods [75]). In the reducing power assay, the reaction mixture
consists of 50 µL of Fbf-AgNPs, Bbf-AgNPs, and the BHT at three concentrations ranging
between 25–100 µL separately followed by the addition of 50 µL each of phosphate buffer
(0.2 M, pH 6.6), and potassium ferricyanide (1%). The whole solution was mixed properly
and incubated in dark at 50 ◦C for 20 min. Next, 10% trichloroacetic acid (50 µL) was mixed
with the solution to dismiss the progression of the reaction. Next, it was centrifuged for
10 min at 3000 rpm and the supernatant (50 µL) was moved to a 96-well microplate, and
to it, DD water (50 µL) and 0.1% FeCl3 solution (10 µL) were mixed, followed by further
10 min incubation at room temperature. The absorbance value was recorded at 700 nm
wavelength to determine the reducing power.

The DPPH scavenging properties of Fbf-AgNPs, Bbf-AgNPs, and BHT were estimated
using standard procedures. The reagent solution of DPPH (0.1 mM) and Fbf-AgNPs, Bbf-
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AgNPs, and BHT (25, 50, 100 µL) was prepared before starting the test. The reaction was
started by mixing 50 µL each of the DPPH solution and Fbf-AgNPs, Bbf-AgNPs, and BHT
in a microplate. The solution was mixed properly for 30 min under a dark condition with
continuous shaking. After the incubation, the absorbance value of the reaction solution was
estimated at 517 nm using a UV-VIS spectrophotometer. The DPPH scavenging potential
of Fbf-AgNPs, Bbf-AgNPs, and BHT was calculated from Equation (1) and expressed as a
percentage of DPPH scavenging.

For the ABTS radical scavenging action, a typical established method was followed.
In brief, initially, the ABTS stock solutions were prepared by taking ABTS (7.4 mM) and
potassium persulfate (2.6 mM) separately and incubated for 12 h and equally mixed just
before the experiment. A total of 150 µL of the mixture solution contains, Fbf-AgNPs,
Bbf-AgNPs, and BHT (15 µL, at (25, 50, and 100 µg/mL), respectively), and 135 µL of the
ABTS working solution. Next, the reaction solution was kept in the dark for 2 h until the
end of the scavenging response. This was followed by measuring the absorbance value at
750 nm and calculating the ABTS scavenging potential as per Equation (1).

Further, the effective concentration that exhibited 50% activity for all three assays was
calculated as the IC50/IC0.5 values and recorded.

3.7. Preliminary Cytotoxicity Effect Assessment of Fbf-AgNPs and Bbf-AgNPs

The preliminary cytotoxicity effect of both the Fbf-AgNPs and Bbf-AgNPs against
the HepG2 cancerous cell lines was evaluated as per the standard procedure reported
earlier [76]. Before the experiment, both the Fbf-AgNPs and Bbf-AgNPs were dissolved in-
dividually in Dulbecco’s phosphate-buffered saline (Welgene, Gyeongsanbuk-do, Republic
of Korea) (1 mg/mL) and sterilized with 0.22-micron syringe micro filter. Further, differ-
ent dilutions of the NPs were prepared in complete Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with penicillin-streptomycin (1%) and Fetal Bovine Serum (10%)
for the treatment of HepG2 cells. The HepG2 cell line purchased from the KCLB (Korea
Cells Line Bank, Republic of Korea) was cultured in complete DMEM. The cells were main-
tained in a 5% CO2 humidified incubator at 37 ◦C. The well-grown cells were harvested,
trypsinized with Trypsin-EDTA, and 100 µL/well, were seeded into separate microplates
at a density of 5 × 104 cells per well. The viability of the HepG2 cells was counted as
95% as determined by the Trypan Blue exclusion. Cells were incubated in a humidified
incubator at 37 ◦C containing 5% CO2 and 95% air for 24 h. After 24 h incubation, the media
was removed, and the cell was exposed to different concentrations of the Fbf-AgNPs and
Bbf-AgNPs and dispersed in complete DMEM for 24 h at 37 ◦C containing 5% CO2. The cell
cytotoxicity of Fbf-AgNPs and Bbf-AgNPs exposed cells was determined by the EZ-cytox
kit (DoGenBio Co., Ltd., Seoul, South Korea) following the company’s instructions. After
24 h of exposure, the supernatant was replaced with fresh complete media containing 10 µL
of EZ-cytox solution (110 µL) and incubated for around 20 min till visualization of color
changes to yellowish orange. After incubation, the samples (100 µL) were aliquoted in a
new microplate without any disturbance, and absorbance was recorded at 450 nm using a
spectrophotometer. The cell morphology and viability study of Fbf-AgNPs and Bbf-AgNPs
exposed cells was determined by the trypan blue exclusion assay. Similarly, after 24 h of
exposure, the supernatant was removed and the cells were washed quickly with DPBS
(100 µL), followed by the addition of 20 µL of fresh complete DMEM and trypan blue
mixture (1:1) to each well. The cell morphology and viability were observed under the
inverted microscope (DMI6000B, Leica).

3.8. Statistical Analysis

The statistical analysis was done through ANOVA (one way) by following Duncan’s
multiple tests (using SPSS; Software version 27.0 and IBM Crop, Armonk, NY, USA) at a
5% of significance level p < 0.05. Correlation and regression analysis was also carried out
using the SPSS software.
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4. Conclusions

The fern-mediated biosynthesis of silver nanoparticles is natural and economical,
and is synthesized using both fresh and boiled fern extracts. In the synthesis process,
the bioactive compounds existing in the green extracts play a substantial part in the
capping and reduction of the nanoparticle. In the biological assays, individually both the
obtained AgNPs demonstrated considerable α-glucosidase inhibition, antioxidant, and
cytotoxicity potentials. In the α-glucosidase inhibition and cytotoxicity assays, Bbf-AgNPs
displayed slightly higher effectiveness than the Fbf-AgNPs. In antioxidant assays both
Fbf-AgNPs and Bbf-AgNPs displayed moderate effects. From the overall biological results,
it can be said that, for this particular fern species, the boiled fern is slightly better and
more effective than the fresh one. Both the fresh and boiled fern-mediated AgNPs with
potential multitherapeutic effects could serve as a potential candidate for the cosmetics and
pharmaceutical industries after intense safety investigations.
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