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Abstract: There are hundreds of morphologic and morphometric traits available to classify and
identify grapevine (Vitis vinifera L.) genotypes, while statistical evaluation of those has certain
limitations, especially when we have no information about the traits that are discriminative to
a certain sample set. High numbers of investigated characters could cause redundancy, while
reducing those numbers may result in data loss. Grapevine is one of the most important horticultural
crops, with many cultivars in production. The characterization of the genotypes is of undeniably
high importance. In this study, we analyzed a dataset of scientific and historical importance with
125 morphological traits of 97 grapevine cultivars described by Németh in 1966. However, the traits
are not independent in a set of a large number of categorical traits with too few cultivars. Therefore,
the number of traits was first reduced using a simple and effective algorithm to eliminate traits
with redundant information content using the asymmetric measure of association Goodman and
Kruskal’s λ. We reduced the number of traits from 125 to 59 without any information loss. For
the classification, we applied a random forest (RF) method. In this way, 93% of the cultivars were
correctly classified using only four traits of the data set. To our knowledge, only a few studies applied
a trait elimination algorithm similar to ours in ampelography that can be used for other biological
data sets of similar structure. The classification results give a morphological explanation to several
cultivars from the Carpathian Basin, a territory where all three Vitis vinifera L. geographical groups,
occidentalis, orientalis and pontica, are represented. We found that the information-loss-avoiding
data reduction method we applied in our study solved the redundancy-caused interdependencies
and provided a suitable dataset for classifying grapevine genotypes. For example, this method
may successfully be applied in digital image analysis-based traditional morphometric investigations
in ampelography.

Keywords: Vitis vinifera L.; ampelography; numerical morphology; variable selection; random forest

1. Introduction

Grapevine (Vitis vinifera L.) is one of the most widespread horticultural crops. The
domestication of this liana-like plant dates back to 6000 B.C. in the Trans-Caucasus [1].
During the millennia of cultivation, the numbers of genotypes significantly increased,
caused by natural mutation followed by selection and conscious cross-breeding. Today,
there are approximately 10,000 registered cultivars in the world with various purposes
of cultivation, such as wine, table grapes, raisin, and rootstock production [2]. From the
beginning of the 19th century, botanical and viticulture literature aimed to classify a high
number of genotypes according to morphological or phenological traits and geographical
origin [3]. The main objectives of these studies were the identification of the cultivars
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to avoid synonyms that caused confusion in the wine sector and the appellation of the
products. To classify grapevine genotypes, two main methods were applied during the
past 200 years. The artificial classification is based on those morphological traits that could
help the differentiation of the cultivars (berry color, berry shape, leaf lobature), while
natural classification investigates the origin of the cultivars and those morphological and
physiological traits which are possibly influenced by the place of origin for example bunch
and berry size, trichomes (a.k.a. prostrate and erected hairs) and bud fruitfulness. All
natural cultivars can be classified by this system since their phenotypic traits are caused by
evolution and the ecological conditions they originate from.

Detailed taxonomic classification of the cultivated plant dates back to Linnaeus, de
Candolle, and Alefeld. The later author introduced the term ‘variety group,’ which became
convariety as a taxonomic expression. This category refers to the level between the sub-
species and variety [4]. In the natural classification of the Vitis vinifera L. cultivars, this level
has high importance. Negrul [5] classified cultivars according to eco-morphological traits
into three proles (equivalent to the taxonomic level of the convarietas): occidentalis, orientalis
and pontica, according to their putative origin based on the morphological similarities of the
members within each of the groups [6]. According to this system, Németh [7–9] gave the
most detailed classification of the Hungarian grapevine cultivars and applied a four-level
taxonomic system: convarietas, sub-convarietas, provarietas and sub-provarietas. Convarietas
occidentalis consists of Western-European cultivars such as Pinot noir, Chardonnay, Gamay,
etc. Convarietas orientalis includes the Eastern (e.g., Middle-Asian) cultivars such as Chas-
selas, while the group pontica consists of cultivars with their origin of Georgia, Hungary,
Greece, etc. such as Furmint, Gohér, and Ezerjó.

Certain morphological traits such as linear, angular parameters, and weight are de-
scribed as continuous variables, while a number of lobes or seeds in the berry are introduced
as ordinal variables. Part of the ampelographic characteristics is discrete/nominal variables
such as the leaf or berry shape. A special type of variable is the dichotomic variable, which
would have two values: most frequently, the presence or absence of an organ or feature.
Numerical representation of morphological data is frequently applied in ampelography
to provide international standards while blurring the intra-cultivar variability. Ravaz [10]
already applied this methodology when continuous angular leaf morphometric data were
transferred to classes providing categorical variables. Later Galet [11] and Németh [8,9]
provided the ampelometric index for several cultivars, which was also based on categori-
cal variables. Moreover, the descriptor list of the International Organization of Vine and
Wine [12] and IPGRI, UPOV, and OIV [13] also code the different traits on ordinal, nominal,
and dichotomous scales.

Discriminant analysis (DA) is a widely applied statistical method to investigate grape
species, cultivars, or clones where continuous variables are the input. For example,
Preiner et al. [14] showed that certain leaf phyllometric parameters provide high accu-
racy in correctly classifying grapevine cultivars. Later Bodor-Pesti et al. [15] reported
high classification accuracy according to berry morphometric traits using digital image
analysis. However, DA is developed only for continuous variables and does not work
with categorical predictors. Instead, there are some multivariate classification methods
applicable for categorical variables as well as for continuous ones (Classification And
Regression Trees ‘CART’, Random Forest ‘RF,’ Multinomial Logistic Regression ‘MLR,’
Neural Networks ‘NN,’ Boosted Regression Trees ‘BRT’ and Gradient Boosting machines
‘GBM’) that have been successfully applied in cultivar characterization with biochemi-
cal [16], morphological [17–19] or NMR spectroscopy [20]. The random forest method
(RF) is used for identification in biology [21], chemistry [22–25], morphometrics [26], and
environmental studies [27].

With the spread of remote sensing in precision viticulture (PV), machine learning
(ML) methods are frequently applied in big data management and evaluation processes
in the classification of cultivars based on hyperspectral image analysis [28], in yield pre-
diction [29] or molecular genetic investigations [30]. Aside from PV, morphological eval-
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uation and identification of the genotypes can also be successfully performed by ML.
Fuentes et al. [31] showed that ML is a powerful method in leaf morphological investiga-
tions. Later Landa et al. [32] showed the efficiency of ML in carpometric evaluations. Aside
from the 2-dimensional evaluations based on elliptic Fourier analysis, recent 3D recordings
and cross-section outline analysis of the samples proved efficient in discrimination [33,34].

In this study, 125 morphological traits of 97 cultivars reported by Németh [7] were
analyzed to find an appropriate subset of morphological traits that explain the convarietas
classification most successfully. Our objective was dual: (1) finding a trait selection method
for data with a great number of dependent traits of ordinal and nominal types without
information loss that can be step-wisely controlled by the user; (2) finding out how the
selected traits can predict the three convarietas (pontica, occidentalis, and orientalis) into which
the cultivars were classified by Németh, according to their geographical origin.

Previous research aiming at geographical origin and morphological trait-based clas-
sification is scarce in ampelography, while the information-loss-avoiding trait selection
method can be used not only for this special data set but also in similar investigations.

We tested the hypothesis that (1) classification result is more easily interpretable by
the original traits and (2) for this, redundancy reduction is possible to carry out without
variable transformation and loss of information contained by the original data.

2. Results
2.1. Variable Selection of the Morphological Traits on the Examined 97 Cultivars

We evaluated the distribution of the categories of each trait. Among the 125 investi-
gated traits, 52.8% (66 out of the 125) had three categories, and 21.6% had two categories.
The traits with 4, 5, 6, and 7 categories were present in 11.2%, 9.6%, 0.8%, and 1.6%, re-
spectively. The most diverse trait was the ‘density of the leaf blade’s hairs on the lower
side’ with its nine categories. For example, the trait ‘young shoot’s (2–4 cm) color’ has five
categories, but the trait ‘density of the young shoot’s (2–4 cm) hairs’ has only three. The
numbers of categories are shown in section ‘Materials and Methods’, in Table 3 for all traits
of the data set.

We found several relations between and among the morphological traits. Relations
between or among certain determined trait—predictor trait(s) (i.e., one of them is com-
pletely determined by the other(s); λ = 1) are listed in Tables S1–S3. Note that the elicited
traits are not necessarily less important than the others, but in this particular data set,
they turned out to be replaceable by others. Reducing the redundancy of the data set is a
mathematical necessity.

2.2. The Classification

As a second step to select the most important few traits out of the 59 remaining ones
that can effectively discriminate between the three convarietas due to Németh, the RF
method was carried out. The estimated proportion of the correctly classified cultivars
reached 0.93 with three and four predictor traits and 0.94 with five predictor traits. Without
variable selection, just 0.84 of the cultivars would be classified correctly. The best three-
predictor-combination trait set is ‘density of the hairs on the lower side of the leaf,’ ‘width
of the pith of cane internode,’ and ‘compactness of the unripe bunch,’ with 0.93 overall hit
rate (0.96 in the pontica, 0.91 in the occidentalis and 0.86 in the orientalis group). Note that
0.86 represents the highest hit rate in the orientalis group with three predictor traits.

With four and with five predictor traits, the best solutions are represented in Tables 1 and 2.
Notice that all four- and five-predictor-combination trait sets contain the best three-

predictor combination trait set with different completions.

• The most often occurring traits are ‘density of the leaf blade’s hairs on the lower side,’
‘width of cane’s internode’s pith,’ and ‘unripe bunch compactness.’

• The misclassified cultivars were the followings:
• cultivars of the pontica group, classified as occidentalis: Pozsonyi, Szagos kadarka;
• cultivars of the occidentalis group, classified as pontica: Malbec, Mourvèdre, Muscadelle;
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• cultivars of the orientalis group, classified as pontica: Juhfark, Kékoportó.

Table 1. The rate of correct classifications in the test set (overall hit rate) and the subsets pontica,
occidentalis, and orientalis resulted in using four predictors with the random forest method. The best
three-predictor-combination set is in italic.

Predictor Traits
Hit Rate

Overall Pontica Occidentalis Orientalis

density of the hairs on the lower side of the leaf
shoot density of the trunk

width of pith of cane internode
compactness of the unripe bunch 0.93

0.97 0.89 0.87

density of the hairs on the lower side of the leaf
width of pith of cane’s internode
compactness of the unripe bunch

ripening time

0.96 0.89 0.87

goffering of the leaf blade
density of the hairs on the lower side of the leaf

width of pith of cane internode
compactness of the unripe bunch

0.95 0.91 0.87

Table 2. The rate of correct classifications in the test set (overall hit rate) and the subtests pontica,
occidentalis, and orientalis resulted in using five predictors with the random forest method. The best
three-predictor-combination set is in italic.

Predictor Traits
Hit Rate

Overall Pontica Occidentalis Orientalis

density of the hairs on the lower side of the leaf
vitality of the trunk

width of pith of cane internode
compactness of the unripe bunch

length of the ripen bunch

0.94 0.96 0.92 0.83

density of the hairs on the lower side of the leaf
pattern of cane’s internode

width of pith of cane’s internode
compactness of the unripe bunch

pattern of the pedicel of ripen bunch

0.93 0.96 0.90 0.87

3. Materials and Methods
3.1. The Data

In this study, we set out from a numerical phenotypic dataset of about 97 grapevine
cultivars characterized by Németh [7] for 3 to 5 years. The ampelographic description
was carried out according to 125 traits recorded on the cane (woody shoot), young shoot,
shoot, young leaf, adult leaf, inflorescence, bunch, and berry (Table 3). Phenotypes of
each trait were then numerically coded from 1 to 15 according to an ordinal or nominal
scale. The original dataset contained cross-breed cultivars, omitted in our study to evaluate
exclusively natural cultivars, classified into the convarietas: orientalis, occidentalis, and
pontica with 7, 38, and 52 members, respectively. Lower levels of Nemeth’s classification
system (sub-convarietas, provarietas, sub-provarietas) were not examined because of the low
numbers of cultivars in the samples.
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Table 3. The 125 morphological traits of Vitis vinifera L. cultivars, according to Németh [7] involved
in our analysis, where the number of categories is given in brackets.

Organs Traits with the Numbers of Their Categories

Shoot

young shoot (2–4 cm) color (5), density of the hairs (3)
young shoot (15–20 cm) color (4), density of the hairs (4)

shoot tip color (4), density of the hairs (4), goffering of blade (3)
tendril color (3), density of the hairs (2), length (3), branching (2)

young cane color of internode (3), color of node (3), density of the hairs of internode (5), density of the hairs of
node (4), pattern of internode (5), waxiness of internode (3)

Leaf

leaf petiole sinus shape (3), depth (3), petiole sinus base limited by veins (2)
leaf upper lateral sinus shape (3), width (3), shape of base (6)

leaf petiole density of the hairs (9), color (3), pattern (3), cross-section (2), length (3), length compared to leaf
blade (2)

leaf blade

width (3), shape (5), size (3), profile of blade in cross-section (4), goffering of blade (4), color (5),
autumn coloration (6), depth of upper lateral sinuses (6), numbers of lobes (5), numbers of sinuses (5),
shape of main lobe (3), shape of teeth (5), length of teeth compared with their width (5), density of the
hairs of serrations (2), color of veins (4), angle between the veins (3), density of the hairs on the upper
side (6), density of the hairs on the lower side (12), rigidity of structure (3), strength of structure (3),

surface (2), gloss of surface (2)
other angle between the leaf petiole and shoot (3), angle between the leaf petiole and blade (3)
trunk vitality (3), density of shoots (3), attitude of shoots (3), shoot growing (2),

cane internode density of the hairs (5), color (5), pattern (5), waxiness (3), structure of surface (3), length (3), width
according to diameter (3), width according to perimeter (3), cross-section (2), width of pith (3)

cane node color (2)
bud position (3), density of the hairs (4), color (3), shape (3), size (3), covering of the bud (3)

Flower, inflorescence, bunch, berry and seed

inflorescence density of the hairs (2), color (3), branching (2)
flower type (4), shape of pistil (5), size of pistil (3), angle of stamen (3), relative length of stamen (3)

unripe bunch shape (5), compactness (3), density of the hairs on peduncle (2), color of peduncle (3), pattern of
peduncle (2)

unripe berry shape (4), color (5), pattern (3)

ripen bunch
shape (5), compactness (4), length (5), width (3), size (5), structure of peduncle (3), expansion of

peduncle (3), length of peduncle (3), width of peduncle (3), pattern of pedicel (3), shape of pedicel (3),
length of pedicel (3), width of pedicel (3)

ripen berry

ease of detachment from pedicel (2), shape (15), cross-section (3), length (5), width (5), size (5),
color (8), pattern (5), waxiness (2), pulp (4), color of pulp (3), taste (4), color of brush (3), length of

brush (3), thickness of skin (3), structure of skin (3), shape of seed (4), size of seed (3), color of seed (5),
shape of the seed body (3), length of the seed beak (3)

other ripening time (5)

3.2. Interdependencies between the Morphological Traits

The 125 morphological traits showed many interdependencies, typical in data analysis
with many traits and relatively few cases. Data with related variables contain redund-
ant information.

Therefore, we started reducing the rate of redundancy contained by the traits. Di-
mension reduction (DR) methods like principal component analysis (PCA) or discriminant
analysis (DA) are often successfully used for dimension (and interdependency) reduc-
tion preceding genotype classification according to morphology, moreover, morphometric
traits [35], however, they are developed for continuous traits, and it is not easy to interpret
the importance of the individual traits of the final model.

Variable selection (VS) methods keep a subset of the original traits, and they are based
on association or mutual information rate [36]. Note that DR and VS methods result in
some information loss, though at a low level. Moreover, since VS is controlled by a measure
(e.g., association), the user is usually not involved in omitting a trait.
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In what follows, we describe a variable selection method

(1) that preserves all information contained by the original data set while traits are
omitted if one or more other traits completely predict them;

(2) that can be step-wisely controlled by the users and
(3) which can also manage asymmetric association (a trait X predicts Y, but Y cannot

predict X).

We found two traits—tendril’s branching and leaf petiole’s cross section—which were
constant in the whole data set, so they could not have been applied for discrimination
between the groups; we omitted them. Having constant traits was not surprising since
ampelographic descriptions should be suitable for all Vitis species and cultivars. Thus, in
the case of Vitis vinifera L., e.g., the tendril’s branching is constant with two branches, in
contrast to some other Vitis species with tertiary branches.

There were a lot of weaker or stronger dependencies between the 123 traits, suggesting
that the number of traits could be reduced without any information loss.

For computational feasibility, we chose the strategy to omit step-by-step those traits
which were completely predictable by some others. First, those were predictable by a single
trait, then those were predictable by two, and so on, up to four predictors.

To ascertain complete predictability, we used Goodman-Kruskal’s λ [37], which is
a measure of proportional error reduction for categorical variables (in our case: traits).
Lambda (λ) is defined by the formula λ(Y|X) = ε1−ε2

ε1
, where ε1 and ε2 are the error rates of

prediction of the dependent variable Y if we know (ε2) and if we do not know (ε1) the value
of the independent variable X. Lambda (λ) measures the association on a scale from 0 to 1;
λ(Y|X) = 1 means that Y is completely determined by X (i.e., ε2 = 0, so we can predict Y
exactly if we know X) while λ(Y|X) = 0 means that Y is not better predictable even if we
know X (i.e., ε1 = ε2, so we can predict Y with the same error rate if we know or do not
know X). Note that lambda is not symmetric; that is, λ(Y|X) may differ from λ(X|Y). For
independent variables X and Y, λ(Y|X) = λ(X|Y) = 0, but the converse does not hold: if
λ(Y|X) = 0, the variables Y and X are not necessarily independent. It can happen that Y is
not predictable from X but X is predictable from Y (we will show such an example later).

First, we detected the situations when one trait determined another (λ = 1, Table 4). We
found flower type, the shape of the unripe bunch, and the adhesive ability to the pedicel
of berry as the traits which could be omitted because either filaments of the flower or
the length of the flower’s filaments determine flower type, while the diameter of cane
determines the adhesive ability to the pedicel of the berry, and shape of bunch and shape of
unripe bunch determine each other. We chose the ‘shape of bunch’ to keep it in the data set.
As each step of the variable selection can fully be controlled by experts, if the aim of the
study is especially the identification of the variety at an earlier stage during the vegetation,
the shape of an unripe bunch to keep can be another reasonable choice.

Table 4. Traits that are fully determined by another trait together with the direction of determination.

Predictor Traits Determined Traits

cane’s internode’s width according to diameter → ease of detachment from ripen berry’s pedicel
angle of flower’s stamen → flower’s type

relative length of flower’s stamen → flower’s type
ripen bunch’s shape ↔ unripe bunch’s shape

Since Goodman-Kruskal’s λ can handle two variables only, in the case of learning the
relationship of more than two traits, it was necessary to create unified new variables from
two or more original ones such that each level combination of the categorical values of the
traits is represented by a different value of the new one. A new variable Vnew is created from
two predictor traits by combining their category levels e.g. if trait T1 has three category
levels (1, 2, 3) and trait T2 has two category levels (1, 2): Vnew = VT1T2 has 2 × 3 = 6 possible
category levels, as shown in Table 5. Note that from the possible 6 category levels, we
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defined only those that really occurred in the dataset. Then, to examine the predictability
of trait T by the traits T1 and T2, the Goodman-Kruskal’s λ were calculated as λ

(
T
∣∣VT1T2

)
.

Table 5. An example how the values of a new variable Vnew = VT1T2 can be created by combining the
categories of traits T1 with three and trait T2 with 2 levels.

Traits Values of the Traits

T1 1 1 2 2 3 3
T2 1 2 1 2 1 2

VT1T2 1 2 3 4 5 6

If a trait was completely determined by others, it was eliminated from the data set. By
doing this, we reduced the number of traits step by step. We found several trait pairs, the
combination of which perfectly determined another trait of the data set. Since we cannot
give the whole list because of their rather large number, we give an example in Table 6:

Table 6. Two examples when two traits determine another trait perfectly.

Predictor Trait 1 Predictor Trait 2 Determined Trait

density of hairs of shoot tip density of hairs of young shoot → canes density of hairs
taste of berry density of hairs of young shoot → canes density of hairs

→ canes density of hairs

In Table 7, we show an example of how the cane’s density of hairs can be determined
by the density of hairs of the shoot tip and the density of hairs of the young shoot. (Note
that the predicting traits in this example are very important ones discussed later).

Table 7. An example of how two traits can determine another trait perfectly.

Predictor Trait 1 Predictor Trait 2 Determined Trait

If

density of the young shoot’s
(2–4 cm) hairs

and

density of the shoot tip’s
hairs

then

density of the
inflorescence’s hairs

1 1 or 2 1
1 3 or 4 no cases
2 1 no cases
2 2 or 3 or 4 1
3 1 no cases
3 2 1
3 3 or 4 2

Inspecting all the twin cases (a trait determined by two other ones), we realized that
we could eliminate a determined trait only if we do not need that one for predicting another
trait. Finally, we could leave out the following five traits (determined by two other ones)
without any information loss (Table S1).

We continued this process and omitted 19 further traits that were perfectly determined
by a triplet of the remaining traits (Table S2).

In the next round, we managed to leave out the following 36 traits as they were
perfectly determined by four other traits (Table S3).

The process can be continued until the number of traits is sufficiently low for an
effective application of a classification method. We stopped the reduction process after
having eliminated 66 traits.

Note that although some of the relations we found might appear just in this particular
dataset, the reduction was necessary to make the follow-up procedures (e.g., discrimination
power exploration) more effective and reliable. However, in the case of another data set,
the algorithm we used to eliminate the traits with redundant information can be applied
the same way.
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With the remaining 59 traits, we performed a random forest method.

3.3. The Classification Method

For the classification, we applied the random forest (RF) method, using the pack-
ages rpart [38], nnet [39], randomForest [40,41], and caret [42] of the statistical software
R 4.2.1 [43].

Random forest is a generalization of CART (Classification And Regression Trees [44]).
CART is a recursive method; in each step, it finds the variable (in our case: trait) which
splits the set of cases best fitting to the original classification. In this way, it creates branches,
and either branch can be split again in the next step. This method is very effective but has
the weakness that it is hierarchical: if a variable seems important in the first step, it will
remain in the classification even if some other variables could easily take over its role. That
is why we prefer the random forest method.

The random forest method is a machine learning algorithm for classification and
regression [45], i.e., for modeling a classification by predictor variables. As a supervised
machine learning algorithm, it uses a training subset of the original dataset (in our case:
a subset of cultivars) for a preliminary classification to learn and formulates a model
explaining the classification by the predictor variables (traits). As a next step, after the
“training” process, it considers the remaining subset (test subset) of the original dataset
(in our case: a subset of cultivars) to test the model. In contrast to CART producing only
tree output, RF builds hundreds of trees (set to ntree = 500) and summarizes their results
to make the consensus prediction stronger than simple CART models. The RF consensus
decision is based on the classification confirmed by the majority of the trees.

The RF trees are random since, in each step of the algorithm, a random sample from
the whole training dataset is taken with replacement. The dataset that is not used in a
step (approximately 1/3) is called out-of-bag (OOB). A great advantage of RF is that it
is not sensitive to outliers and missing data [46]. Summarizing the predictions of a great
number of random tree outcomes, with an appropriately tuned length of the trees, RF can
avoid or at least considerably reduce overfitting, the typical weakness of other tree-based
methods. Overfitting occurs when the model mirrors the analyzed particular set of data
rather than the true nature of the modeled structure, and therefore, the developed model is
not appropriate to explain another data set; therefore, it is unsuitable for reliable further
conclusions or generalizations. The accuracy of the RF method was evaluated by cross-
validation [47]. The model fitted by a randomly selected part of the cultivars (training
set) was evaluated on the rest of the cultivars (test set). Accuracy of the classification was
defined as the rate of correct classifications in the test set (the so-called hit rate, i.e., the ratio
of the cases when the model prediction of group membership is the same as the original
group membership). By repeating this procedure, a sufficient number of times by randomly
splitting the data set into the training set and test set, a good estimate of the accuracy of
classification can be obtained.

In our case, since the orientalis group has only seven cultivars (out of the 97 ones), the
simple random partitioning into training and test sets would be inappropriate because it
might often happen that the orientalis group would lie even fully within one part (fully
within the training, or fully within the test set). For example, for a split of a training set
of 80 cultivars with a test set of 17 ones, the probability of having all orientalis cultivars
into the same set is 25%, and for a split of 70 + 27 cultivars, it is still as high as 9%. If the
orientalis group is fully in the test set, with no cultivar in the training set, the fitted model
will be unable to explain this group correctly. On the other hand, if it is fully in the training
set, then the result of cross-validation reflects solely on the classification of the other two
groups. Therefore, to provide that each group is represented proportionally in both the
training and test set, we decided to make the random partitioning separately by stratified
sampling [48]. We worked with test sets of size 13, with seven cultivars of the pontica, five
occidentalis, and one orientalis class. So, the smallest group could be represented in the
training set with six cultivars.
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A cross-validation run was carried out with 2000 replications. This means that the hit
rates are estimated from 14,000, 10,000, and 2000 output values for the pontica, occiden-
talis, and orientalis groups, respectively, resulting in acceptable precision (the Standard
Error of the estimate is below 1% for the smallest group and is below 0.5% for both the
larger groups).

Conjecturing that the classification power (i.e., the hit rate) may already be fairly
acceptable with merely three predictor traits, all combinations of three traits were tried.
After that, the best three trait combinations (those with a hit rate greater than 0.8) were
completed with each trait set to get four predictor trait models. Finally, the best four- and
five-trait combinations of models were selected and are reported here.

4. Discussion

The origin of the grapevine and classification of the large numbers of cultivars are
the focus of many studies. According to Andrasovszky [49], Vitis vinifera L. is not a single
species but cultivars belonging to five different species. Hegi [50] assumes that Vitis
vinifera L. has two subspecies as subsp. sylvestris (Gmel.) and subsp. sativa (DC.). The
classification of grapevine cultivars according to their geographic origin dates back to
Odart [51], Andrasovszky [49], Marton [52], and Negrul [5]. The latter author defined
three proles: orientalis, occidentalis, and pontica and classified the cultivars into these. This
later theory was continued by Németh [8], who described the large numbers of Hungarian
cultivars based on numerical systematics and classified them into three convarietas.

Finding discriminative morphological traits and classifying cultivars according to their
geographical origin has not only agro-historical importance but, according to Negrul, it
would improve the success of breeding ([53] and citations therein). Moreover, learning that
the origin of the genotypes could influence the resistance against certain pathogens [54]
would serve the breeding of new cultivars and provide a lower environmental impact on
the cultivation.

Several studies investigated the link between morphological or agro-biological traits.
Averna-Saccá (cit. in: [55]) found a positive correlation between the yield, sugar content,
acidity of the must, and the angles between the veins of the leaf. Bodor-Pesti et al. [15] also
found a positive and significant correlation between seed number and berry size traits.

Correlation among the traits has high importance in molecular linkage maps and
QTL analysis. A former study showed that certain phenological and morphological traits
significantly correlate positively and negatively. Mapping of the population of F1 progenies
obtained from the cross between Italia and Big Perlon revealed a positive correlation
between veraison length and mean seed number and between mean berry weight and
seed weight. While the correlation between mean seed number and dry matter was
negative [56]. Note that the link between certain traits is simply caused by the fact that
those are investigated on the same organ but at different phenological stages, and the trait
is not changing between the two observations. For example, in our study, the shape of the
unripe and ripe bunches was included. They refer to the same trait measured at different
time points and are obviously interrelated. The shape of the bunch (architecture and length
of internodes in the rachis) did not change between the two inspection dates; only its size
increased while phenotyping was carried out by Németh [7].

As demonstrated in several studies, traits are usually interrelated, meaning they are
not independent. It can cause redundancy and difficulties in statistical analysis [57]. The
other problem is that large numbers of traits are usually causing difficulties in investigating
and interpret. For this reason, for example, OIV [12] also reduced the numbers of the traits
in the grapevine descriptor list and highlighted the most important ones that can serve as
identification of the cultivars. Redundancy in the data set makes the statistical analysis very
cumbersome. Predictor traits with nearly the same information content are interchangeable,
resulting in lots of equivalent solutions. Dimension reduction or variable selection can help
to increase the stability of the models. Our variable selection process resulted in lower
misclassification rates between the pontica and occidentalis groups. By the random forest



Plants 2022, 11, 3428 10 of 13

method, subsets of traits were found that classified the cultivars with a success rate of 0.94.
Even the most misclassified group (orientalis) was separable. A success rate of 0.86 in
this group means that, on average, one of the seven cultivars is misclassified. With four
predictor traits, the overall accuracy was the same, but it resulted in a slightly higher hit
rate on the orientalis group. These results partly overlap with Németh [8], who stated that
the trichomes on the shoot tip and the leaf are the main traits defining the membership in
each convarietas. Our statistical evaluation did not verify the importance of the shoot tip,
while further traits of the cane and unripe bunch are valuable in the classification.

Comparisons of the natural classification of different authors sometimes show contra-
dictions. Lőrincz et al. [58] introduced the classification provided by Marton and Negrul
and highlighted the main differences between them. Namely, Marton misclassified several
cultivars, for example, Juhfark, which were misclassified in our study too. These types
of misclassifications could be explained by the fact that cultivars were investigated in
different geographical regions by different authors, and the effect of the terroir would
have a significant effect on the morphological traits as it was examined, for example, in
Somogyi et al. [59]. Vineyard maintenance also has a noticeable effect on the phenotype,
as shown by Intrieri et al. [60]. These reasons could explain why some authors classified
cultivars into different groups based on morphological traits.

Recent morphometric evaluations according to elliptic Fourier description outline
analysis and landmark-based generalized Procrustes analysis of large numbers of grapevine
and wild grape (Vitis sylvestris C.C. Gmel Hegi.) leaf samples showed high intra- and inter-
specific diversity. In their study, Chitwood et al. [61] grouped the investigated grapevine
cultivars with “western,” “central,” and “eastern” indications and found a significant corre-
lation between certain traits with the origin of the accessions, like complex of hirsuteness,
angular traits of the veins, lobing, and serrations. These results underline our findings, as
trichomes of the accessions are important traits in investigating the geographical origin of
grapevine genotypes.

The variable selection method we applied can be useful in general in biological classifi-
cation. In the case of grapevine, the study of other datasets would be promising, especially
those where genetic and morphological data are both available. The introduced result of this
special dataset is particular; however, the dataset is rich in cultivars from the Carpathian
Basin, especially from Hungary, a territory where all the three Vitis vinifera L. geographical
groups, —Negrul’s proles or Vitis vinifera L. convarietas—occidentalis, orientalis and pontica
are represented. Within these geographical groups, further classifications are possible,
as done by Negrul [5] and Németh [7]; however, this approach was not targeted in the
present study.

5. Conclusions

Our study showed that variable selection from categorical ampelographic data based
on Goodman-Kruskal’s λ is a powerful method to avoid high-level interdependencies with
no information loss. Classification of grapevine genotypes according to the geographic
origin based on the reduced dataset resulted in high accuracy. These results underline
the importance of certain morphological traits that show discriminative power in natural
classification. Our results can be inspiring not only for researchers in ampelography but
also for others working on category-type-data-based classification.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11243428/s1, Table S1: Traits that were eliminated because
they were perfectly determined by two other traits. Table S2: Traits that were eliminated because they
were perfectly determined by three other traits. Table S3: Traits that were eliminated because they
were perfectly determined by four other traits.
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