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Abstract: Cold stress breeding that focuses on the improvement of chilling tolerance at the ger-
mination stage is constrained by the complexities of the trait which involves integrated cellular,
biochemical, hormonal and molecular responses. Biological membrane serves as the first line of plant
defense under stress. Membranes receive cold stress signals and transduce them into intracellular
responses. Low temperature stress, in particular, primarily and effectively affects the structure, com-
position and properties of cell membranes, which ultimately disturbs cellular homeostasis. Under
cold stress, maintenance of membrane integrity through the alteration of membrane lipid compo-
sition is of prime importance to cope with the stress. This review describes the critical role of cell
membranes in cold stress responses as well as the physiological and biochemical manifestations of
cold stress in plants. The potential of cell membrane properties as breeding targets in developing
strategies to improve cold germination ability is discussed using cotton (Gossypium hirsutum L.)
as a model.
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1. Introduction

Climate change due to global warming is one of the grand challenges of the
21st century. The unprecedented rate by which the planet is heating up continuously
destabilizes climate towards supercharging weather extremes in the form of heat waves,
drought, large storms and colder and longer winters that heavily impact agriculture. Al-
though global warming tilts the odds in favor of more hot days, plant ecologists predict the
higher risks of chilling injury to crop plants as the occurrence of extremely cold weather
become more common in agricultural regions worldwide [1]. Indeed, there has been an in-
creasing number of reported cases of the devastation caused by unseasonably cold weather
in agricultural production in recent decades. In 2008, for example, the unusually harsh
winter that hit southern, central and eastern China destroyed 6.87 million hectares of wheat
and vegetable crops [2]. In Western Australia, a record-breaking cold spell in 2018 caused
serious frost damage to wheat and barley that were estimated to bring in 14 million tons of
harvest that year [3]. In 2021, a winter storm that hit Texas devastated citrus and vegetable
crops in the state, resulting in at least US$380 million in losses [4].

Several studies have shown that germinating seeds, particularly of tropical crops such
as cotton [5], maize [6], sorghum [7] and rice [8], are highly sensitive to cold stress [9].
Imbibition of cold water induces excessive leakage of solutes, including amino acids and
proteins that are conducive to pathogenic spore germination on seeds [10]. In soybean,
higher leakage of soluble sugars has been reported to enhance the occurrence of damping
off due to Pythium infection [11–13]. Pathogenic infections combined with cold-induced
seed tissue disintegration ultimately lead to poor, slow and non-uniform germination. This
translates to poor crop performance in terms of yield and quality [14]. In maize, delayed
germination and poor emergence have been shown to lower plant density, leading to
uneven stand establishment and reduced yields [1,15–18].
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The complexity of mechanisms and pathways regulating low temperature stress
responses in plants, especially during germination, presents a big challenge in developing
cold-tolerant crop cultivars [18]. With technological advances in biology and biochemistry,
however, several studies have successfully identified cell membranes as the first line of
defense against cold stress [18–20]. Manifestations of cold-induced damages in germinating
seeds including metabolic dysfunction, cell death and embryo abortion have been linked
to perturbations in the structure and function of the cell and organelle membranes. These
alterations in cell membrane properties also serve as stress sensors that trigger calcium
influx and downstream responses to cold [21]. This review summarizes the protective
functions of cellular membranes during the very early stage of germination. Using this
compiled information as a backdrop to the thesis of the paper, we highlight important
features in the chemical structure of the membranes that can potentially be targeted to
improve seed germination under cold stress, using cotton as a model.

2. Role of Cell Membranes in Early Germination

Seed germination is the first developmental phase in the life cycle of higher plants
and is highly determinant of the ecological and economic productivity of crops [22,23]. It
is defined by a specific sequence of events that begins when a dry, mature seed takes in
water and terminates when the radicle protrudes through the seed coat. During the whole
process, the seed continuously takes in water in a characteristic tri-phasic pattern. The
first phase is known as imbibition and is defined by a rapid influx of water into the seed
through the chalazal aperture. The water then passes through the nucellar tissue around
the embryo, then to the radicle tip (Figure 1a) [24]. As the seed hydrates, cellular events that
move the seed from a quiescent to a metabolically active state are initiated. The first critical
consequence of imbibition is the structural re-configuration of the cell membranes [25,26].
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Figure 1. Cross-section of the cotton landrace Hopi seed showing the point of water entry during 
imbibition (a). Illustration of membrane lipids in the lamellar and hexagonal II configuration (b). 
Triphasic pattern of water uptake. The patterns of water uptake at phases I, II and III are indicated 
by the black dashed line. Key cellular and metabolic processes occurring during each phase of water 
uptake are described. Membrane reorganization from the hexagonal II to lamellar configuration oc-
curs at phase 1 of water uptake (c). 
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of hydrophobic chains, thereby lowering phase transition temperature and keeping the 
membrane flexible. In plants, a total of seven FAD genes that differ in their localization 
and function have been identified [33,36]. Although all the FAD genes are membrane-
bound, the first double bond is created by a soluble FAD known as stearoyl-ACP desaturase 
(SAD) which converts stearic acid (18:0) to oleic acid (18:1) in an acyl-carrier protein 
(ACP)-bound form. Among the membrane-bound FAD genes, FAD2 and FAD6 convert 
oleic acid (18:1) to linoleic acid (18:2) and are in the ER and plastids, respectively [37]. The 
creation of a third double bond is a function of FAD3, FAD7 and FAD8 which synthesize 
linolenic acid (18:3) in the endoplasmic reticulum (FAD3) and chloroplasts (FAD7, FAD8). 
The production of palmitoleic acid (16:1) is mediated by the plastid-bound FAD genes, 
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the black dashed line. Key cellular and metabolic processes occurring during each phase of water
uptake are described. Membrane reorganization from the hexagonal II to lamellar configuration
occurs at phase 1 of water uptake (c).
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Membranes serve as a stable barrier between the internal and external environments
of the cell. They are composed primarily of a lipid bilayer that is semi-permeable in
nature. The predominant membrane lipid components of the bilayer, otherwise known
as glycerophospholipids or membrane lipids, have a hydrophilic phosphate head and
two hydrophobic fatty acid chains attached to a glycerol molecule. In dehydrated tissues
such as mature seeds, the hydrophilic head groups orient themselves to surround whatever
water molecules remain in the seed, while the hydrophobic tails are directed away from
the water [9,26,27]. This inverted arrangement of phospholipids in dry, mature seeds is
known as the hexagonal II conformation and is characteristically susceptible to cellular
leakage compared to the bilayer arrangement (Figure 1b). As soon as imbibition begins,
the cell membranes of mature seeds quickly revert to their original, selectively permeable,
bilayer configuration to prevent excessive leaking of solutes outside the cell. When seeds
are sufficiently hydrated to ≥50% of their dry weight, the activity of enzymes necessary
for cell organelle differentiation, breakdown of storage reserves and transport to growing
tissues and de novo mRNA synthesis and translation are upregulated [28]. As the seed
enters a metabolically active state, the net gain in water content becomes negligible. This
defines the second phase of water uptake. The last and third phase of water uptake is
marked by a secondary increase in hydration as the embryonic root protrudes through the
seed coat and aids in water absorption [29] (Figure 1c).

The speed of membrane reorganization depends upon the flexibility of cell membranes
under specific conditions. A highly flexible cell membrane can quickly reorganize from
hexagonal II to lamellar configuration, thus preventing excessive solute leakage. However,
cold conditions tend to induce close packing of membrane lipids, resulting in membrane
rigidification. The ability of membranes to maintain flexibility in response to low tempera-
ture is highly regulated by fatty acid unsaturation content and chain length [30–33]. The
unsaturated fatty acids are generated by enzymes known as fatty acid desaturases (FAD)
that are present in the chloroplastic and endoplasmic reticulum membranes [33]. FAD
genes convert saturated fatty acids to unsaturated fatty acids by creating double bonds
between the carbon molecules. Mechanisms explaining the biochemistry of double bonds
have been described extensively in other studies [34,35]. The highly reactive double bonds,
an important feature of unsaturated fatty acids, prevent the close packing of hydrophobic
chains, thereby lowering phase transition temperature and keeping the membrane flexible.
In plants, a total of seven FAD genes that differ in their localization and function have been
identified [33,36]. Although all the FAD genes are membrane-bound, the first double bond
is created by a soluble FAD known as stearoyl-ACP desaturase (SAD) which converts stearic
acid (18:0) to oleic acid (18:1) in an acyl-carrier protein (ACP)-bound form. Among the
membrane-bound FAD genes, FAD2 and FAD6 convert oleic acid (18:1) to linoleic acid (18:2)
and are in the ER and plastids, respectively [37]. The creation of a third double bond is a
function of FAD3, FAD7 and FAD8 which synthesize linolenic acid (18:3) in the endoplasmic
reticulum (FAD3) and chloroplasts (FAD7, FAD8). The production of palmitoleic acid (16:1)
is mediated by the plastid-bound FAD genes, namely FAD4 and FAD5, which specifically
target palmitic acid (16:0) bound to glycerol (PG) and diacylglycerol head groups, respec-
tively. FAD2-1, a sub-class of FAD2-, has been identified as a seed-specific desaturase that
synthesizes linoleic acid (18:1) in the young seeds and developing buds of plants [38,39].
Cold-induced FAD gene expression has been widely studied in a number of crops such as
maize [40], rice [41] and soybean [42]. In rice, FAD-mediated increases in oil unsaturation
under cold stress significantly decreased oxidative damages caused by reactive oxygen
species during germination [40].

Aside from fatty acid unsaturation and chain length, the type of polar head groups
present in the membrane lipids also affect membrane properties, and thus its germination
ability, under cold stress. Depending on the type of polar head group present, glyc-
erophospholipids can be of six types viz., phosphatidic acid (PA), phosphatidylcholine
(PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol
(PI) and phosphatidylserine (PS). PA and PE have smaller head groups relative to the
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width of their fatty acid chains. The overall ratio of the head to the tail group in these
two glycerophospholipids tends to give them a conical shape (Figure 2). Conversely, all
other glycerophospholipids, namely PC, PS, PG and PI, possess a head group that is similar
in width to their fatty acid chains. This gives these sets of membrane lipids a generally
cylindrical shape. The abundance of cylindrical lipids provides membranes with a stable
lamellar configuration, whereas the conical lipids tend to encourage a negative curvature
of membranes towards a leaky hexagonal II configuration. Under normal conditions,
the relative proportions of different glycerophospholipids are balanced. However, under
cold stress, enzymes such as phospholipases are activated as a signaling response to the
stress. Phospholipases hydrolyze cylindrical glycerophospholipids such as PC, PG and PI
to produce PA. The overproduction of PA tends to give membranes a leaky hexagonal II
configuration. In soybean, phospholipase-mediated PA production has been reported as
the major cause of imbibitional chilling injury. Inhibition of the activity of PLD significantly
improved the germination performance of soybean under cold stress [9].
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Figure 2. Cell membrane configurations as affected by the lipid composition. The relative width
of the polar head group and fatty acid chains determines the shape of glycerophospholipids. Cylin-
drical lipids configure membranes in a bilayer shape, inverted conical in hexagonal I, and conical
glycerophospholipids in hexagonal II. Diagram is adopted from Zhukovsky et al. [43].

Cell membranes play key roles in abiotic stress signaling. Under cold conditions,
enzymes such as phospholipases, kinases and phosphatases are activated to mediate
the production of the lipid-signaling molecule, PA. There are two distinct pathways
to phospholipase-mediated synthesis of PA in seeds. The first involves the hydroly-
sis of the membrane lipids PC, PE, PG and PS by phospholipase D (PLD) to generate
PA [21,44,45]. The second involves the hydrolysis of PI by phospholipase C (PLC) to
generate diacylglycerol (DAG) and inositol triphosphate (IP3). DAGs resulting from PLC-
mediated hydrolysis of PI is phosphorylated by diacylglycerol kinase 2 to produce PA.
Additionally, the non-specific PLC (NPC), an isoform of PLC, targets membrane lipids such
as PC and PE, but not PI, to produce PA. PA and IP3 produced from membrane hydrolysis
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play direct roles in ion homeostasis and hormone signaling, particularly abscisic acid (ABA),
in response to cold stress [21,46]. In Arabidopsis, for example, insertional mutants of the
lysophosphatidic acid acyltransferase gene that catalyzes the conversion of PA to DAG resulted
in PA accumulation and strong hypersensitivity to ABA during germination. These results
provide evidence of the direct role of PA in ABA signaling [47].

Cold-induced increases in the local concentration of PA create ideal docking sites for
enzymes where several proteins get recruited from the cytoplasm to the cell membrane
for membrane-bound functions [48]. In rice, the direct binding of MAP kinase 6 and
sumoylated E3 ligase to the PLDα-generated PA in the membrane has been shown to
enhance chilling tolerance [49]. The PLC/DGK pathway has also been reported to be
activated under cold stress conditions [50].

Given that cell membrane homeostasis is a prerequisite for the normal germination
and physiological functioning of the seed, cell membrane dynamics present a viable target
for the improvement of cold germination ability in crops.

3. Cellular Responses to Cold-Induced Stress in Cell Membranes

Under low temperature stress, membrane lipids transition from a liquid crystalline
phase to a gel phase [25]. Membrane lipids in a gel phase pack tightly together and therefore
have lower lateral mobility. In contrast, membranes in a crystalline phase are fluid due to
the more random orientation and loose packing of the glycerophospholipids. The cold-
induced close packing of membrane lipids during germination has direct implications in
the role of cell membranes in maintaining cellular integrity, molecular transport, cellular
signaling and respiration [1].

Morpho-physiological and biochemical manifestations. Leaching of solutes outside of the
cell is the first measurable effect of cold stress on cell membranes during germination [51].
Perturbations during membrane re-organization cause cellular leakage under normal
conditions. Under cold stress, solute leakage is exacerbated by the reduced flexibility of the
cell membrane that slows down its conformational transition from the hexagonal II to a
lamellar arrangement. The excessive loss of cellular substances including carbohydrates,
amino acids, unsaturated fatty acids and various metabolic compounds compromises the
various biological processes occurring within a seed, resulting in germination failure [52].
Additionally, the seed leachates provide a rich substrate for bacterial and fungal pathogens
that can cause rotting of seeds [53,54].

Membrane rigidification also causes lesions that need to be repaired through the
synthesis and incorporation of new material into the plasma membranes [55,56]. Prolonged
exposure to cold, however, inhibits the synthesis and/or incorporation of new material
into membranes, further exacerbating cellular leakage [56]. In Arabidopsis and bell pep-
per, a significant reduction in membrane lipid fractions of the cell was associated with
severe damage in membrane structure under cold stress [22,57]. A separate study on
Thellungiella salsuginea demonstrated the maintenance of membrane integrity and stability
as a key factor behind the higher tolerance of the species to low-temperature stress [58].

Aside from cellular integrity, the cold-induced reduction in membrane flexibility has
also been shown to affect physiological and biochemical processes within the cell. Recent
studies in Escherichia coli established a close correlation between membrane fluidity and
the normal functioning of the electron transport chain in the mitochondria for cellular
respiration [59]. Ubiquinone is an important mobile component of the electron transport
chain that carries electrons among the enzyme complexes in the mitochondria. Under cold
stress, these enzyme complexes are able to maintain their function but the diffusivity of
ubiquinone is hampered by the reduced fluidity of the mitochondrial membranes [60]. The
decreased diffusion of ubiquinone due to cold stress negatively impacts respiration rates
and several energy-driven germination events.

Lastly, poor development of chloroplast membranes under cold stress have been
shown to impede functions related to carbohydrate generation and lipid biosynthesis in
the elaborate and continuous network of membranes known as thylakoids [51,61].
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Lipid peroxidation through the function of reactive oxygen species. Seed germination, like
many other developmental processes in plants, requires oxygen, which acts as the final
receptor of electrons in the electron transport chain (ETC) reactions in the mitochondria.
The reduction and oxidation reactions in the ETC of mitochondrial membranes create
electrochemical potential, which is required for ATP generation. The final product of these
reactions is reduced oxygen, which reacts with hydrogen ions to generate water molecules.
Limitations in the supply of oxygen during water imbibition cause leakage of electrons
from the ETC. The leaked electrons attack oxygen molecules, resulting in the generation of
reactive oxygen species (ROS) in the form of superoxide (O2

−), hydrogen peroxide (H2O2),
hydroxyl radical (.HO) and singlet oxygen (1O2) [62,63]. Under normal conditions, low
levels of ROS produced during imbibition promote germination. For instance, H2O2 lowers
ABA content and its transport from cotyledons to embryo, resulting in the mobilization
of reserves necessary for germination [64]. In Arabidopsis and tomato, ROS facilitates the
loosening of cell walls that aid in the emergence of the radicle [65]. Exogenous application
of H2O2 has been reported to improve germination in a number of crop species [64].

With cold stress, rigidification of membranes, including that of the mitochondrion,
impedes the diffusivity of the mobile electron carrier, ubiquinone, resulting in the low levels
of this molecule in the ETC [60]. Consequently, it slows down the transport of electrons,
leading to ROS overproduction and cell death in cold exposed seeds. In its defense, the
cell scavenges overproduced ROS and free radicals by activating antioxidant enzymes
such as superoxide dismutase, ascorbate peroxidase, catalase, glutathione peroxidase,
monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase
and glutathione S-transferase. Transgenic tobacco overexpressing a glutathione peroxidase
gene exhibited better metabolic activities relative to the wild types under cold stress [66].
When ROS production goes beyond the scavenging capacity of the antioxidant system,
ROS starts attacking cellular constituents such as nucleic acids, proteins and lipids. Free
radicals such as hydroxyl ions attract hydrogen from polyunsaturated fatty acids of lipids,
resulting in the production of lipid peroxyl radicals and hydroperoxides along with a water
molecule [67]. This process, known as lipid peroxidation, destroys the structure of the cell
membrane, resulting in metabolic dysfunction and accumulation of toxic compounds in
seeds. Malondialdehyde (MDA), the final product of lipid peroxidation, has been widely
used as an indirect measure of cold sensitivity [51,68].

Negative regulation of germination through hormonal signaling. Germination is regulated
by the antagonistic relationship between the plant growth regulators, gibberellic acid (GA)
and abscisic acid (ABA) [69]. The balance of these two phytohormones is controlled by
external stimuli such as cold and light. During imbibition, environmental cues that are
species-specific act in concert to promote germination by decreasing ABA and increasing
GA content [70,71]. Given that GA is a positive regulator and ABA is a negative regulator of
germination, GA:ABA ratio has been reported to increase three- and ten-fold, respectively,
during the early and late phases of germination [28]. This is in accordance with the role
of GA in inducing the production of cell wall-remodeling enzymes during both phases
of germination [69]. Aside from GA and ABA, other major phytohormones are known to
regulate seed germination, including brassinosteroids, ethylene, jasmonic acid and salicylic
acid [72,73].

Cold stress elicits hormonal signaling that is not limited to the action of a single
plant growth regulator but involves different phytohormones acting antagonistically or
synergistically with each other [74]. Studies have demonstrated that cold stress triggers
ABA synthesis [75] and transport [76] in seeds. Under normal conditions, ATP-binding
cassette (ABC) transporters facilitate the transport of ABA from the site of its synthesis
(i.e., endosperm) to the site of its action (i.e., embryo). These transporters are highly
dependent on ATP and the characteristics of the plasma membrane [76].

Cold-induced loss in membrane fluidity upon water imbibition inhibits the activity
of ABC transporters. To control ABA homeostasis under cold stress in Arabidopsis seeds,
HSP70-16 protein, a heat-shock protein induced by salicylic acid under cold conditions,
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interacts with voltage-dependent anion channels (VDAC) to keep them open [76–78].
Open VDAC channels facilitate the efflux of ABA from the endosperm to the embryo,
resulting in the delay in germination [79]. The transported ABA in the embryo triggers the
hydrolysis of membrane lipids such as phosphoinositol, which amplifies cold signaling
in seeds [79]. Similarly, cold stress is also known to trigger the synthesis of ethylene and
jasmonic acid [80,81]. In wheat, jasmonic acid triggers cold germination by suppressing
ABA production [82]. In Arabidopsis, ethylene improves cold germination by inhibiting ABA
signaling [41]. An auxin signaling repressor known as IAA8 acts as a positive regulator
of seed germination in Arabidopsis as it downregulates the ABI3 regulator involved in
ABA signaling [83]. Both cold and ROS are responsible for the accumulation of auxins in
seeds [83].

An overview of the seed responses to cold stress at the germination stage is presented
in Figure 3.
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Figure 3. An overview of the seed responses to cold stress at the germination stage. Center panel
illustrates the process of membrane reorganization from hexagonal II to lamellar configuration during
water imbibition under cold and normal conditions. Cold-induced loss in membrane fluidity impairs
the process of membrane reorganization and generated downstream responses, which has been
explained at the physiological, biochemical and molecular level in the figure.

4. Modifying Cell Membrane Properties towards Enhancing Cold Germination
Ability: A Case Study in Cotton

Because cell membrane integrity and cold stress tolerance are closely associated,
changes in the cell membrane properties must be critical for improving cold tolerance at
the germination stage. The insertion of ‘single-action’ genes involved in complex cellular
pathways tends to stabilize cell membranes towards the improvement of abiotic stress
tolerance in plants. Transgenic potato plants expressing the Lipid Transfer Protein 1 gene
showed enhanced membrane integrity, which reduced electrolyte leakage and improved
chlorophyll content under multiple abiotic stresses [84]. The potential of improving cell
membrane attributes to enhance cold germination ability is discussed in the succeeding
paragraphs, using cotton as a model.
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Cotton is a global commodity that is grown primarily as a major source of natural fiber,
as well as oil and feedstock. It is cultivated in over 60 countries worldwide, occupying
approximately 29.3 million hectares of land [18,85]. Despite the successful introduction
of cotton to a wide range of eco-environments, its tropical/subtropical origin makes it
innately susceptible to cold stress at all stages of its life cycle. Previous studies have shown
that cotton germination is optimum at a temperature range of 28–30 ◦C, whereas juvenile
to adult vegetative growth is best at a temperature range of 21–30 ◦C. Temperatures below
the cardinal minimum of 15 ◦C (which constitutes a physiological equivalent of 0 ◦C for
cotton) impede the overall growth and development of the plant [86,87].

The inherent sensitivity of cotton to cold stress severely restricts the planting window
for the crop, especially in temperate regions where growing seasons are short. To avoid
cold spells that can cause irreversible damage to the plant at the early growth stages,
planting dates are often delayed until the average weekly temperature no longer falls below
15 ◦C. The practice of delaying planting until the weather is warmer ensures an optimum
temperature for seed germination, although it effectively extends the cultivation window
beyond the range of temperature that is not optimum for cotton at later stages of growth
(e.g., boll maturation) [88,89]. Exposure of mature cotton plants to the cooler temperatures
and shorter days of fall can negatively impact fiber yield and quality due to cold-induced
reductions in cell wall thickening and delay in fiber elongation [90]. As an alternative, the
planting season for cotton can be shifted to an earlier date. Early-season planting guarantees
that the crop will mature under warmer temperatures, although it risks subjecting the seeds
to colds snaps that are lower than the cardinal minimum requirement for germination. In
spite of the challenges associated with early-season planting, farmers remain interested in
the practice as a means to exploit residual moisture in the soil from winter precipitation and
to take advantage of the reported benefits of this cultural management on cotton yield [91].
Several studies have shown that early-season planting increases the number of flowers per
plant, boll weight and leaf area index of cotton plants, leading to a 10–15% increase in yield
compared to plants grown at normal dates [92,93].

Considering the potential yield gains from early-season planting, various seed treat-
ments such as hydropriming and application of osmo-protectants have been used to allevi-
ate the negative effects of low-temperature stress on germination. While these strategies
successfully provided seeds with a degree of protection against low-temperature stress
during germination, the additional expenditures associated with the treatments take away
from the overall profitability of planting cotton early in the season. In the long term,
the most economical and efficient strategy to establish the production stability of cotton
planted early will be to develop and cultivate varieties with enhanced tolerance to cold
stress during germination. More importantly, determination of the underlying mechanisms
that confer adaptive cold stress responses to the cotton seed during germination will be
necessary in developing a more precise breeding platform that specifically targets the
improvement of traits associated with cold germination ability. The following sections
provide an overview of cell membrane properties that have been targeted for improvement
as a means to enhance the cold germination ability of cotton seeds.

Engineering fatty acid composition in cotton seeds. Cottonseed oil is highly unsaturated
and is composed of four major fatty acids (FA), including linoleic acid (18:2) (52.89%),
palmitic acid (16:0) (25.39%), oleic acid (18:1) (16.35%) and stearic acid (18:0) (2.33%) [94,95].
FA synthesis in cotton seeds starts one day post-anthesis and ends 60 days post-anthesis.
Between 1 and 30 days post-anthesis is when FA synthesis is most variable [96].

The chloroplasts and the endoplasmic reticulum (ER) are the two major sites of
FA biosynthesis in cotton seeds. In the chloroplast, FAs are produced starting from a
two-carbon compound known as acetyl CoA and elongate into a 16-carbon chain bound to
an acyl carrier protein (C16:0-ACP) with the addition of 2 carbons at a time. C16:0-ACP is
converted to C18:0-ACP by the activity of the KASII enzyme. The C18:0 molecule undergoes
unsaturation by the addition of a first double bond by stearoyl acid desaturase (SAD) to create
C18:1. The three fatty acids, palmitic acid, stearic acid and oleic acid, then move to the ER
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for the formation of polyunsaturated fatty acids such as linoleic acid and linolenic acid via
FAD2 and FAD3, respectively.

FA composition has been a major target of various transgenesis and mutagenesis re-
search directed towards increasing the unsaturation content of cotton oil [97,98]. Chemically
induced cotton mutants with low palmitic but higher linoleic and linolenic acid content
have been shown to be robust germinators even at a critically low temperature stress of
12 ◦C [5]. Physiological assays have shown that the same mutants with higher degrees of
unsaturation were able to maintain normal rates of water uptake and had lower electrolyte
leakage compared to cultivars with lower unsaturation content when germinated at 12 ◦C
(data not shown). In contrast, cotton mutants with higher palmitic acid content but lower
linoleic acid content performed poorly, similar to the conventional cultivars imbibed at the
same temperature.

Similarly, a transgenic cotton line overexpressing the FAD2-4 gene and having higher
linoleic acid exhibited greater seedling vigor under cold stress compared to the wild-type.
In addition, the overexpression line exhibited better overall growth performance in terms of
leaf area, fresh weight and plant height under a low temperature stress of 20/15 ◦C [99,100].

The presence of even one double bond can decrease the melting temperature of fatty
acids from 69.3 ◦C (18:0) to 13.4 ◦C (18:1), ultimately decreasing the cumulative melting
point of seeds [25] and thus phase transition temperatures. By altering the fatty acid
composition of cellular membranes, a number of studies have confirmed the major role of
unsaturation content in maintaining membrane flexibility. The cell membranes with higher
unsaturation content facilitate quicker membrane reorganization during the first phase of
water uptake, thereby avoiding excessive solute leakage, which leads to better germination
performance [5]. Besides the role of fatty acid composition in membrane fluidity, it also
contributes to cold tolerance by altering the function of membrane-bound proteins [101,102].
H+/ATPase activity has been reported to be enhanced by an increase in unsaturation
content under cold stress [103]. H+/ATPase is a multi-functional integral protein which
creates electrochemical gradients and provides energy for other membrane transporters
across the cell membrane. Similarly, unsaturation content of chloroplast phospholipids
such as PG contributes to the proper functioning of D1 protein under cold stress [104].
This protein plays a key role in repairing the stress-induced photoinhibition damage to
photosystem of thylakoid membranes. Chloroplast biogenesis that starts during the second
phase of germination has been reported to be highly regulated by the polyunsaturation
content in thylakoid membranes under cold stress [105].

Modifying the unsaturation content is thus an efficient strategy to maintain membrane
integrity and cellular functioning under cold stress tolerance at the germination stage.

Engineering membrane lipid content and composition in cotton seeds. Membrane lipids may
be in the form of PA, PC, PE, PG, PI and PS. During germination under normal conditions,
imbibing seeds start synthesizing membrane lipids necessary for membrane rearrange-
ment, replacement and repair [27,106–109]. This process is also important for membrane
biogenesis and assembly to support the development of mitochondria and plastids, which
are scarce in dry seeds but are important for energy production and metabolism during
germination [110].

Cold water imbibition in a sensitive cotton cultivar have been determined to impair
the ability of the cell to repair membrane damage caused by the stress (data not shown).
This, combined with the decreased fluidity of cell membranes and extensive production
of ROS, can intensify membrane destruction, resulting in excessive solute leakage and
eventually cell death [26,27,111,112]. The total phospholipid content in a cell has been
used as a direct measure of cold tolerance [113]. Genotypes that can synthesize mem-
brane lipids during imbibition have been reported to have better tolerance to cold stress
during germination.

Aside from lipid content, composition is also a determining factor in cold stress
responses. Cold imbibition activates phospholipase enzymes, which hydrolyze membrane
lipids such as PC, PE, PG, PI and PS to produce PA [21,44,45,114]. Phospholipase-mediated
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PA production has dual functions in signaling and maintenance of membrane structure. As
a signaling molecule, it interacts with effector proteins including kinases and phosphatases
and mediates important physiological processes such as polarized cell growth, osmotic
balance, anti-cell death, ABA activation and chilling sensitivity. In a previous study on
cotton, PLD-mediated PA has been reported to play direct roles in fiber elongation and
development [96]. Under cold stress, increases in PA fractions at the expense of the
structural lipids PC, PG and PI exacerbates solute leakage, leading to poor germination
under cold stress. This might be due to the tendency of different phospholipids to organize
membranes differently. An increase in PA that is accompanied by a decrease in PC, PG and
PI tends to configure membranes in a hexagonal II arrangement. Given the leaky nature
of this membrane configuration, seeds tend to leak solutes in excess, resulting in poor
germination. In cotton, inhibition of phospholipase-mediated PA production under cold
stress reduced cellular leakage and improved germination performance of seeds (data not
shown).

Lastly, the ratio of PC to PE has also been used as an important regulator of cold toler-
ance, with a higher PC:PE ratio providing better cold germination ability [115]. Adjusting
the absolute and relative amounts of membrane lipids is thus an efficient approach to avoid
the cold-induced membrane injuries.

5. Conclusions and Perspectives

Cell membranes have both protective and signaling functions in response to cold
stress. The diversity of cell membrane structure and function is highly determined by the
fatty acid content and composition of lipids that make up the membranes. For instance,
unsaturated fatty acids act as membrane modulators, energy sources, signaling molecules,
enzyme activators and resistant barriers under low-temperature stress. This makes lipid
content and composition a potential target to improve cold germination ability of seeds.

Molecular mechanisms underlying the responses of crops to a range of abiotic stresses
have considerable overlap in terms of signaling pathways. These overlaps provide the basis
for cross-tolerance in plants against stresses like cold, drought and heat. This phenomenon
of cross-tolerance indicates the possibility that increasing fatty acid unsaturation will not
only confer cold germination ability in seeds, but also potentially improve its tolerance to
other environmental challenges. In oilseed crops like cotton, manipulating lipid content
towards increased unsaturation has the additional benefit of improving oil quality derived
from cotton seeds. This, in turn, will contribute to a more sustainable production of cotton,
especially given the agro-climatic challenges in crop production. Additionally, engineering
membrane properties of sub-tropical crops such as cotton has the potential to extend its
cultivation in areas with a longer winter season.
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