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Abstract: Flowering time is an important target for breeders in developing new varieties adapted
to changing conditions. In this work, a new approach is proposed in which the SNP markers
influencing time to flowering in mung bean are selected as important features in a random forest
model. The genotypic and weather data are encoded in artificial image objects, and a model for
flowering time prediction is constructed as a convolutional neural network. The model uses weather
data for only a limited time period of 5 days before and 20 days after planting and is capable of
predicting the time to flowering with high accuracy. The most important factors for model solution
were identified using saliency maps and a Score-CAM method. Our approach can help breeding
programs harness genotypic and phenotypic diversity to more effectively produce varieties with a
desired flowering time.

Keywords: flowering time; mung bean; artificial image objects; climatic factors; GWAS; convolutional
neural network; random forest

1. Introduction

Mung bean (Vigna radiata (L.) Wilczek), also known as green gram) shows a constant
rise in production and a steady increase in importance in Asia and other developing areas.
It is a self-pollinated short-duration crop that has received limited breeding efforts [1].
Mung bean is a valuable source of protein and essential micronutrients, such as folate
and iron. It adds nitrogen to the soil, so it may provide additional income to farmers as a
rotation crop, and it works well as a plant-based protein [2].

The size of the maung bean’s genome is relatively small, and the plant has a short life
cycle. Diverse collections of mung bean have been organized in genebanks worldwide, such
as the World Vegetable Center (Taiwan), the National Bureau of Plant Genetic Resources
(India), the Institute of Crop Germplasm Resources (China), the Plant Genetic Resources
Conservation Unit (USA), the genebank of the Commonwealth Scientific and Industrial
Research Organization (Australia), Plant Genetic Resources Program (Pakistan), and the
N.I. Vavilov All-Russian Institute of Plant Genetic Resources (Russia) [3–5].

The progress in marker-assisted breeding has been limited for mung bean [6] though
several studies have been carried out recently [7] with important agronomic traits [4,7,8].
International studies revealed that time to flowering in mung beans is influenced by
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genetic [9] and environmental factors [10] together with genotype-by-environment (G × E)
interactions [11,12].

The design of genome-wide association studies (GWAS) may become expensive and
cumbersome, particularly in multi-enviromental setups. Thus, GWAS can be complemented
by crop models that account for genotype-by-environment interactions. Machine learning
(ML) methods are an alternative to classical statistical approaches to the analysis of genetic
datasets. Random forest (RF) [13] has become a popular machine learning technique in
recent years. The main idea of solving the problem is to train the model to predict the
flowering time for a given set of single nulceodite polymorphisms (SNPs), then using
various methods to find out which SNPs have the most significant impact on the prediction.
In RF, multiple decision trees are built using offline sampling (bagging), and the method of
random node splitting, the final classification, or regression results are obtained by voting
or averaging. RF fits a model that includes all SNPs and does not require the assumption
of inheritance patterns (e.g., additive, dominant, and recessive), making RF an attractive
approach for complex traits. In recent years, a new area of machine learning research
has focused on interpretability. These new methods can be used to rank genetic markers
based on the strength of association with the phenotype in the model. The Gini index [14]
and SHAP values [15] are widely used for this purpose, together with approaches such as
the Boruta algorithm [16]. The application of these methods to the big datasets may be
computationally expensive.

Various mathematical techniques are used for crop modeling, from linear regression
to artificial neural networks [17]. Artificial image objects (AIOs) are a new concept for
representation of genomic data. The advantages of AIOs are that their convenient straight-
forward visualization, compactness, and the ability to apply a vast number of techniques
developed for image analysis and classification [18]. Particularly, convolutional neural
networks (CNNs) were successfully used for classification of AIOs [19].

AIOs and CNNs possess calculation and visualization of the impacts of different factors
to the final model solution. Recently, increasing attention has been drawn to the internal
mechanisms of convolutional neural networks and the reason why the network makes
specific decisions [20]. Several techniques have been introduced that include perturbation
and backpropagation-based approaches [21], gradient-based algorithms [22], and class
activation maps [20]. A saliency map represents the spatial support of a particular class
in a given image [23]. Gradient-weighted class activation mapping (Grad-CAM) uses the
gradients of any target concept flowing into the final convolutional layer to produce a
coarse localization map highlighting the important regions in the image for predicting
the concept [24]. Score-CAM, unlike previous class-activation-mapping-based approaches,
eliminates the dependence on gradients by obtaining the weight of each activation map
through its forward passing score on target class. The final result is obtained by a linear
combination of weights and activation maps [20].

Developing on our previous studies for chickpea [25–27] and mung bean [28,29], we
propose a new approach in this study that uses AIOs and CNNs to predict the time to
flowering using SNP and climatic factors. The selected techniques include the application
of computationally efficient algorithms for construction and optimization. The developed
approach can help breeding programs harness genotypic and phenotypic diversity to more
effectively produce varieties with a desired flowering time. The main contributions of this
work are:

- The methodology is proposed that combines AIOs and modern ML algorithms,
- Using random forest and three feature importance measures, SNPs are selected that

influence the time to flowering in the available Vigna dataset,
- A model based on AIOs and CNNs is developed for prediction of time to flowering in

the available Vigna dataset using selected SNPs and climatic factors for only 5 days
before and 20 days after planting,

- The impacts of genotypic and climatic factors and their combinations to the model
solution are evaluated using two visual explanation methods.
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2. Related Work

Crop models that utilize the information on molecular markers can be critically impor-
tant tools [30]. Process-based models, such as DSSAT [31], AquaCrop [32], APSIM [33], and
SSM [34] that account for weather conditions have been developed for different species
including mung bean. The validation of obtained results was needed to assist breeding
programs [35].

Machine learning methods have been used to increase the statistical power of GWAS [36],
to detect epistatic interactions, to improve the polygenic risk estimate obtained using
GWAS [37], and to post-process the results of GWAS analysis [38]. Recently, improved
random forest (RF) [13] methods have been proposed and applied to GWAS, such as the
T-Tree method and the ts-RF method [39], which optimize tree node separation rules;
Szymczak (2016) [40] redefined the method for calculating importance scores; in [41], a
hybrid RF algorithm was proposed.

Various methods for interpretation of CNN models have been proposed recently. Class
activation maps provide a visual explanation for a single input [24,42] but are architecture-
sensitive. Grad-CAM [24] and its variations, e.g., Grad-CAM++ [42], generalize CAM to
models without global pooling layers. LayerCAM [43] may generate reliable class activation
maps from a combination of class activation maps from different layers of the CNN.

3. Materials and Methods
3.1. The Overview

The methodology proposed in this work consists of several steps (see Figure 1):

1. Identification of SNP with maximal influence on flowering time using three feature
importance metrics for random forest models,

2. Construction of artificial images for each accession encoding information on the SNP
values and climatic factors for a limited period of time,

3. Building a convolutional neural network for prediction of flowering time,
4. Investigation of the impacts of different factors on the model using two class activation

mapping techniques.

Data set of 6 field experiments

Cross-validation dataset of 
1597 accessions

Test dataset of 178 
accessions

Artificial Image Objects contain 
genotypic and climatic information

Convolutional Neural 
Network

Test CNN on test dataset

Climatic data for field 
experiments from open 
sources for only 5 days 

before and 20 days after 
planting

Selected SNPs

Saliency maps

Impacts of climatic 
factors and SNPs

ScoreCAM

Figure 1. The overview of the research. The datasets, performed numerical experiments, and results
are shown as boxes on the diagram, while the arrows represent the data flow.

These steps are described below.



Plants 2022, 11, 3327 4 of 20

3.2. Plant Material

The mung bean accessions from a WorldVeg collection described in [5] were pheno-
typed during several field experiments:

- 1984: sown on 28/08/1984; harvested on 24/10/1984, geographical coordinates:
N 23◦6′50′′ E 120◦17′55′′;

- 1985: sown on 17/09/1985; harvested on 03/10/1985, geographical coordinates:
N 23◦6′50′′ E 120◦17′55′;

- 2016: sown on 16/06/2016, harvested from 22/08 to mid-September, geographical
coordinates: N 17◦30′28′′ E 78◦16′10′′;

- 2018: sown 21/09/2018 and harvested from 24–28 December 2018, geographical
coordinates: N 23◦6′50′′ E 120◦17′55′′;

- 2018: sown 03/05/2018 and harvested from mid-July, geographical coordinates:
N 45◦18′ E 40◦52′;

- 2019: sown 12/05/2018 and harvested from mid-July, geographical coordinates:
N 46◦14′ E 48◦01′.

Details on the phenotyping experiments, genotyping, and subsequent analysis were
presented in recent manuscripts. Genotype data were obtained using Diversity Arrays
Technology Pty Ltd., Canberra, 353 Australia (DArTseq), and after further processing and
filtering, 7916 SNPs were obtained [44,45].

3.3. SNP Selection

Machine learning methods, such as random forest [13], are an alternative to classical
statistical approaches to the selection of markers associated with the phenotype. The main
idea is to train the model to predict the flowering time for a given set of SNPs, and then
use a Gini index, SHAP values, and the Boruta algorithm to find out which SNPs have the
most significant impact on the prediction.

However, firstly the data are to be corrected for population structure. That is performed
by multi-dimensional scaling (MDS). Next, the RF model is obtained and subjected to
further analysis. To determine which SNPs were important and worthy of further study,
importance scores were plotted, and a second-order inflection point [46] (“elbow method”)
was determined. Predictors with importance values equal to or greater than the value at
that point were identified as important SNPs [47].

3.3.1. Accounting for Population Structure

To account for population structure in the dataset, we applied the method proposed
in [48]. Briefly, given a genotype matrix (1)

X =


x1,1 x1,2 · · · x1,m
x2,1 x2,2 · · · x2,m

...
...

. . .
...

xn,1 xn,2 · · · xn,m

 (1)

where xi,j is the value of j-th SNP for the i-th accession. The similarity matrix S = {si,k} is
calculated using (2)

si,k =
1
m

m

∑
j=1

I(xi,j, xk,j), I(a, b) =
{

1, a = b
0, a 6= b

(2)

Further multi-dimensional scaling (MDS) is used to reduce the number of dimensions.
The matrix H is constructed (3)

H = In − 1
n

Jn(Jn)T , Jn = (1, 1, . . . , 1)T , (3)
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where In is an identity matrix. Due to the symmetry of matrix S, matrix HSH is also
symmetric. Consequently, L largest positive eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL can be found
together with corresponding eigenvectors vp, p = 1, . . . , L that define the directions with a
large genetic variation.

Next, a k-medoids clustering algorithm [49] is applied to group accessions into sepa-
rate clusters. The number of clusters c is determined so that for any c∗ > c the within-cluster
dispersion is not sufficiently better.

Finally, the dataset is adjusted by subtracting the fitted dependence on the vector
group membership [50].

3.3.2. Random Forest

Detailed procedures of RF in a context of genetic association study have been described
previously by [14]. Briefly, let y ∈ Rn and X ∈ Rn×m denote the phenotype vector and
genotype matrix, respectively.

To ‘grow’ a tree, RF begins by creating a bootstrap sample (with replacement) from the
entire dataset. The remaining sample, which contains about one-third of the entire dataset,
is called the ‘out-of-bag’ (OOB) sample [13].

A subset of SNPs, the size of which is the square root of m by default, is randomly
selected at each node. The SNP with the greatest ability to improve the ‘purity’ of the child
nodes is selected to split the node. The process of node splitting continues until the purity
measurements of all terminal nodes cannot be improved. The procedure is repeated for t
times to generate a forest with t trees.

For each tree in a forest, the outcome of each individual in the OOB sample can be
predicted by letting the individual go down the tree.

After the entire forest is grown, an individual’s outcome would be determined as an
average over all trees.

3.3.3. Gini Index

Gini importance (or mean decrease impurity) is computed from the random forest
structure. In the internal node of the individual tree, the selected feature is used to make
decision how to divide the dataset into two separate sets. The features for internal nodes
are selected with some criterion, which for classification tasks can be information gain
and for regression is variance reduction [13]. Adding up the Gini improvement for each
individual variable over all trees in the forest gives a fast variable importance [14].

3.3.4. Boruta Algorithm

The Boruta algorithm [51] was specially developed as a powerful wrapper for the
RF-based feature selection approach. The main principle of the Boruta algorithm is based
on the extension of the attributes by adding random attributes to the dataset which are
called shadow attributes and created by shuffling the original values of each attribute (in
our case SNPs) in the dataset. The enlargement of the attributes results in apposition of
the randomness to the dataset, which leads to the reduction of the bias of hidden (false)
signals arising from random fluctuations or correlations in the dataset. To this end, an
RF classifier is applied to the extended dataset, and those SNPs whose importance is
significantly smaller than that of the shadow attributes are systematically and iteratively
removed. By repeating the process of shadow attributes generation and RF algorithm
application, importance is assigned to all SNPs. As a result, the Boruta algorithm provides
a ranked list of SNPs with a decision of whether the importance of an SNP is confirmed,
rejected, or tentative [16].

3.3.5. SHAP Values

To overcome the drawbacks of model-specific interpretability more generalizable
methods have been invented. One approach is to use Shapley values, which originated in
game theory [15,52]. In Shapley values, each feature of the input data is treated as a player
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in a game where the outcome is the model’s prediction. Shapley values tell us how to fairly
distribute the “payout” among the features [53]. Each player is removed from the dataset,
and the average change in prediction outcome if the player (the data feature) is added to
the game is calculated. The Shapley values are ordered numerically to infer a ranking of
feature importance [54].

3.4. Climate Data

The data on daily values of climatic factors:

1. A day length D,
2. A minimal temperature Tn,
3. A maximal temperature Tx,
4. A precipitation R,
5. A relative humidity H,
6. A solar radiation S,

for field experiments were taken from the NASA Langley Research Center (LaRC) POWER
Project funded through the NASA Earth Science/Applied Science Program [55].

3.5. Artificial Image Objects

Artificial image objects were used to encode information on Vg genotypic and Vc
climatic features for each accession. The information on weather conditions for only 5 days
before and 20 days after planting was used as input to the model. Thus, the number of
climatic features Vc = 25× 6 = 150. The total number of features that equals the number
of pixels in an AIO was Vt = Vg + Vc.

While the dimensions of AIOs may be selected arbitrarily, it was decided to set the
number of rows equal to the number of climatic factors, namely 6, and the number of
columns varied according to the number of selected SNPs K. AIO I(x, y) can be represented
as a matrix (4) with two blocks Ig and Ic for genotypic and climatic data, respectively.

I(x, y) =
[
Ig(x, y) | Ic(x, y)

]

=


ig(1, 1) ig(1, 2) · · · ig(1, K

6 ) ic(1, K
6 + 1) ic(1, K

6 + 2) · · · ic(1, K
6 + 25)

ig(2, 1) ig(2, 2) · · · ig(2, K
6 ) ic(2, K

6 + 1) ic(2, K
6 + 2) · · · ic(2, K

6 + 25)
...

...
...

...
...

...
ig(6, 1) ig(6, 2) · · · ig(6, K

6 ) ic(6, K
6 + 1) ic(6, K

6 + 2) · · · ic(6, K
6 + 25)

 (4)

Each pixel value ig or ic combines three channels, R, G, and B, for three pseudo colors,
red, green and blue, respectively.

The value of climatic factor fc was converted to a pixel value ic(x, K
6 + y) according

to (5).

G =

{
0, fc > 0
1, fc ≤ 0

R = fc div 255, B = fc mod 255, (5)

where x is defined by the number of factors in the enumeration in Section 3.4, and y is the
number of the day starting from the fourth day before planting.

The value fg of SNP with index k was converted to a pixel value ig(x, y) according
to (6).

R =

{
1, fg = 0
0, fg 6= 0

G =

{
1, fg = 1
0, fg 6= 1

B =

{
1, fg = 2
0, fg 6= 2

(6)

where (x− 5)× y = k.

3.6. Convolutional Neural Network

The model for flowering time was built in the form of a convolutional neural network
that takes artificial image objects as input [18,19] and predicts a class that corresponds to
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the time to flowering in days. Since we are working with three-channel color images in this
study, each filter is a collection of three kernels. Each kernel slides along the corresponding
image channel; the result of processing the kernels is combined into one feature map. The
size of the filter kernel of each convolutional layer (Conv2D type) was found by adapting to
the available experimental data. The values of the weights of the convolutional kernels are
the learning parameters of the neural network. Each convolutional layer is followed by a
subsampling layer (max pooling 2D type), the purpose of which is to reduce the dimension
of maps in order to enlarge features. Such filtering helps, among other things, to avoid
overfitting. The formation of a new feature map is based on the max pooling operation,
which is performed by selecting the maximum value from a subsample of a given size. The
number of feature maps in the output remains unchanged. At the last stage, each feature
map is expanded into a vector (flatten type layer); the resulting vectors are concatenated
into a single numerical series, which is fed to the input of a fully connected neural network
(dense type). The task of the network is to determine the probability with which the input
image belongs to each class. The number of neurons in the output layer corresponds to the
number of recognized classes.

In this study, we used the TensorFlow and Keras to optimize the architecture and the
weights of CNN.

The categorical cross-entropy was chosen as the loss function for the convolutional
neural network. The purpose of this cost function is to measure the distance of the output
probabilities Ti from the true values Si (7).

LCE(S, T) = −∑
i=1

Ti log(Si) (7)

The accuracy metric shows the proportion of correctly affixed class labels (8).

a =
TP + TN

TP + TN + FP + FN
(8)

where TP and TN are the number of true positive and negative decisions, respectively, and
FP and FN are false positive and false negative ones, respectively.

3.7. Impacts of Different Factors to the Model Solution

Among the available approaches, two visual explanation methods, namely saliency
map [23] and Score-CAM [20], were used to evaluate the impacts of genotypic and climatic
factors to the model solution.

The saliency map visualizes which pixels of the image contribute the most to the
prediction [23]. Score-CAM was developed as a novel post hoc visual explanation method
based on class activation mapping. Unlike previous approaches, Score-CAM eliminates
the dependence on gradients by obtaining the weight of each activation map through its
forward passing score on target class. The final result is obtained by a linear combination
of weights and activation maps [20].

Both types of maps were computed for each individual AIO, i.e., for each accession,
and averaged over accessions belonging to particular class. Thus, the most important
factors and their combinations can be determined visually by comparing these maps with
the structure of the AIO.

4. Results
4.1. Selected SNPs

The available dataset was corrected to account for population structure using an MDS
algorithm that recovered five subpopulations. The corrected data were used to fit a se-
ries of random forest model hyperparameters, such as “max_depth”, “min_samples_split”,
“n_estimators”, “min_impurity_decrease”, and “max_features” which were optimized by
Bayesian optimization using a Gaussian processes method from the skopt package for Python.
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Feature importances were then computed using a Gini index, SHAP values, and the Boruta
algorithm, and thresholds were selected by a second-order inflection point (“elbow method”).

The application of three methods resulted in different sets of high-ranked features that
intersect to some extent (see Figure 2). Consequently, two sets of SNPs were obtained using
the proposed methodology:

- The cross-SNP set includes 17 SNPs from the intersection of all three results (see
Table 1),

- The union SNP set includes 90 SNPs from pair-wise intersections of three results
(see Zenodo link in Data Availability Statement).

Figure 2. The Venn diagram for the selected SNP. The selection was performed using importance
scores, the Boruta algorithm, and SHAP values.

Table 1. The 17 Selected SNPs that make up the cross-SNP set.

Num Chr Pos Major Minor

0 1 5205070 G A

1 8 41054773 A G

2 1 35363026 C T

3 11 13512065 T C

4 8 14888418 C T

5 1 33528594 A T

6 scaffold 375 174056 T G

7 7 50907346 G A

8 scaffold 209 359166 G A

9 9 1712557 A G

10 6 15592645 T C

11 scaffold 261 18461 A G

12 3 2134396 A G

13 8 41054763 A G

14 scaffold 343 148518 A G

15 scaffold 207 213949 A G

16 8 1049804 A G
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4.2. Model for Time to Flowering

The time to flowering ranges from 25 to 120 days (see Figure 3). The whole set of
accessions was subdivided into 15 classes with maximal time to flowering: 35, 40, 42, 44,
45, 47, 49, 51, 54, 59, 65, 75, 91, 110, and 120. The number of accessions in these classes were:
11, 53, 129, 131, 138, 163, 197, 132, 158, 180, 143, 141, 136, 47, and 16.

The artificial image objects were constructed for all accessions and both the union and
cross-SNP sets. AIOs provide a convenient visualization for the data (see Figures 4 and 5).
The colors of pixels in the AIOs are defined by Equations (5) and (6) for genotypic and
climatic factors, respectively.

Figure 3. Histogram of time to flowering for dataset.

Figure 4. Example AIO for the union SNP set. The data on SNP and climate occupies the left and
right sides of the image, respectively. The size of the image is 6 × 40 px. Here, the image is enlarged;
each colored square corresponds to one pixel. The color of each pixel is obtained by (6) and (5) for
genotypic and climatic factors, respectively.

Figure 5. Example AIO for the cross-SNP set for the same accession as in Figure 4. The data on
SNP and climate occupies the left and right sides of the image, respectively. The size of the image is
6 × 28 px. Here, the image is enlarged; each colored square corresponds to one pixel. The color of
each pixel is obtained by (6) and (5) for genotypic and climatic factors, respectively.
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The CNN was trained to classify artificial images according to measured flowering
time using 1597 accessions for cross-validation and 178 for control (see Figure 1). As a
result of applying the convolution operation on each convolution layer, the pixel values
of the corresponding fragment of the input image are multiplied element by element by
the convolution kernel. The result is summarized and written to a certain position of the
output image, which is called feature maps. Thus, the input image patterns are analyzed
using filters, each of which is responsible for extracting one specific feature.

To achieve the best performance of the model, it is necessary to solve the problem
of optimizing the hyperparameters of the training algorithm. Hypertuning is a time-
consuming process that is often performed manually and is computationally intensive. In
order to effectively solve the problem of tuning the hyperparameters of a convolutional
neural network, such as the number of filters of each layer, the activation function, and the
presence of a batch normalization layer, the Keras Tuner library was used. Keras Tuner is a
deep learning library that is a high-level API in the Python programming language based
on TensorFlow.

When building the hypertuning model, a tuner instance was created that solves the
optimization problem by examining the range of values defined for each of the hyperpa-
rameters in addition to the architecture of the model. All hyperparameters of the model
constructed in this study are discrete. The model builder function iterates over the parame-
ters of the given space and returns the best model that meets the specified quality criteria.

For the union SNP set using the keras_tuner package, the model with 7 layers was
obtained with 28,065 trainable parameters (see Table 2).

Table 2. Model architecture for the union SNP set. The types and names of the layers of constructed
CNN are given in the first column, while the numbers of outgoing connections and the number of
trainable parameters are in the second and the last column, respectively (see details in Section 3.6).

Layer (Type) Output Shape Param Number

conv2d (Conv2D) (6, 40, 10) 280

max_pooling2d
(MaxPooling2D) (3, 20, 10) 0

conv2d_1 (Conv2D) (3, 20, 50) 4550

max_pooling2d_1
(MaxPooling2D) (1, 10, 50) 0

flatten (Flatten) (500) 0

dense (Dense) (45) 22,545

dense_1 (Dense) (15) 690

The model was trained using 10-fold cross-validation and parameters epochs = 100,
and validation_split = 0.2. The difference in prediction errors on the training and validation
data was statistically insignificant according to Mann–Whitney criterion with U = 4609.5
and P = 0.34 and Wilcoxon criterion W = 1232.0 and P = 0.23 (see Figure 6). The best model
was selected that had the maximal accuracy for the validation set. The best model predicts
flowering time for the test dataset with high accuracy (see Figure 7); the median error is
5 days.

For the cross-SNP set using the keras_tuner package, the model with 7 layers was
obtained with 28,065 trainable parameters (see Table 3).
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Figure 6. Histogram of errors in days for training and validation sets for models for the union SNP
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Figure 7. Comparison of measured and predicted flowering time. The data points used for training
are marked with red crosses, and those from the test set are drawn as blue dots. The straight line
represents the exact correspondence. The model accuracy was a = 85%.

The model was trained using 10-fold cross-validation; parameters epochs = 100, and
validation_split = 0.2. The difference in prediction errors on the training and validation
data was statistically insignificant according to Mann–Whitney criterion with U = 5053.0
and P = 0.90 and Wilcoxon criterion W = 2074.0 and P = 0.94 (see Figure 8). The best model
was selected that had the maximal accuracy for the validation set. The best model predicts
flowering time for the test dataset with high accuracy (see Figure 9); the median error is
6.5 days.
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Table 3. Model architecture for the cross-SNP set.The types and names of the layers of the constructed
CNN are given in the first column, while the number of outgoing connections and the number of
trainable parameters are in the second and the last column, respectively (see details in Section 3.6).

Layer (Type) Output Shape Param Number

conv2d (Conv2D) (6, 28, 7) 196

max_pooling2d
(MaxPooling2D) (3, 14, 7) 0

conv2d_1 (Conv2D) (3, 14, 42) 2688

max_pooling2d_1
(MaxPooling2D) (1, 7, 42) 0

flatten (Flatten) (294) 0

dense (Dense) (45) 13,275

dense_1 (Dense) (15) 690

Prediction error, days

F
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cy

training

validation

Figure 8. Histogram of errors in days for training and validation sets for models for the union SNP
set. Mean values are 10.893 and 10.905, respectively.
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Figure 9. Comparison of measured and predicted flowering time. The data points used for training
are marked with red crosses, and those from the test set are drawn as blue dots. The straight line
represents the exact correspondence. The model accuracy is a = 79%.
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4.3. Important Features for Models Based on the Cross-SNP Set

Two types of visual explanation methods, namely saliency map [23] and Score-
CAM [20], were applied to the resulting models in order to determine the most important
genotypic and climatic factors. The saliency maps (see Figures 10 and 11) and Score-CAM
maps (see Figures 12 and 13) were computed for each individual accession and averaged
over accessions belonging to a particular class for the cross-SNP set.

For the models based on the cross-SNP set, the highly activated pixels in the average
saliency maps were distributed rather homogeneously within the figure for a fixed time
class, indicating that both SNPs (three leftmost columns of pixels in the figures) and climatic
factors (all other columns) essentially participate in determining the time to flowering
(Figure 11). Considering how the activation patterns in these average saliency maps change
with the flowering time class, we can see that a higher number of SNPs and climatic factors
are involved for the middle times (43–70 days), and this number is smaller for early and
late times. The actual set of these factors stay approximately the same for all times but vary
their importance levels (pixel brightness in the figure) with time.

A visible distinction between the individual and averaged saliency maps (Figure 11 vs.
Figure 10) indicates that individual accessions may significantly deviate from the average
picture in terms of the number of important features. The individual activation patterns
also demonstrate higher variability across the flowering time classes. On the other hand,
the fact that the average picture contains bright pixel clusters means that the averaging
does not flatten the individual saliency maps, which stems from the fact that the majority
of accessions share the same set of important SNPs and climatic factors.

Average saliency maps highlighted the importance of SNPs: “Vr8, position 41054773”,
“Vr7, position 50907346”, and “Vr8, position 41054763”. Humidity on different days before
and after planting was marked to have high importance for model prediction for all classes.
Minimal temperature was highlighted for classes with mean FT 30, 37, 41, 50, 52, 100, and
115 days, while maximal temperature was a marker for classes with mean FT of 43 and
83 days.

Important feature selection based on the Score-CAM maps predicts a different type of
individual variability between the features. Individual accessions may exhibit a pattern of
important genetic and climatic factors distributed across the time classes with a density
that is visually similar to the case of the saliency maps (Figure 12). However, these patterns
are averaged to almost no activation (Figure 13), which means that different accessions
possess different important factors according to the Score-CAM method.

Mean FT in class: 30.0 Mean FT in class: 37.5 Mean FT in class: 41.0

Mean FT in class: 43.0 Mean FT in class: 44.5 Mean FT in class: 46.0

Mean FT in class: 48.0 Mean FT in class: 50.0 Mean FT in class: 52.5

Mean FT in class: 56.5 Mean FT in class: 62.0 Mean FT in class: 70.0

Mean FT in class: 83.0 Mean FT in class: 100.5 Mean FT in class: 115.5

0.0 0.2 0.4 0.6 0.8 1.0

Figure 10. Example of the saliency map for individual acccessions in each time class and cross-SNP
set. Figure S1 gives the same data with higher magnification.



Plants 2022, 11, 3327 14 of 20

Mean FT in class: 30.0 Mean FT in class: 37.5 Mean FT in class: 41.0

Mean FT in class: 43.0 Mean FT in class: 44.5 Mean FT in class: 46.0

Mean FT in class: 48.0 Mean FT in class: 50.0 Mean FT in class: 52.5

Mean FT in class: 56.5 Mean FT in class: 62.0 Mean FT in class: 70.0

Mean FT in class: 83.0 Mean FT in class: 100.5 Mean FT in class: 115.5

0.0 0.2 0.4 0.6 0.8 1.0

Figure 11. Average saliency maps for time classes and cross-SNP set. Figure S2 gives the same data
with higher magnification.

Mean FT in class: 30.0 Mean FT in class: 37.5 Mean FT in class: 41.0

Mean FT in class: 43.0 Mean FT in class: 44.5 Mean FT in class: 46.0

Mean FT in class: 48.0 Mean FT in class: 50.0 Mean FT in class: 52.5

Mean FT in class: 56.5 Mean FT in class: 62.0 Mean FT in class: 70.0

Mean FT in class: 83.0 Mean FT in class: 100.5 Mean FT in class: 115.5

0.0 0.2 0.4 0.6 0.8 1.0

Figure 12. Example of the Score-CAM map for individual acccessions in each time class and cross-SNP
set. Figure S3 gives the same data with higher magnification.

Mean FT in class: 30.0 Mean FT in class: 37.5 Mean FT in class: 41.0

Mean FT in class: 43.0 Mean FT in class: 44.5 Mean FT in class: 46.0

Mean FT in class: 48.0 Mean FT in class: 50.0 Mean FT in class: 52.5

Mean FT in class: 56.5 Mean FT in class: 62.0 Mean FT in class: 70.0

Mean FT in class: 83.0 Mean FT in class: 100.5 Mean FT in class: 115.5

0.0 0.2 0.4 0.6 0.8 1.0

Figure 13. Average Score-CAM maps for time classes and cross-SNP set. Figure S4 gives the same
data with higher magnification.

4.4. Important Features for Models Based on the Union SNP Set

Both types of visual explanation methods were applied to the resulting models for
the union SNP set. The individual and averaged saliency maps (Figures 14 and 15) and
Score-CAM maps (Figures 16 and 17) were computed similarly to the cross-SNP set.

Average saliency maps highlighted the importance of SNPs “Vr5, pos. 4627938” and
“Vr1, pos.13512065” for classes with mean FT of 30, 43, 48, 50, 52, 56, and 83 days. Among
climatic factors, humidity and precipitation were marked as important for all classes at
some days after planting and also before planting for classes with mean FT of 43 and
50 days. Minimal temperature in the beginning or in the middle of the considered time
interval showed importance for several classes, while the maximal temperature and solar
radiation on days 19 and 29 were important for only some of them.
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Mean FT in class: 30.0 Mean FT in class: 37.5 Mean FT in class: 41.0

Mean FT in class: 43.0 Mean FT in class: 44.5 Mean FT in class: 46.0

Mean FT in class: 48.0 Mean FT in class: 50.0 Mean FT in class: 52.5

Mean FT in class: 56.5 Mean FT in class: 62.0 Mean FT in class: 70.0

Mean FT in class: 83.0 Mean FT in class: 100.5 Mean FT in class: 115.5

0.0 0.2 0.4 0.6 0.8 1.0

Figure 14. Example of the saliency map for individual acccessions in each time class and union SNP
set. Figure S5 gives the same data with higher magnification.

Mean FT in class: 30.0 Mean FT in class: 37.5 Mean FT in class: 41.0

Mean FT in class: 43.0 Mean FT in class: 44.5 Mean FT in class: 46.0

Mean FT in class: 48.0 Mean FT in class: 50.0 Mean FT in class: 52.5

Mean FT in class: 56.5 Mean FT in class: 62.0 Mean FT in class: 70.0

Mean FT in class: 83.0 Mean FT in class: 100.5 Mean FT in class: 115.5

0.0 0.2 0.4 0.6 0.8 1.0

Figure 15. Average saliency maps for time classes and the union SNP set. Figure S6 gives the same
data with higher magnification.

Mean FT in class: 30.0 Mean FT in class: 37.5 Mean FT in class: 41.0

Mean FT in class: 43.0 Mean FT in class: 44.5 Mean FT in class: 46.0

Mean FT in class: 48.0 Mean FT in class: 50.0 Mean FT in class: 52.5

Mean FT in class: 56.5 Mean FT in class: 62.0 Mean FT in class: 70.0

Mean FT in class: 83.0 Mean FT in class: 100.5 Mean FT in class: 115.5

0.0 0.2 0.4 0.6 0.8 1.0

Figure 16. Example of the Score-CAM map for individual acccessions in each time class and union
SNP set. Figure S7 gives the same data with higher magnification.

Mean FT in class: 30.0 Mean FT in class: 37.5 Mean FT in class: 41.0

Mean FT in class: 43.0 Mean FT in class: 44.5 Mean FT in class: 46.0

Mean FT in class: 48.0 Mean FT in class: 50.0 Mean FT in class: 52.5

Mean FT in class: 56.5 Mean FT in class: 62.0 Mean FT in class: 70.0

Mean FT in class: 83.0 Mean FT in class: 100.5 Mean FT in class: 115.5

0.0 0.2 0.4 0.6 0.8 1.0

Figure 17. Average Score-CAM maps for time classes and the union SNP set. Figure S8 gives the
same data with higher magnification.
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Average Score-CAM maps highlighted for all clasess the importance of seven SNPs:
“Vr9, pos.1712557”, “Vr1, pos.33528594”, “Vr8, pos.41054763”, “Vr7, pos.31361558”, and “Vr7,
pos.50907346”. SNPs “Vr7, pos.50907346” and “Vr8, pos.41054763” were also highlighted for the
cross-SNP set. According to this approach, the main climatic factor was maximal temperature
that gained the highest importance on periods from 3 days before to 4 days after planting and
days 15–20 after planting.

As in the case of the cross-SNP set, both individual and averaged saliency maps for
the models based on the union SNP set demonstrate the involvement of both genetic and
climatic factors in predicting time to flowering (Figures 14 and 15). In this case, however,
the brightness of the averaged saliency maps are visibly shifted to climatic factors. This
indicates that, according to the saliency maps, accessions share common climatic factors as
important features but differ significantly in terms of important SNPs.

We observe a reverse tendency when important features are selected via the Score-
CAM maps. The averaged maps highlight SNPs as more important than climatic factors
(Figure 17). All important features change only slightly with the time class. Individual
Score-CAM maps may demonstrate a higher minimal brightness (Figure 16), indicating that
each factor in the model has a nonvanishing input in flowering time prediction. Overall, the
activation patterns on the Score-CAM maps significantly differ from those on the saliency
maps for the models using the union SNP set.

5. Discussion

Mung bean (Vigna radiata (L.) Wilczek) is used in several traditional cuisines across
Asia as a rich source of proteins and micronutrients. It has been an orphan tropical crop for
a long time but could fulfill a role in a range of agroecologies. It fits into crop rotations due
to a short duration cycle. One setting where mung bean fits well is in rotation with winter
wheat, which is often harvested late in spring, leaving only a short summer season for mung
bean; short duration is particularly critical to set seed before cool weather begins in this
role [29]. Development of new varieties adapted to different conditions is necessary to meet
the needs of growing global demand. The adaptation of adaptive traits such as flowering
time to specific environments is blueprinted in genomes [56,57] so that different genotypes
respond to local conditions in different ways. Though the amount of accumulated data
is constantly growing, the understanding of the role of temperature and day length in
adaptation to different agroecological conditions is still incomplete [58].

Here, we proposed a new modeling approach in which the data on genotypic and
climatic factors for each accession were encoded as an artificial image object and used to
train a convolutional neural network that predicted time to flowering. The important SNPs
were identified using random forest and three feature importance techniques. The dataset
consisted of 1775 accessions phenotyped in six different environments. The climatic factors
included daily values of maximal and minimal temperature, precipitation, day length, and
solar radiation.

To illustrate the methodology, two sets of SNPs were used to build the models. The
cross-SNP set consisted of 17 markers identified by all three feature selection methods, and
the union SNP set included 90 markers identified by at least two algorithms. Both CNN
models predicted flowering time with high accuracy in which the median error was 5 and
7 days for the union and cross-SNP sets, respectively. In contrast to previous modeling
attempts [28,29], the presented approach uses only limited information on daily weather,
namely 5 days before and 20 days after planting, that may make it possible to predict the
day of flowering in real life.

The impacts of specific factors to the model solution were analysed by visual explana-
tion methods, namely a saliency map and Score-CAM. The results showed that different
values of time to flowering are determined by different genotypic and climatic factors.

We showed that the saliency and Score-CAM maps can be useful for visual represen-
tation of both genetic and climatic factors that are important features in predicting time
to flower. However, the two feature selection methods may lead to different qualitative
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conclusions depending on the context in which they are used. When the smaller list of
SNPs was used in the model, the two methods demonstrated different types of variation of
important features across individual accessions. For the larger list of SNPs, these methods
assigned different importance to genetic and climatic factors, with climatic factors high-
lighted as more important on the saliency maps and SNPs on the Score-CAM maps. Our
results indicate that multiple methods should be used as a control for any predictions about
which factors are important or not.

The SNPs “Vr8, position 41054773” and “Vr8, position 41054763” are located in exon
Vradi08g19140.1. The gene is associated with “embryo development ending in seed dor-
mancy” biological process according to PLAZA 5.0 [59].

As CNN-based models deal with the features extracted from images, it is important
what part of the AIO is reserved for either genetic or climatic factors. The cross-SNP set
contains SNPs that have a higher potential to be important, but at the same time, this
set occupies less fraction of the AIO and, hence, might be eventually transformed into
feature maps with less information content compared to the fixed set of climatic factors.
The difference in importance that the saliency and Score-CAM maps assign to the two types
of factors in the model can be related to the fact that these methods deal differently with
the fractions of information contained in the AIO. This may indicate that the SNP selection
problem has an additional aspect in the context of using these SNPs in models based on
AIO analysis, as this selection should be additionally considered as a trade-off between the
significance level analysis and the relative size of the visual information that the selected
SNPs represent in the AIO.

6. Conclusions

The proposed methodology is capable of identifying important SNPs and efficiently
encoding genotypic and climatic factors as AIOs. The proposed CNN uses weather data
for only the limited time period of 5 days before and 20 days after planting and is capable
of predicting time to flowering of accessions from a mung bean dataset with high accuracy.
The most important factors that influence the model solution were identified using two
techniques. Future research in the application of artificial image objects and machine
learning methods to identify important SNP markers and construct predictive models of
important agronomic traits will include optimization of the layout of factors in AIOs and
model verification with independent datasets.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants11233327/s1, Figure S1: The saliency map for individual acccessions in each time
class and cross-SNP set, Figure S2: Average saliency maps for time classes and cross-SNP set, Figure
S3: The Score-CAM map for individual acccessions in each time class and cross-SNP set, Figure
S4: Average Score-CAM maps for time classes and cross-SNP set, Figure S5: The saliency map for
individual acccessions in each time class and union SNP set, Figure S6: Average saliency maps for
time classes and union SNP set, Figure S7: The Score-CAM map for individual acccessions in each
time class and union SNP set, Figure S8: Average Score-CAM maps for time classes and union SNP
set.
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