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Abstract: Production of many crops, including onion, under salinity is lagging due to limited infor-
mation on the physiological, biochemical and molecular mechanisms of salt stress tolerance in plants.
Hence, the present study was conducted to identify salt-tolerant onion genotypes based on physiological
and biochemical mechanisms associated with their differential responses. Thirty-six accessions were
evaluated under control and salt stress conditions, and based on growth and bulb yield. Results
revealed that plant height (6.07%), number of leaves per plant (3.07%), bulb diameter (11.38%), bulb
yield per plant (31.24%), and total soluble solids (8.34%) were reduced significantly compared to
control. Based on percent bulb yield reduction, seven varieties were classified as salt tolerant (with
<20% yield reduction), seven as salt-sensitive (with >40% yield reduction) and the remaining as
moderately tolerant (with 20 to 40% yield reduction). Finally, seven salt-tolerant and seven salt-
sensitive accessions were selected for detailed study of their physiological and biochemical traits and
their differential responses under salinity. High relative water content (RWC), membrane stability
index (MSI), proline content (PRO), and better antioxidants such as super oxide dismutase (SOD),
peroxidase (POX), catalase (CAT), and ascorbate peroxidase (APX) were observed in tolerant acces-
sions, viz. POS35, NHRDF Red (L-28), GWO 1, POS36, NHRDF Red-4 (L-744), POS37, and POS38.
Conversely, increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) content, reduced
activity of antioxidants, more membrane injury, and high Na+/K+ ratio were observed in sensitive
accessions, viz. ALR, GJWO 3, Kalyanpur Red Round, NHRDF Red-3 (L-652), Agrifound White, and
NHRDF (L-920). Stepwise regression analysis identified bulb diameter), plant height, APX, stomatal
conductance (gS), POX, CAT, MDA, MSI, and bulb Na+/K+ ratio as predictor traits accounting for
maximum variation in bulb yield under salinity. The identified seven salt-tolerant varieties can be
used in future onion breeding programs for developing tolerant genotypes for salt-prone areas.

Keywords: salinity; oxidative stress; genotypes; accessions; antioxidants

1. Introduction

Onion is second most important vegetable crop after tomato with global production of
104.6 million tonnes from 5.48 million hectare area [1]. Asia accounts for the maximum share
(66.8%) of total onion production in the world, followed by Africa (13.5%), Europe (9.9%),
the Americas (9.6), and Oceania (0.3%) [1]. Maximum bulb onion production (26.74 million
tonnes) in India consists of a 1.43 million hectare area with a productivity of 18.64 t/ha,
which is less than other countries, viz. Republic of Korea (79.6 t/ha), USA, Australia,
Spain, and Japan. In India, onions are grown in a wide range of climatic conditions [2].
Onion is consumed both fresh as well as in the form of processed products, owing to its
nutritional and medicinal properties [3]. Onion contains bioactive compounds (quercetin,
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rutin etc.) and its regular consumption reduces the risk of cancer, heart diseases, diabetes,
and production of reactive oxygen species [4]. Most onions in India are produced during
the post-monsoon season; owing to shallow roots, onions are highly vulnerable to climatic
conditions such as salinity and drought because of inadequate rainfall and low moisture
content [5]. Onion is a salt-sensitive crop and because of its threshold level (1.4 dS m−1), the
per unit increase in EC reduces 18.52% of the tuber yield [6]. The world’s 950 mha area of
land (10%), 300 mha cultivated land (20%), and 230 m ha (50%) irrigated land are distressed
by salt stress. Annually, about a USD 12 billion loss is estimated because of salt stress,
which adversely affects agriculture production. Salinity changes the morpho-physiological,
biochemical, and metabolic processes and affects onion growth and development [7]. Soil
salinity increases the Na+ and Cl− concentration in different plant parts, which ultimately
influences the ionic activity in plant cells [8]. Salt stress-induced oxidative stress leads
to leakage of ions, plasmolysis, membrane damage, disturbed nutrient flux, and ROS
detoxification systems. These alterations adversely affect respiration, photosynthesis,
hormonal balance, antioxidants activity, water use efficiency, transpiration, and plasma
membrane functioning [9]. The adverse effect of salt stress on onion morphology includes
reduced bulb weight, bulb diameter, plant height, leaf number per plant, root growth, and
crop cycle [6,10]. High salinity decreases the production of large bulbs and maximum
decreases were observed at 2.8 dS m−1 [11]. Plants develop different strategies such as
avoidance and tissue tolerance to reduce the negative effects of salt stress. Plants also
produce various compatible solutes such as glycine betaine, proline, and sugars to regulate
osmotic pressure [12]. Likewise, plants produce proteins and antioxidants to counter the
negative effect of reactive oxygen species. Tissue tolerance protects the plant cells by
executing ion compartmentalization in plant tissues [13]. A low Na+/K+ ratio also plays
a significant role in balancing the osmotic pressure and membrane stability [7].

The present study was initiated because there is not much literature on the effect
of salinity stress on Indian short-day onions. To develop a breeding strategy for the
development of salinity stress-tolerant onions, the basic step is to evaluate the onion
accessions and to identify the promising accessions for formulating future strategies.

In view of the scant information on the effect of salinity stress on Indian short-day
onions, present study was initiated with the objective to determine the effect of salinity
stress on growth and development of onions. Keeping in view this objective, we formulated
and tested three research hypothesis, i.e., (i) whether salinity stress negatively affects the
bulb yield and yield associated traits in onion, (ii) whether salt tolerant and salt sensitive
accessions differ in physicochemical responses?, and (iii) of the most important parameters
(morphological, physiological, and biochemical), which ones need to be considered for the
screening and development of salt tolerant onion cultivars? To achieve these objectives,
thirty-six onion cultivars were considered in the present investigation.

2. Materials and Methods
2.1. Characterization and Evaluation of Onion Accessions

Thirty-six diverse Indian short-day onion accessions including the released cultivars
and some of the promising advance lines were collected from the National Horticulture
Research and Development Foundation (NHRDF), Karnal; ICAR-Directorate of Onion and
Garlic Research, Pune; and ICAR-Indian Agricultural Research Institute (IARI), New Delhi,
India (Table 1). Seeds were sown in nursery beds and seedlings were transplanted in three
replications using randomized complete block design (RCBD) under control and under
saline conditions (ECiw 7 dS m−1) in microplots during the rabi season of 2019–20.
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Table 1. Passport information of onion accessions collected for salinity tolerance evaluation.

S.
No. Varieties Parentage Year of

Release
Maturity
(Days) Bulb Color Bulb Shape Bulb Size Storability

(Months)

1. Pusa Red Mass Selection (Local collection) 1975 125–140 Bronze red Flat to
globular Medium 3–4

2. Kalyanpur Red
Round (KKR) Mass Selection (Collection from UP) 1983 110–120 Red Round Medium 3–4

3. ALR Mass Selection (Collection from
Nasik, Maharashtra) 1988 110–120 Light red Globular Medium 3–4

4. B-780
(Baswant780)

Mass Selection (Collection from
Pimpalgaon, Maharashtra) 1989 110–120 Dark red Round Large 2–3

5. Agrifound
White Mass Selection (Local Collection) 1994 160–165 White Round Medium 1–2

6. Punjab Naroya Mass selection of material collected
from Maharashtra 1997 115–120 Red Round Medium to

large 2–3

7. GJWO-1 Mass Selection (Collection
from Gujarat) 2000 130–135 White Round Medium 2–3

8. RO 59 (Arpita) Mass Selection (Local Collection) 2005 110–120 Red Globe Medium 2–3

9. Arka Pitambar Selection from U.D. 102 × IAR-396 2006 135–140 Yellow Globe Medium 3–4

10. NHRDF Red
(L-28)

Collected from Patiala, Punjab and
developed at RRS, Karnal. 2006 180–210 Dark red Round Medium 2–3

11. Bhima Super Rigorous mass selection for single
centeredness and bulb shape 2006 100–110 Red Flat globe Large 2–3

12. Bhima Raj Single bulb selection up to
three generations 2007 120–125 Red Oval Medium 2–3

13. Bhima Red Single bulb selection up to
three generations 2009 115–120 Red Round Medium 2–3

14. Bhima Shweta
(White El. Comp.

Selection/NRCWO2)
(IC No. 572761)

2010 110–120 White Round Medium 2–3

15. Bhima Shakti IC No. 572769 2010 125–135 Red Round Large 5–6

16. POS38 Selfing (two generations) and
massing from Bhima Kiran 2010 125–135 Light red Oval to

round Large 5–6

17. Arka Bheem Triparental synthetic 2011 125–130 Red to
pinkish red

Elongated
globe Medium 1–2

18. RO-252 Mass Selection (Local Collection) 2011 - Red - Medium 2–3

19. Bhima Dark
Red

Single bulb selection up to
three generations 2012 100–110 Dark red Flat round Medium 1–1.5

20. NHRDF Red-3
(L-652) Mass Selection (Local Collection) 2012 100–120 Bronze red Globular

round Medium 2–3

21. Bhima Safed Mass Selection (Local Collection) 2014 110–120 White Round to
oval Medium 1–1.5

22. JRO 11 (GJRO
11)

Local collection from Mahuva
Taluka of Bhavnagar district 2015 125–130 Red Flat globe Medium 3–4

23. Bhima Light
Red

Single bulb selection followed by
mass selection 2015 115–120 Light red Globe Large 2–3

24. HOS 4 (Hisar
onion 4)

Selection from local material
collected from Bahadurgarh area 2016 130–140 Light

Bronze Globular Medium 3–4

25. GJWO 3
Local collection from Talaja Taluka
of Bhavnagar district Germplasm

No. 120
2016 125–130 White Flat globe Medium 2–3

26. NHRDF Red-4
(L-744) Mass Selection (Local Collection) 2016 110–120 Red Globular

round Medium 2–3

27. Pusa Shobha Mass selection from segregating
material from local collection 2018 140–160 Brown Flat globe Large 1–2

28. Pusa Sona Mass selection from segregating
material of Early Grano 2019 125–135 Creamy

yellow Globular Large 1–2

29. POS35
Selection-Selfing (two generations)

followed by massing from Pusa
White Round selection

- 125–130 White Round Medium 2–3



Plants 2022, 11, 3325 4 of 18

Table 1. Cont.

S.
No. Varieties Parentage Year of

Release
Maturity
(Days) Bulb Color Bulb Shape Bulb Size Storability

(Months)

30. POS36
Selection- Selfing (two generations)

followed by massing from
Pusa Madavi

- - Brown Globe Large 2–3

31. POS39 Single plant selection from Hisar 2
with waxy leaves (Hisar 2 Waxy) - 125–130 Bronze red Flat

globular Medium 3–4

32. POS37 Selfing (two generations) followed
by massing from Pusa White Flat - 120–130 White Flat round Medium

large 2–3

33. Sukhsagar Local landrace from West Bengal - 90–100 Dark red Globe Medium 3–4

34. PRO 6 Mass Selection (Collection
from Punjab) 115–120 Deep red Round Medium

large 2–3

35. JNDWO-85 Mass Selection (Collection
from Gujarat) - - White - - 3–4

36. NHRDF (L-920) Mass Selection (Local Collection) - - - - Medium 2–3

In each replication, 20 plants were maintained following a plant geometry of 15 × 10 cm.
Soil samples were collected before sowing and after harvesting of the crop of both the
treatments and analysed (Table 2). For saline treatment, natural saline ground water
(ECiw~18 dS m−1) was used for the preparation of desired saline water salinity (ECiw
7 dS m−1), whereas the normal water of ECiw~1.04 dS m−1 was used for control treatment.
Seven days after transplanting, the irrigation was given as per treatment and subsequent
irrigation was given as per crop need on the basis of 100% evapotranspiration (ET), and
a total of 17 irrigations were applied during the whole crop cycle. After soil analysis,
the required dose of NPK was applied and the recommended packages of practices were
followed for growing a good crop. As per recommendations, 50% nitrogen and 100%
phosphorus and potassium were applied before transplanting, and the remaining nitrogen
dose was applied in two split doses, i.e., 30 and 45 days after transplanting. Harvesting of
onion bulbs was done when the leaves turned yellow and more than 50 percent neckfall
was observed. The bulbs were dug out along with their leaves and the tops were removed,
leaving a 2 cm neck portion attached to the bulbs. Harvested bulbs were kept under shade
for curing and then sorting before grading was done.

Table 2. Soil status: Initial and final soil salinity.

Parameters Initial Soil Status
Final Soil Status

Control After Saline Treatment

2019–20

ECe (dS m−1) 1.65 1.85 6.90
pHs 7.74 7.67 7.82

2020–21

ECe (dS m−1) 1.48 1.62 7.04
pHs 7.61 7.65 7.93

2.2. Morphometric and Yield-Related Traits

The data recorded were concerned the plant height (cm), no. of leaves/plant, bulb di-
ameter (cm), bulb yield/plant, and total soluble solids (TSS, ◦Brix). The replicate-wise data
of morphological traits of 10 selected plants were measured after 100 days of transplanting.
The bulb yield of 10 plants was harvested separately from control and saline environments.
Bulbs were inspected visually for rotting or sprouting damage. Equatorial bulb diameter
(cm) of the same 10 plants was measured with the help of the digital Vernier Caliper. The
TSS content of the selected bulbs was measured just after bulb harvesting with the help of
a portable hand refractometer (Erma Inc., Tokyo, Japan) as ◦Brix (%) at 20 ◦C.
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2.3. Physio-Biochemical and Ion Estimation

A total of 36 accessions were characterized under a saline environment, and out of
these, 14 contrasting accessions were further selected for detailed studies of physiological,
biochemical, and antioxidant enzymes, as well as ion contents. Out of the 14 accessions,
7 accessions (POS35, L-28, GJWO-1, POS36, L-744, POS37, POS38) had ≤20% yield reduc-
tion under saline conditions and were categorised as salt-tolerant. The other 7 accessions
(ALR, GJWO3, KKR, L-652, Agrifound White, L-920, Bhima Dark Red) had ≥40% yield
reduction and were categorized as salt-sensitive. These 14 accessions were again trans-
planted in microplots during the rabi season of 2020–21 for physiological, biochemical, and
ionic analysis, and the package of practices and salinity treatments were followed as per
the previous year’s (2019–20) experiment.

2.3.1. Physiological Traits

Physiological and biochemical traits were measured at 55 days after transplanting. The
method given by Weatheraly [14] was used to estimate the relative water content (RWC).
The leaf membrane thermostability index was estimated by using the electrolyte leakage
percentage following the procedure of Dionisio-Sese and Tobita [15]. Photosynthesis rate
(Pn), transpiration rate (E), and stomatal conductance (gS) of the 3rd fully expanded leaves
were estimated using a portable photosynthetic system (Li 6800, Li-Cor Biosciences, Lincoln,
NE, USA) following the method of Kumar et al. [16].

2.3.2. Biochemical Traits

The method given by Bates et al. [17] was used to estimate the proline content. H2O2
content was calculated as per the method given by Loreto and Velikova [18]. MDA content
was measured at 532 and 600 nm by using same the supernatant which was used for
the estimation of H2O2 concentration [19]. A modified approach was followed for the
extraction of antioxidant enzymes, superoxide dismutase (SOD), and ascorbate peroxidase
(APX) [20]. Peroxidase (POX) was estimated as per the method suggested by Beauchamp
and Fridovich [21]. One unit of APX corresponded to a change in O.D. of 1.0 per minute [22].
The POX activity was determined by using 1.0 mol of H2O2 per minute [23]. Based on the
breakdown of H2O2 at 240 nm, the catalase (CAT) activity was measured for 1 min [24].

2.3.3. Ion Concentration

Na+ and K+ contents of leaves, roots, and bulbs were determined at the time of
harvesting using the flame photometer (Systronics Flame Photometer 128, Olathe, KS, USA)
and estimated as mg g−1 of dry weight.

2.4. Statistical Analysis

In the first experiment, five observations, i.e., plant height (cm), number of leaves/plant,
equatorial bulb diameter (cm), bulb yield/plant (g), and TSS (◦Brix) were recorded for pre-
liminary screening. Onion accessions were categorized on the basis of bulb yield reduction
(%) under salinity stress in comparison to the control conditions. Based on percent bulb
yield reduction, seven tolerant (≤20%) and seven susceptible (≥40%) accessions were selected
for a second experiment to determine the physio-biochemical basis of salinity tolerance.

In experiment 2, all the recorded parameters were put on a Microsoft excel sheet
thematically and a test of normality for each parameter was performed through the Shapiro–
Wilk test to comply with the assumptions of ANOVA and the appropriate transformation
procedure was applied for violated parameters. Further, the approach of two-way analysis
of variance (ANOVA) was applied for estimating the effect of genotypes and salinity, and
their interaction and group comparison was made between tolerant and sensitive cultivars
through contrast analysis using STAR statistical software [25]. The relative contribution of
different traits in total genetic divergence of the onion genotypes in control and salinity
stress conditions were quantified through the method proposed by Singh [26]. To find
out the significant differences in various traits recorded in onion genotypes under salinity
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stress and control conditions, Duncan’s Multiple Range Test (DMRT) was performed using
STAR statistical software [25]. To predict the bulb yield under salinity stress, a response
equation was derived through a stepwise regression approach, and significantly associated
(p > 0.005) morphological, physiological, and biochemical traits with bulb yield were also
prioritized for conducting future studies on salinity stress tolerance in onions.

3. Results
3.1. Effects of Salinity on Selected Onion Accessions

The combined ANOVA of fourteen accessions characterized under normal and salt
stress environments showed highly significant differences (p ≤ 0.01) for physiological
parameters (SPAD, RWC, MSI, Pn, E and gS), biochemical parameters (Proline, H2O2, MDA,
CAT, APX, SOD and POX), growth and bulb parameters (PH, NL, BD, BYP and TSS), and
ionic concentrations (root Na+/K+, shoot Na+/K+ and bulb Na+/K+) (Table 3). The results
indicated that the amount of variability present among the accessions would be helpful
in the selection and utilization of promising salt-tolerant genotypes in onion breeding.
Genotypes and environmental interactions were also found to be significant (p ≤ 0.01) for
all the studied parameters, except NL, suggesting that most of the genotypes performed
differentially in varying environmental conditions. Thus, the significance of variances for
both genotypes and the interaction effect indicated that all the studied parameters were
highly influenced by genotypes as well as the salt stress condition.

Table 3. Variance analysis of morpho-physiological and biochemical traits of 14 selected onion
accessions over control and saline environment.

Variables
Mean Squares F Values Significance

Genotypes G X E Genotypes G X E Genotypes G X E

Df 13 13 13 13 Pr(>F) Pr(>F)
#SPAD Index 21.66 3.26 54.97 8.26 0.000 0.000

RWC 28.51 24.69 233.79 202.46 0.000 0.000

MSI 31.88 32.85 112.93 116.38 0.000 0.000

Pn 17.51 1.88 451.38 48.55 0.000 0.000

E 1.49 0.19 83.42 10.41 0.000 0.000

gS 0.01 0.00 36.77 9.25 0.000 0.000

Proline 2596.14 2045.07 47.65 37.54 0.000 0.000

H2O2 0.09 0.08 9.44 8.25 0.000 0.000

MDA 26.56 13.90 315.53 165.17 0.000 0.000

CAT 7.22 2.89 154.75 61.89 0.000 0.000

APX 524.63 403.66 89.91 69.18 0.000 0.000

SOD 481.60 279.97 15.71 9.13 0.000 0.000

POX 53.36 58.10 287.12 312.58 0.000 0.000

Root Na+/K+ 0.51 0.20 51.19 20.36 0.000 0.000

Shoot Na+/K+ 1.50 0.92 578.09 354.26 0.000 0.000

Bulb Na+/K+ 0.00 0.00 9.74 8.97 0.000 0.000

PH 31.05 3.86 82.25 10.23 0.000 0.000

NL 0.82 0.02 44.17 1.01 0.000 0.453

BD 1.64 0.18 86.95 9.28 0.000 0.000

BYP 1361.39 134.57 11990.75 1185.22 0.000 0.000
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Table 3. Cont.

Variables
Mean Squares F Values Significance

Genotypes G X E Genotypes G X E Genotypes G X E

TSS 6.40 3.28 284.75 146.11 0.000 0.000
#SPAD index: Soil Plant Analysis Development Chlorophyll Meter index, RWC: Relative Water Content, MSI: Mem-
brane Stability Index, Pn: Photosynthesis rate, E: Transpiration rate, gS: Stomatal conductance, H2O2: Hydrogen
peroxide), MDA: Malondialdehyde, CAT: Catalase, APX: Ascorbate peroxidase, SOD: Superoxide dismutase,
(POX: Peroxidase, PH: Plant height, NL: Number of leaves/plant, BD: Bulb diameter, BYP: Bulb yield/plant,
TSS: Total soluble solids.

3.2. Impact of Salt Stress on Growth and Bulb Parameters

Five growth and bulb parameters were selected for preliminary screening of thirty six
onion accessions under normal and saline environments. Salinity stress significantly affects
the plant height, bulb diameter, bulb yield per plant, and total soluble solids by 6.07%, 3.07%,
11.38%, 31.24%, and 8.34% compared to control condition, respectively. The percent bulb
yield reduction ranged from 14.88% in POS35 to 62.86% in Bhima Dark Red (Table S1). On
the basis of bulb yield reduction (%) due to salinity stress, the 36 accessions were classified
into three groups. Seven accessions (POS35, L-28, GWO-1, POS36, L-744, POS37, and
POS38) had less than 20% bulb yield reduction and were identified as salt-tolerant, whereas
seven genotype accessions (ALR, GJWO 3, Kalyanpur Red Round (KKR), L-652, Agrifound
White, L-920, Bhima Dark Red) with more than 40% yield reduction were classified as
salt-sensitive (Table 4). Finally, we selected fourteen accessions, i.e., seven tolerant and
seven sensitive, to observe the differential behavior in their physiological and biochemical
traits under control and saline environments. Among the fourteen accessions, the bulb
yield per plant under the saline environment was the highest in tolerant accessions with
a reduction percentage ranging from 14.88 (POS35) to 19.76% (POS38), whereas a severe
decline was recorded in salt sensitive accessions ranging from 42.48 (ALR) to 62.86% (Bhima
Dark Red) (Table 5). The parameters such as PH, BD, and BYP were significantly reduced
under salinity stress; however, TSS content was significantly increased in onion bulb though
salinity treatment. Interestingly, a non-significant difference in numbers of leaves per plant
(NOL) was observed under control and salinity conditions (Table 6).

Table 4. Grouping of onion accessions on % bulb yield reduction in saline environment.

Salt-Tolerant
Genotypes

Bulb Yield
Reduction (<20%)

Moderately Tolerant
Genotypes

Bulb Yield
Reduction (20–40%)

Salt-Sensitive
Genotypes

Bulb Yield
Reduction (>40%)

POS35 14.88 Bhima Red 20.20 ALR 42.48
L-28 15.13 POS39 20.55 GJWO 3 42.63

GJWO 1 16.35 Bhima Shweta 24.72 KKR 43.50
POS36 17.19 JNDWO-85 26.65 L-652 43.65
L-744 18.80 HOS 4 (Hisar onion 4) 29.43 Agrifound White 43.89
POS37 19.48 Arka Pitamber 29.52 L-920 48.60
POS38 19.76 Pusa Red 29.56 Bhima Dark Red 62.86

RO 59 (Arpita) 29.99
Pusa Shobha 31.47

Bhima Light Red 32.15
Punjab Naroya 32.31

GJRO 11 32.92
Bhima Raj 34.60

PRO 6 34.60
B-780 (Baswant780) 34.69

Bhima Shakti 34.96
Bhima Super 35.25
Bhima Safed 35.27

RO-252 37.11
Sukhsagar 38.22
Pusa Sona 38.44

Arka Bheem 39.62
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Table 5. Means comparisons of morphological traits of selected onion accessions under control and
salinity stress.

Cultivars
Name

Plant Height (cm) Number of Leaves Bulb Diameter (cm) Bulb Yield
(g plant−1) TSS (◦Brix)

Control Salinity Control Salinity Control Salinity Control Salinity Control Salinity

POS35 43.22 ±
0.31 de

42.20 ±
0.43 de

8.30 ±
0.04

8.27 ±
0.25

6.18 ±
0.04 a

5.62 ±
0.13 a

77.48 ±
0.59 a

65.95 ±
0.05 a

12.43 ±
0.03 e

12.00 ±
0.06 d

L-28 43.95 ±
0.64 cd

43.48 ±
0.73 abc

9.01 ±
0.11

8.98 ±
0.08

5.80 ±
0.08 b

5.44 ±
0.10 ab

77.00 ±
0.20 a

65.35 ±
0.35 b

12.07 ±
0.07 g

10.67 ±
0.13 g

GJWO 1 43.82 ±
0.43 d

42.62 ±
0.81 bcd

8.17 ±
0.24

7.96 ±
0.06

5.31 ±
0.04 cd

4.94 ±
0.06 c

58.70 ±
0.30 g

49.10 ±
0.10 f

12.37 ±
0.10 ef

10.37 ±
0.07 h

POS36 43.25 ±
0.78 de

42.26 ±
0.55 de

8.35 ±
0.10

8.15 ±
0.13

5.87 ±
0.13 b

5.02 ±
0.08 c

66.95 ±
0.20 f

55.44 ±
0.44 e

13.37 ±
0.10 e

12.30 ±
0.30 c

POS37 43.20 ±
0.40 de

42.55 ±
0.44 cde

8.70 ±
0.15

8.48 ±
0.29

5.69 ±
0.52 b

5.54 ±
0.07 a

70.65 ±
0.15 d

56.89 ±
0.11 d

12.77 ±
0.10 d

12.07 ±
0.07 cd

L-744 45.43 ±
0.58 ab

44.03 ±
0.62 a

8.85 ±
0.05

8.71 ±
0.10

5.92 ±
0.10 b

5.29 ±
0.10 b

74.38 ±
1.20 b

60.40 ±
0.40 c

12.17 ±
0.17 fg

11.63 ±
0.20 e

POS38 38.75 ±
0.32 h

37.65 ±
0.78 g

9.06 ±
0.11

8.91 ±
0.09

5.28 ±
0.14 cd

4.87 ±
0.07 c

69.67 ±
0.10 e

55.90 ±
0.10 e

12.10 ±
0.10 g

11.50 ±
0.20 e

ALR 44.88 ±
1.18 bc

41.45 ±
0.69 e

8.76 ±
0.10

8.56 ±
0.20

4.70 ±
0.10 e

4.17 ±
0.13 ef

41.53 ±
0.10 k

23.89 ±
0.11 j

12.90 ±
0.10 d

12.20 ±
0.20 cd

GJWO 3 41.93 ±
0.60 f

37.46 ±
0.55 g

7.99 ±
0.06

7.84 ±
0.16

5.38 ±
0.06 c

4.21 ±
0.09 def

49.30 ±
0.30 j

28.28 ±
0.28 h

12.50 ±
0.10 e

14.85 ±
0.06 a

KKR 42.25 ±
0.73 ef

37.65 ±
0.78 g

7.90 ±
0.08

7.87 ±
0.20

5.06 ±
0.04 d

4.43 ±
0.13 d

40.00 ±
0.25 l

22.60 ±
0.60 k

15.77 ±
0.10 b

11.00 ±
0.15 f

L-652 42.37 ±
0.65 ef

39.82 ±
0.83 f

8.45 ±
0.15

8.30 ±
0.09

5.26 ±
0.11 cd

4.32 ±
0.12 de

55.10 ±
0.10 h

31.05 ±
0.05 g

12.93 ±
0.07 d

12.07 ±
0.07 cd

Agrifound
White

40.66 ±
0.62 g

35.49 ±
1.06 h

8.25 ±
0.05

8.10 ±
0.09

5.10 ±
0.06 d

4.86 ±
0.06 c

50.22 ±
0.22 i

28.18 ±
0.18 h

13.60 ±
0.30 c

11.97 ±
0.03 d

L-920 46.42 ±
0.56 a

43.67 ±
0.90 ab

8.08 ±
0.08

8.06 ±
0.06

4.72 ±
0.06 e

3.50 ±
0.06 g

41.56 ±
0.20 k

21.36 ±
0.36 l

16.10 ±
0.05 a

14.30 ±
0.30 b

Bhima
Dark Red

45.26 ±
0.75 b

42.08 ±
0.35 de

8.74 ±
0.14

8.29 ±
0.07

5.09 ±
0.09 d

4.06 ±
0.08 f

72.10 ±
0.10 c

26.78 ±
0.10 i

12.17 ±
0.17 fg

11.10 ±
0.10 f

Numerical values are represented as Mean ± SD; means comparison was performed through Duncan’s Multiple
Range Test (DMRT). Values with the same letter are not significantly different.

Table 6. Effects of salinity stress on tolerant and sensitive onion cultivars through group comparison
analysis.

Trait Unit
Groups Mean Mean Square Significance

Tolerant
Genotypes

Sensitive
Genotypes

Tolerant vs.
Sensitive Pr(>F)

SPAD Index Value 44.90 ± 1.40 a 42.29 ± 2.05 b 33.571 0.000

Relative Water Content (RWC) % 80.98 ± 1.36 a 73.87 ± 1.77 b 116.433 0.000

Membrane Stability Index (MSI) % 70.81 ± 1.66 a 62.76 ± 1.72 b 215.15 0.000

Photosynthesis rate (Pn) µmol CO2 m−2 s−1 12.91 ± 0.95 a 9.38 ± 0.79 b 8.397 0.000

Transpiration rate (E) mmol H2O m−2 s−1 4.13 ± 0.50 a 3.22 ± 0.27 a 0.024 0.160

Stomatal conductance (gS) mol H2O m−2 s−1 0.30 ± 0.02 a 0.21 ± 0.02 b 0.006 0.000
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Table 6. Cont.

Trait Unit
Groups Mean Mean Square Significance

Tolerant
Genotypes

Sensitive
Genotypes

Tolerant vs.
Sensitive Pr(>F)

Proline content (Pro) µg g−1 FW 407.88 ± 17.29 a 342.62 ± 16.77 b 11853.07 0.000

Hydrogen peroxide (H2O2) µmoles g−1 FW 2.33 ± 0.18 b 2.71 ± 0.12 a 0.666 0.000

Malondialdehyde (MDA) nmol g−1 FW 22.38 ± 0.99 b 28.70 ± 1.06 a 108.58 0.000

Catalase (CAT) units g−1 FW 21.18 ± 1.39 a 18.68 ± 0.72 b 5.838 0.000

Ascorbate peroxidase (APX) units g−1 FW 166.11 ± 7.70 a 135.77 ± 7.75 b 870.59 0.000

Super oxide dismutase (SOD) units g−1 FW 255.76 ± 9.20 a 230.75 ± 9.70 b 1687.96 0.000

Peroxidase (POX) units g−1 FW 49.96 ± 2.07 a 40.78 ± 3.18 b 333.26 0.000

Root Na+/K+ Index 3.22 ± 0.13 b 3.50 ± 0.25 a 0.367 0.000

Shoot Na+/K+ Index 2.11 ± 0.43 b 3.57 ± 0.37 a 1.765 0.000

Bulb Na+/K+ Index 0.32 ± 0.05 b 0.34 ± 0.04 a 0.004 0.007

Plant height (PH) Cm 41.82 ± 1.97 a 39.95 ± 3.12 b 8.52 0.000

Number of leaves/plant (NL) Nos. 8.43 ± 0.35 a 8.21 ± 0.38 a 0.065 0.101

Bulb diameter (BD) Cm 5.07 ± 0.47 a 4.40 ± 0.59 b 0.138 0.001

Total soluble solids (TSS) ◦Brix 11.72 ± 0.65 b 12.28 ± 1.58 a 2.024 0.000

Bulb yield/plant (BYP) g plant−1 52.51 ± 12.92 a 31.94 ± 14.34 b 52.371 0.000

Numerical values are represented as Mean ± SD, and values between the column with the same letter are not
significantly different.

3.3. Physiological Responses

Physiological parameters such as SPAD, RWC, MSI, Pn, E, and gS were found higher
in tolerant accessions compared to sensitive ones under salt stress. RWC and MSI were
related directly to salinity stress and vary significantly among all the onion accessions under
salt stress. The tolerant accessions on average maintained higher RWC (>80%) and higher
MSI (>70%) under stress conditions (Figure 1). Conversely, sensitive varieties showed
lower RWC and more membrane damage. The percent reduction in RWC varied between
1.34 (POS36) to 3.41% (POS37) and 6.54 (ALR) to 13.96% (L-652) in tolerant and sensitive
accessions, respectively. Likewise, the reduction percentage in MSI was 10.98 (POS35)
to 16.02% (L-28) in tolerant and 19.27 (GJWO 3) to 26.24% (KRR) in sensitive varieties.
A similar trend was observed for SPAD index. Tolerant varieties stayed green for a longer
time whereas sensitive genotypes showed early leaf senescence in response to salt stress.
Moreover, the photosynthetic rate and stomatal conductance were reduced significantly
under a saline environment. The photosynthetic rate decreased by 28% in tolerant and
by 39% in sensitive accessions. The highest Photosynthetic rate was observed in POS35
(14.17 µmol m−2 s−1) and POS37 (13.67 µmol m−2 s−1), whereas a minimum was found
in Bhima Dark Red (8.45 µmol m−2 s−1) and GJWO 3 (8.80 µmol m−2 s−1). Furthermore,
sensitive varieties showed a drastic reduction in stomata conductance (Figure 2) compared
to tolerant ones. The maximum reduction percentage ranged from 18.52% (GJWO 1) to
29.27% (POS37) in salt-tolerant accessions and 33.19% (KRR) to 50% (L-920) in sensitive
varieties, respectively. The tolerant cultivars maintained higher chlorophyll content, RWC,
MSI, gS, and Pn compared to sensitive ones, except for the transpiration rate.
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3.4. Biochemical Responses

Salinity stress significantly increased the production of H2O2 and lipid peroxidation
via MDA content in all onion accessions (Figure 3). However, differential behaviors of
salt tolerant and sensitive accessions were observed for H2O2 and MDA accumulation.
The H2O2 content ranged from 2.56 µmoles/g FW (GJWO 3) to 2.80 µmoles/g FW (ALR)
in salt-sensitive accessions, and from 2.12 µmoles/g FW (GJWO 1) to 2.54 µmoles/g FW
(L-28) in salt-tolerant accessions under a saline environment. Similarly, the accumulation
of MDA was higher in sensitive accessions, i.e., 27.33 nmol/g FW(ALR) to 30.60 nmol/g
FW (Bhima Dark Red), with lower accumulation in tolerant ones, i.e., 20.74 nmol/g FW
(POS38) to 23.50 nmol/g FW (POS36) under stress conditions. The activity of proline and
antioxidant defense-related enzymes (CAT, APX, SOD, and POX), which are involved in
ROS scavenging during stress conditions, were found to be higher in salt-tolerant and
lower in salt-sensitive accessions. The maximum increment in proline content ranged from
109% (GJWO 1) to 196% (L-744) in salt-tolerant and 100% (GJWO 3) to 145% (L-652) in
salt-sensitive accessions (Figure 3). Likewise, the percent increment in antioxidants activity
of CAT, APX, SOD, and POX varied between 24.76 (GJWO 1) to 41.96% (POS35), 88 (GJWO
1) to 123% (L-744), 57 (POS35) to 72% (L-28), and 92.14 (L-28) to 149.53% (GJWO 1) in
salt-tolerant accessions, whereas the range was 15.61 (Agrifound White) to 28.55% (L-652),
49 (GJWO 3) to 83% (L-652), 42 (Bhima Dark Red) to 64% (L-652), and 39.64 (L-652) to
113.52% (KKR) in salt-sensitive accessions, respectively (Figure 4). The tolerant cultivars
show a higher activity of antioxidant enzymes and lower production of H2O2 and lipid
peroxidation compared to sensitive ones (Table 6).

3.5. Accumulation of Ion Concentrations

Under a saline environment, Na+ accumulation increased significantly in the roots,
shoots, and bulbs of all the fourteen onion accessions (Table 6). The Na+/K+ ratio in the
roots ranged from 1.05 (L-920) to 2.48 (KRR) under control and from 3.10 (GJWO 1, POS 36)
to 3.79 (KRR) under stress conditions. In shoots, the range varied between 0.71 (L-920) to
1.67 (POS 36) under control and 1.44 (POS37) to 3.88 (ALR) under salinity stress. Similarly,
the ratio in bulbs was 0.19 (Bhima Dark Red and Agrifound White) to 0.26 (GJWO 1 and
ALR) and 0.26 (POS 36) to 0.41 (GJWO1) under control and stress conditions, respectively.
The increase in the Na+/K+ ratio was found more in salt-sensitive accessions than in salt-
tolerant ones (Table 6). The percent increment in roots, shoots, and bulbs ranged from
53.70 (POS38) to 169.57% (GJWO 1), 35.85 (POS37) to 130.48% (GJWO 1), 13.04 (POS 36)
to 57.69% (GJWO 1) in salt-tolerant accessions, and 47.42 (Bhima Dark Red) to 213.33%
(L-920), 128.30 (L-652) to 288.73% (L-920), and 19.23 (ALR) to 94.74% (Bhima Dark Red) in
salt-sensitive varieties, respectively (Table S2).

3.6. Traits Contributing towards Bulb Yield Divergence
The percentage change in twenty traits in the saline environment and their direction

of magnitude are represented in (Table 7). PRO (129.33%), H2O2 (88.38%), MDA (48.27%),
CAT (25.90%), APX (86.18%), SOD (57.52%), POX (90.01%), Root Na+/K+ (102.54%), Shoot
Na+/K+ (136.61%), and Bulb Na+/K+ (41.54%) showed an increment, whereas SPAD
(4.15%), RWC (6.92%), MSI (18.09%), Pn (33.42%), E (18.53%), gS (31.09%), PH (5.45%), NL
(1.79%), BD (12.04%), BYP (30.01%), and TSS (8.30 ◦Brix) showed a decrease in the mean
value in the saline environment. Divergence analysis revealed that BYP (73.66%) followed
by TSS (6.19 ◦Brix) and Shoot Na+/K+ (5.79%) were the greatest toward genetic divergence
of the fourteen accessions under control conditions, whereas BYP (78.80%), followed by POX
(3.83%), MDA (3.27%), RWC (2.58%), and Shoot Na+/K+ (2.54%) contributed maximally
under salt stress. (Table 8) Thus, these traits can be exploited for the identification of
genetically divergent parents for the genetic improvement program of onions. A stepwise
regression analysis was done to identify the component variables contributing significantly
to bulb yield under salinity stress. The results indicated that BD, PH, APX, gS, POX, CAT,
MDA, MSI, and bulb Na+/K+ ratio accounted for the maximum variation of bulb yield
in onions under stress conditions with cumulative R2 = 97.60. A significantly positive
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regression coefficient of BD, PH, APX, POX, MDA, MSI, and bulb Na+/K+ ratio indicated
that an increment in the value of these traits might increase the bulb yield of onions. On
the basis of regression coefficients of significant traits, the predicted model equation for
bulb yield under salt stress (Table S3) was computed as:

Predicted bulb yield = −409.75 + (21.38 × BD) + (2.28 × PH) + (0.52 × APX) + (−137.77 × gS) +
(1.21 × POX) + (−1.47 × CAT) + (3.21 × MDA) + (1.44 × MSI) + (Bulb Na+/K+)
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Table 7. Relative contribution of different physiological, biochemical, and yield-related traits toward
genetic divergence in onion accessions.

Traits
Traits

Contribution (%)
under Control

Conditions

Traits
Contribution (%)

under Salinity
Stress Conditions

Traits Mean ± SD
Magnitude # (%)

Control Salinity Stress

SPAD Index 0.414 0.293 45.49 ± 0.49 43.60 ± 0.34 −4.15
Relative Water Content (RWC) 0.707 2.580 83.18 ± 0.33 77.43 ± 0.26 −6.92
Membrane Stability Index
(MSI) 0.227 1.617 81.54 ± 0.43 66.79 ± 0.35 −18.09
Photosynthesis rate (Pn) 2.637 3.018 16.74 ± 0.21 11.15 ± 0.14 −33.42
Transpiration rate (E) 0.478 0.484 4.51 ± 0.13 3.67 ± 0.11 −18.53
Stomatal conductance (gS) 0.191 0.256 0.37 ± 0.02 0.26 ± 0.01 −31.09
Proline content (Pro) 0.374 0.256 163.63 ± 4.75 375.25 ± 8.42 +129.33
Hydrogen peroxide (H2O2) 0.263 0.043 1.34 ± 0.03 2.52 ± 0.11 +88.38
Malondialdehyde (MDA) 0.960 3.266 17.23 ± 0.30 25.54 ± 0.22 +48.27
Catalase (CAT) 1.423 0.607 15.83 ± 0.18 19.93 ± 0.25 +25.90
Ascorbate peroxidase (APX) 0.498 0.430 81.07 ± 0.98 150.94 ± 3.24 +86.18
Super oxide dismutase (SOD) 0.124 0.072 154.42 ± 4.25 243.25 ± 6.48 +57.52
Peroxidase (POX) 1.811 3.832 23.88 ± 0.43 45.37 ± 0.30 +90.01
Root Na+/K+ 1.878 0.058 1.66 ± 0.07 3.36 ± 0.10 +102.54
Shoot Na+/K+ 5.786 2.536 1.20 ± 0.05 2.84 ± 0.07 +136.61
Bulb Na+/K+ 0.120 0.058 0.23 ± 0.02 0.33 ± 0.02 +41.54
Plant height (PH) 1.140 0.217 43.24 ± 0.61 40.89 ± 0.68 −5.45
Number of leaves/plant (NL) 0.653 0.088 8.47 ± 0.10 8.32 ± 0.13 −1.79
Bulb diameter (BD) 0.462 0.640 5.38 ± 0.11 4.73 ± 0.09 −12.04
Bulb yield/plant (BYP) 73.662 78.800 60.33 ± 0.29 42.23 ± 0.23 −30.01
Total soluble solids (TSS) 6.193 0.849 13.09 ± 0.11 12.00 ± 0.14 −8.30

# Magnitude of increased (+) or decreased (−), Relative contribution of the divergence characters (Singh, [26])
calculated with distance weighted QMR procedure.
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Table 8. Traits prioritization for salinity stress tolerance in onions through stepwise regression approach.

Dependent
Variable Step and Variables R2 F-Stat. Probability

BYP (Bulb
yield/plant)

1. BD 0.805 165.014 0.000
2. BD + PH 0.872 132.617 0.000

3. BD + PH + APX 0.890 102.647 0.000
4. BD + PH + APX + gS 0.926 115.676 0.000

5. BD + PH + APX + gS + POX 0.944 122.048 0.000
6. BD + PH + APX + gS + POX + CAT 0.961 141.819 0.000

7. BD + PH + APX + gS + POX + CAT + MDA 0.967 140.697 0.000
8. BD + PH + APX + gS + POX + CAT + MDA + MSI 0.972 141.141 0.000

9. BD + PH + APX + gS + POX + CAT + MDA + MSI + Bulb Na+/K+ 0.976 143.261 0.000

BD: Bulb diameter, PH: Plant height, APX: Ascorbate peroxidase, gS: Stomatal conductance, POX: Peroxidase,
CAT: Catalase, MDA: Malondialdehyde, MSI: Membrane Stability Index, Bulb: Na+/K+.

4. Discussion
To study the physiological and biochemical responses of thirty six onion accessions, we first

evaluated them based on growth and bulb parameters. The results of the primary trial showed
a significant reduction in plant height (1.07–12.91%), bulb diameter (0.37–25.85%), bulb yield per
plant (14.88–62.86%), and total soluble solids (1.43–20%) under salinity stress in comparison to control
(Table S1). However, accessions differences were observed for reduction percentage in studied
parameters. Based on percent bulb yield reduction, we selected seven salt-tolerant (less than 20%
yield reduction) and seven-salt sensitive (more than 40% yield reduction) accessions to study the
various physiological and biochemical changes in onion varieties as adaptive mechanisms. Plant
height reduction in onions may be due to a decline in cell division and cell expansion under stress
conditions, which ultimately reduces the overall plant growth [27]. Moreover, refs. [28,29] reported
that increased salt stress reduces leaf growth, number of leaves, number of branches, and stem
diameter. Onions are a salt-sensitive crop and irrigation with saline water reduces the production of
large sized bulbs, fresh weight, bulb firmness, water use efficiency, and bulb yield [11]. Furthermore,
a differential reduction rate in water dropwort cultivars for plant height, number of branches, number
of leaves, and stem length was observed with increasing salt concentrations [30]. Accumulation of
excessive salt in leaves might be the probable cause of reduction in the leaf area of onions [31–33].

RWC and MSI are the most commonly used adaptive parameters for the selection of tolerant
accessions under abiotic stress environments. Maintenance of high RWC and MSI are decisive
indicators of high cellular turgidity and less cellular or membrane injuries in plants [33]. Addition-
ally, most of the physiological and biochemical processes such as cell division, cell enlargement,
stomatal opening, and transportation in plants are dependent on the water status of the plant cells.
Therefore, any reduction in water status adversely affects the plant’s metabolic functioning. Our
results demonstrated that tolerant onion varieties showed high RWC and MSI rather than sensitive
genotypes showing an agreement with the results of [34–36]. Furthermore, the ability of plants to
maintain a normal photosynthetic rate, stomatal conductance, and transpiration rate reflects the
ability of salt tolerance. The obtained results in the present study showed a negative effect of salt
stress on SPAD, Pn, gS, and E in all fourteen accessions. However, tolerant accessions showed a lesser
reduction percentage compared to sensitive ones. These results are in agreement with the findings of
earlier studies [37–39] that reported a significant decrease in photosynthetic rate, transpiration rate,
and chlorophyll content under salt stress. The decline in SPAD index under salinity may be due to
photo-oxidation, loss of chloroplast membranes, and membrane injury in chloroplasts by ROS [40–42].
However, in some studies, higher chlorophyll content was recorded in the saline environment, which
may have been caused by the increase in number of chloroplasts [30,43]. Moreover, under excessive
salinity, fewer gaseous exchanges occur in leaves because of the high sensitivity of stomata to abiotic
stresses, leading to a reduction in transpiration and photosynthetic rates [44–47]. Lipid peroxidation
(MDA) and production of reactive oxygen species (H2O2) are commonly used biochemical indicators
for plants exposed to abiotic stresses [48]. The high concentration of MDA and H2O2 under salt stress
leads to cell membrane damage and electrolyte leakage [49]. In the present research, the accumulation
of MDA and H2O2 was less in tolerant accessions compared to sensitive ones, indicating less oxidative
damage to cell membranes of tolerant accessions. These results are also supported by other stud-
ies [30,50,51], in which lower ROS production and lipid peroxidation and high membrane stability
in salt-tolerant genotypes of rice, wheat, and water dropwort were reported. The compatible solute
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proline plays a very important role in maintaining the osmotic potential of cytosol with the external
environment [52]. The proline activity was observed as high under salt-stressed plants of tolerant
accessions, whereas in sensitive accessions, the activity was comparatively lower. The enhanced
activity of proline might be the important factor in neutralizing the negative effect of salinity stress
via osmotic adjustment [53]. Furthermore, a greater activity of antioxidants (SOD, APX, CAT, and
POX) provides salt tolerance by scavenging ROS and reducing membrane damage [54]. In defensive
response, the SOD and CAT convert free radical species into H2O2 and oxygen, respectively [55].
Salt tolerance in tomato, potato, cabbage, and amaranth caused by higher antioxidants activity were
also reported [48,56–59]. A positive correlation between enhanced antioxidant activity and reduced
oxidative damage has been observed in the present study. The tolerant varieties under salt stress had
better activity of these enzymes than those of the sensitive varieties.

Higher salt accumulation in the rhizosphere of plants leads to the accumulation of Na+ and
Cl− ions, causing an osmotic effect, ionic imbalance, damage to enzymatic activities, and protein
metabolism [60]. Ionic imbalance causes a reduced uptake of essential nutrients such as potassium,
manganese, and calcium to plant cells. The increased uptake of external Na+ will enhance the Na+

concentration in different plant organs with a concomitant decrease in K+ [12,48,61]. However, under
high salinity stress, tolerant plants have a unique ability to accumulate and compartmentalize Na+

and Cl− in older leaves, but sensitive accessions cannot manage such compartmentalization, which
leads to ionic and osmotic effects [61]. This compartmentalization of Na+ into vacuoles is controlled
by Na+/H+ antiporters, V-type H+-ATPase, and H+-PPase [62]. In this study, a higher Na+/K+ ratio
was found in the roots, shoots, and bulbs, but percentage increase in the ratio was higher in sensitive
accessions compared to tolerant accessions. Previous studies in carrot, amaranth, and pistachio also
showed an increased uptake of Na+ and decreased uptake of K+ in salt-sensitive genotypes under
salinity stress [7,51,63]. Therefore, many authors suggested that maximal uptake of K+ and minimal
uptake of Na+ is an indicator of salt tolerance in crop plants [30,51].

Stepwise regression analysis is a statistical method which identifies the most important contribut-
ing variable, signifying the amount of variability towards dependent variables such as economic
yield. Based on this approach, we identified bulb diameter, plant height, ascorbate peroxidase,
stomatal conductance, peroxidase, catalase, malondialdehyde, membrane stability index, and bulb
Na+/K+ ratio as significantly contributing traits towards the total variation present in bulb yield per
onion plant under salt stress. The significantly positive and negative coefficient of traits indicates
that with increase or decrease of their respective value, there will be an increase or decrease in the
final bulb yield per plant, respectively. In the previous research, Bojarian et al. [64] also reported
that single fruit weight, diameter, pericarp thickness, and titratable acidity are the important traits
for successful breeding programs in tomatoes. Similarly, Saed-Moucheshi et al. [65] selected spike
weight and chlorophyll content as major traits for wheat breeding programs under different water
regime conditions.

5. Conclusions
A wide range of variability was observed in studied onion genotypes for bulb yield and yield

associated with morphological, physiological, and biochemical traits. The tolerant accessions selected
based on percent yield reduction had strong antioxidant defense systems and lower Na+/K+ ratios in
the shoot/leaves and maintained a higher tissue water status and osmoprotectants. Statistical analysis
indicated that salinity stress significantly and negatively affects the bulb yield and yield-associated
traits in onions, except number of leaves per plant. Interestingly, the salt-tolerant onion-tolerant
cultivars showed a higher activity of antioxidant enzymes (APX, SOD, POX, and CAT), higher
chlorophyll content (RWC, MSI, gS, and Pn), and lower production of H2O2 and lipid peroxidation
compared to sensitive ones. Furthermore, the performance of onion cultivars assessed through traits
modeling indicated a total of nine morphological, physiological, and biochemical traits (BD, PH,
APX, gS, POX, CAT, MDA, MSI, and bulb Na+/K+ ratio), accounting for maximum variation in
bulb yield under salinity stress, and which are the highly weighted variables that can be utilized
for onion germplasm screening for salinity stress tolerance. From the experimental findings, we
could summarize that the onion cultivars POS35, NHRDF Red (L-28), GWO 1, POS36, NHRDF Red-4
(L-744), POS37, and POS38 may be considered as saline-tolerant. These selected cultivars could be
directly recommended for enhancing agricultural resilience in saline agro-ecosystems and can be
utilized as potential genetic resources (salt-tolerant donor parents) in onion improvement programs.
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