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Abstract: The major contributor to skin aging is UV radiation, which activates pro-inflammatory
cytokines including TNF-α. TNF-α is involved in the acceleration of skin aging via ROS generation
and MMP-1 secretion. In our preliminary study, a 30% EtOH extract from the leaves of Potentilla
chinensis (LPCE) significantly inhibited TNF-α-induced ROS generation in human dermal fibroblasts
(HDFs). Therefore, the objective of this study is to identify the active components in LPCE. A new
flavonol-bis-glucuronide (potentilloside A, 1) and 14 known compounds (2–15) were isolated from an
LPCE by repeated chromatography. The chemical structure of the new compound 1 was determined
by analyzing its spectroscopic data (NMR and HRMS) and by acidic hydrolysis. Nine flavonols (2–9
and 11) and two flavone glycosides (12 and 13) from P. chinensis were reported for the first time in
this study. Next, we evaluated the effects of the isolates (1–15) on TNF-α-induced ROS generation in
HDFs. As a result, all compounds significantly inhibited ROS generation. Furthermore, LPCE and
potentilloside A (1) remarkably suppressed MMP-1 secretion in HDFs stimulated by TNF-α. The data
suggested that LPCE and potentilloside A (1) are worthy of further experiments for their potential as
anti-skin aging agents.

Keywords: Potentila chinensis; Rosaceae; flavonol-bis-glucuronide; potentilloside A; reactive oxygen
species; matrix metalloproteinase-1

1. Introduction

Potentilla chinensis Ser., belonging to the family Rosaceae, is widely distributed in
East Asia—particularly in China, Japan, and Korea [1]. The aerial parts of P. chinensis
(Potentillae Herba) have been used in Korea as an herbal medicine against various dis-
eases, including dysentery, hemoptysis, colitis, etc. [2]. Pharmacological studies on P.
chinensis have shown that it has antioxidant, inflammatory, hypoglycemic, anticancer, and
immunomodulatory properties [3,4]. Phytochemical studies on P. chinensis have revealed
the presence of triterpenoids, flavonoids, organic acids, and phenolic compounds [5,6].
Triterpenoids from P. chinensis have been shown to have anticancer, anti-inflammatory,
neuroprotection, and hepatic injury attenuating effects [7–10]. Tiliroside—a flavonoid
from P. chinensis—possesses antioxidant, anti-obesity, and antidiabetic properties [11–13].
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However, the chemical constituents of P. chinensis and their pharmacological effects are still
poorly understood.

Skin aging is triggered by internal and external factors. Internal factors that change
gene expression or the neuroendocrine system result in chronological aging [14]. External
factors affect the outermost skin area, which is directly affected by environmental factors
such as UV radiation and air pollution [15]. UV radiation critically damages the dermal
layer, which provokes pro-inflammatory cytokines that lead to photoaging.

These aging factors cause the degradation of extracellular matrix (ECM) components,
including collagens, elastins, and proteoglycans [16]. These components are secreted
by fibroblasts to maintain skin strength, flexibility, and hydration [17]. In contrast, the
degradation of the ECM causes skin aging, which manifests as wrinkles and hyperpigmen-
tation [18,19].

Tumor necrosis factor-α (TNF-α), one of the pro-inflammatory cytokines, generates re-
active oxygen species (ROS), which accelerate skin aging through the release of interleukin-1
(IL-1) and IL-6 [20,21]. In addition, TNF-α activates the AP-1 transcription pathway by
stimulating mitogen-activated protein kinases (MAPKs) [22]. Consequentially, these result
in overexpression of the following matrix metalloproteinases (MMPs); MMP-1, MMP-3,
and MMP-9 [23]. MMP-1, a type of collagenase, accelerates skin aging by destroying
collagen fiber to produce winkles [24]. Moreover, TNF-α also inhibits the transforming
growth factor-β (TGF-β) pathway, which suppresses collagen synthesis and accelerates
MMP secretion via ROS generation [25]. Thus, controlling TNF-α activity could be an
efficient strategy for the development of anti-aging skin therapies.

In our preliminary study, a 30% EtOH extract from the leaves of P. chinensis (LPCE)
significantly inhibited ROS generation in TNF-α-induced human dermal fibroblasts (HDFs).
Therefore, the purpose of the study is to identify the active isolates in the LPCE. Herein,
the chemical constituents from an LPCE were isolated by repeated chromatography. The
chemical structures of all the isolates were determined by interpreting their spectroscopic
data, including 1D- and 2D-nuclear magnetic resonances (NMR) and high-resolution mass
spectroscopy (HR-MS). Next, all isolates were assessed for their effects on ROS generation
and MMP-1 secretion in TNF-α-stimulated HDFs.

2. Results
2.1. Structure Elucidation of 1 and Identification of 2–15

In the present study, a new flavonol-bis-glucuronide (1)—along with the previously
described ten flavonols (2–11), two flavones (12 and 13), and two polyphenols (14 and
15)—were isolated from the leaves of P. chinensis (Figure 1).

Compound 1 was obtained as a yellow powder. The HR-ESI-Orbitrap-MS displayed
a [M + H]+ peak at m/z 655.1141 (cal. for C27H27O19, 655.1147), corresponding to the
molecular formula C27H26O19 (Figure S1). The infrared (IR) spectrum showed the presence
of a hydroxy group (3395.07 cm−1), a conjugated carbonyl (1792.83 cm−1), and an aromatic
ring (1653.66, 1603.52, and 1503.24 cm−1; Figure S2). The 1H NMR spectrum of 1 exhibited
the characteristic signals of a flavonol glycoside (Table 1 and Figure S3). The aglycone
was identified as quercetin from three aromatic proton signals for an ABX spin system
belonging to ring B (δH 6.92 (1H, d, J = 8.5 Hz, H-5′), 7.75 (1H, d, J = 2.5 Hz, H-2′) and 7.89
(1H, dd, J = 8.5, 2.5 Hz, H-6′)) and two aromatic signals for an AX spin system belonging to
ring A (δH 6.23 (1H, d, J = 2.0 Hz, H-6) and 6.48 (1H, d, J = 2.0 Hz, H-8)). Additionally, two
anomeric proton signals (δH 5.46 (1H, d, J = 7.5 Hz, H-Glu-1′′) and 5.08 (1H, d, J = 7.5 Hz,
H-Glu-1′′′)) were observed (Table 1). The 13C and HSQC NMR spectra of 1 revealed 27
characteristic carbon signals and indicated the presence of five aromatic methine and ten
quaternary carbons, including one carbonyl (δC 177.3) and seven oxygenated carbons
(Table 1, Figures S4 and S5). Additionally, four carbon signals at δC 101.1, 101.5, 170.1, and
170.3 and eight carbon signals at δC 70–80 implicated the existence of two glucuronic acids
in 1. The 1H and 13C NMR spectroscopic data of 1 were very similar to quercetin-3-O-
β-D-glucuronide (5), except for the presence of one additional glucuronic acid (Table 1).
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Using the COSY spectroscopic data, correlations in the A and B rings as well as in the
sugars were observed, confirming their connections (Figures 2 and S6). The locations of
the two glucuronic acids were determined to be C-3 and C-3′ by the HMBC data from
H-1′′ to C-3 and H-1′′′ to C-3′ (Figures 2 and S7). The relative-configurations of the sugars
were determined by the J value of 7.5 Hz for the anomeric protons and by correlations
observed in the ROESY spectrum between H-1′′ and H-3′′ and H-5′′/H-1′′′ and H-3′′′ and
H-5′′′ (Figures 2 and S8). In addition, the absolute configurations of the glucuronic acids
were confirmed as D-forms through HPLC analysis after sugar hydrolysis. Therefore, the
chemical structure of the new flavonol glycoside 1 was elucidated as quercetin-bis-3,3′-O-β-
D-glucuronide, named potentilloside A.

Figure 1. Structures of compounds 1–15 isolated from the leaves of P. chinensis.

Figure 2. Key 1H−1H COSY ( ), 1H−13C HMBC ( ) and 1H−1H NOESY ( ) correlations
of compound 1.
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By comparing the spectroscopic data with those reported in the literature, the known
compounds were identified as isorhamnetin-bis-3,7-O-β-D-glucuronide (2), kaempferol-bis-
3,7-O-β-D-glucuronide (3), quercetin-bis-3,7-O-β-D-glucuronide (4) [26,27] quercetin-3-O-
β-D-glucuronide (5) [28], kaempferol-3-O-β-D-glucuronide (6) [29], isorhamnetin-3-O-β-D-
glucuronide (7) [30], quercetin-3-O-β-D-glucuronide-6′′-methyl ester (8) [31], isoquercitrin
(9) [32], tiliroside (10) [33], quercetin-3′-O-β-D-glucuronide (11) [34], apigenin-7-O-β-D-
glucuronide (12) [35], luteolin-7-O-β-D-glucuronide (13) [35], ellagic acid (14) [36], and
brevifolin carboxylic acid (15) [37].

Table 1. 1H and 13C NMR spectroscopic data of compounds 1 and 5 (δ in ppm, DMSO-d6, 500 and
125 MHz).

Position a
1 5 (Quercetin-3-O-β-D-Glucuronide)

δH Multi (J in Hz) δC δH Multi (J in Hz) δC

2 155.9 156.3
3 133.3 133.2
4 177.3 177.3
5 161.2 161.3
6 6.23 d (2.0) 98.9 6.21 d (2.0) 98.9
7 164.4 164.3
8 6.48 d (2.0) 94.0 6.41 d (2.0) 93.7
9 156.4 156.4
10 104.0 104.0
1′ 121.0 120.9
2′ 7.75 d (2.5) 116.8 7.55 d (2.5) 116.2
3′ 144.6 145.0
4′ 150.2 148.7
5′ 6.92 d (8.5) 115.9 6.84 d (8.5) 115.3
6′ 7.89 dd (8.5, 2.5) 125.5 7.60 dd (8.5, 2.5) 121.8

Glu-1′′ 5.46 d (7.5) 101.2 5.49 d (7.5) 101.2
Glu-2′′ 3.368 b 73.1 3.24–3.40 m b 73.9
Glu-3′′ 3.244 b 75.8 3.24–3.40 m b 76.0
Glu-4′′ 3.370 b 71.4 3.24–3.40 m b 71.5
Glu-5′′ 3.55 d (10.0) 75.9 3.57 d (10.0) 76.0
Glu-6′′ 170.3 170.0
Glu-1′′′ 5.08 d (7.5) 101.5
Glu-2′′′ 3.240 b 73.8
Glu-3′′′ 3.365 b 75.3
Glu-4′′′ 3.43 t (9.5) 71.4
Glu-5′′′ 3.94 d (9.5) 75.4
Glu-6′′′ 170.1
OH-5 12.52 s 12.54 s

a Determined by analysis of 1H-1H COSY, 1H-13C HSQC, and HMBC spectrum, b Overlapped.

2.2. Effects of LPCE and Isolates 1–15 on HDF Cell Viability

Before evaluating the effects of LPCE and its isolated compounds on TNF-α-induced
HDFs, an experiment was performed to find the non-effect range on cell viability. A LPCE
showed no change in cell viability at concentrations of 25–100 µg/mL. Additionally, none
of the isolates showed changes in cell viability at the indicated concentrations in Figure 3.
Therefore, subsequent experiments were performed at each concentration.
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Figure 3. Effect of the extract (LPCE) and isolates (1–15) from P. chinensis on cell viability in HDFs.
HDF cells were seeded in a 96-well cell culture plate at a concentration of 0.5 × 104/well and
incubated in starvation conditions with fresh media without FBS for 24 h. Then, the cells were treated
with specific concentrations of LPCE and isolates for 24 h. The resulting values were determined
using an EZ-Cytox solution Assay kit. The data are presented as mean ± SEM (n = 2).

2.3. Effects of LPCE and Isolates 1–15 on TNF-α-Induced ROS Generation

Subsequently, the inhibitory effects of the LPCE and all the P. chinensis isolates on ROS
generation were tested in TNF-α-stimulated HDFs. At the concentrations shown in Figure 4,
the LPCE and all the isolates inhibited ROS production. Specifically, potentilloside A (1)
suppressed the level of ROS at 25 µM (1.35 ± 0.00-fold, p < 0.001), 50 µM (1.49 ± 0.01-fold,
p < 0.001), and 100 µM (1.39± 0.01-fold, p < 0.001) in comparison to the TNF-α-treated group
(1.62 ± 0.00-fold, p < 0.001). Additionally, two flavonol-bis-glucuronides—isorhamnetin-bis-
3,7-O-β-D-glucuronide (2) and kaempferol-bis-3,7-O-β-D-glucuronide (3)—exhibited strong
inhibitory effects on ROS generation at 25 µM in comparison to the TNF-α-treated group.
Additionally, quercetin inhibited ROS generation to 3.13 µM (1.17 ± 0.03, p < 0.01), 6.25 µM
(1.17 ± 0.03, p < 0.01), and 12.5 µM (1.17 ± 0.03, p < 0.01) in comparison with the TNF-α-
treated group (1.62 ± 0.09, p < 0.001).
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Figure 4. Inhibitory effect of the extract (LPCE) and isolates (1–15) from P. chinensis on intracel-
lular ROS generation in TNF-α-induced HDFs. The HDF cells were plated at a concentration of
1 × 104 cells/well in a black 96-well plate and incubated for 24 h. The previous media were ex-
changed with fresh media without FBS for 24 h for cell cycle arrest. After that, LPCE and isolates were
treated with the indicated concentration for 1 h, and continuously cotreated with 20 ng/mL of TNF-α
and 10 µM of the probe dichlorofluorescin diacetate (DCFDA) for 15 min. The data are presented as
mean ± SEM (n = 2). ### p < 0.001, ## p < 0.01 and # p < 0.05 compared with the untreated group;
*** p < 0.001, ** p < 0.01 and * p < 0.05 compared with the TNF-α-treated group. Quercetin was used
as a positive control.
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2.4. Effects of LPCE and Flavonol-bis-Glucuronides 1–4 on TNF-α-Induced MMP-1 Secretion

The various types of isolates from P. chinensis exhibited inhibitory effects on the
generation of ROS in TNF-α-induced HDFs in this study. Among them, flavonol-bis-
glucuronides are rare in nature and their pharmacological activities are little-known. Thus,
compounds 1–4 were selected to evaluate their inhibitory effects on MMP-1 secretion in
HDFs stimulated by TNF-α. As shown in Figure 5, LPCE and flavonol-bis-glucuronides 1–4
inhibited MMP-1 secretion of TNF-α-induced HDFs. The TNF-α-treated group increased
MMP-1 secretion to 2.87 ± 0.17-fold (p < 0.01) in comparison to the vehicle group. LCPE
decreased MMP-1 secretion with all dosages; notably, at the concentration of 100 µg/mL,
MMP-1 secretion decreased to 1.83 ± 0.35-fold (p < 0.05) in comparison with the TNF-α-
treated group. Potentilloside A (1) inhibited MMP-1 secretion at 50 µM (0.42 ± 0.00-fold,
p < 0.001) and 100 µM (0.35± 0.03-fold, p < 0.001) in comparison to the TNF-α-treated group.
In addition, quercetin-bis-3,7-O-β-D-glucuronide (4) also significantly diminished MMP-1
secretion at 12.5–50 µM (12.5 µM: 1.76± 0.02-fold, p < 0.01; 25 µM: 1.73± 0.17-fold, p < 0.01;
100 µM: 2.02± 0.21-fold, p < 0.05) in contrast to TNF-α-treated group (2.87± 0.03, p < 0.001).
In the case of the positive control, the TNF-α-treated group significantly increased MMP-1
secretion (2.87± 0.05-fold, p < 0.01) in comparison with the vehicle control group. Quercetin
decreased MMP-1 secretion at 3.1 µM (1.75 ± 0.05, p < 0.05), 6.3 µM (1.82 ± 0.07, p < 0.05),
and 12.5 µM (1.90 ± 0.32, p < 0.05) in comparison with the TNF-α-treated group.

Figure 5. Effect of LPCE and compounds 1–4 from P. chinensis on MMP-1 protein expression in
TNF-α-stimulated HDFs. The HDF cells were plated at a concentration of 1 × 104 cells/well in a
black 96-well plate and incubated for 24 h. The previous media were exchanged with fresh media
without FBS for 24 h for cell cycle arrest. After that, the extract and isolates were treated with the
indicated concentration for 1 h, and continuously treated with 20 ng/mL of TNF-α for 24 h. The
MMP-1 secretion levels were measured using an ELISA kit. The data are presented as mean ± SEM
(n = 2). ### p < 0.001 and ## p < 0.01 compared with the untreated group; *** p < 0.001, ** p < 0.01, and
* p < 0.05 compared with the TNF-α-treated group. Quercetin was used as a positive control.

3. Materials and Methods
3.1. General Experimental Procedures

Thin layer chromatography (TLC) analyses were performed on Silica gel 60 F254
(Merck, MA, USA) and RP-18 F254S (Merck, MA, USA) plates. After TLC development in a
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confirmed solvent system, TLC plates were charred by 20% (v/v) H2SO4 reagent (Duksan,
Seoul, Republic of Korea) and then heated at 123 ◦C for 10 min. UV spectra were obtained
with a Perkin Elmer Lambda 35 UV/VIS spectrometer (PerkinElmer, Shelton, CT, USA).
Optical rotations were obtained on a Jasco P-2000 polarimeter (JASCO, Tokyo, Japan),
using a 10 mm microcell. JEOL (JEOL, Tokyo, Japan) 500 MHz was used for obtaining
NMR spectra. HR-ESI-Orbitrap-MS spectra were obtained using an LTQ-Orbitrap mass
spectrometer (Thermo scientific, Waltham, MA, USA). Agilent Cary 630 FT-IR (Agilent
Technologies, Santa Clara, CA, USA) was applied to obtain the IR spectrum. Sephadex
LH-20 (Merck, MA, USA), Silica gel (230–400 mesh and 70–230 mesh, Merck, MA, USA),
and Diaion HP-20 (Mitsubishi, Tokyo, Japan) were used for open column chromatography.
Pre-packed cartridges, Redi Sep-Silica (12 g, 24 g, 40 g, 80 g, and 120 g, Teledyne Isco,
Lincoln, NE, USA) and Redi Sep-C18 (13 g, 26 g, 43 g, and 130 g, Teledyne Isco, Lincoln,
NE, USA) were used for flash chromatography. Prep HPLC was performed using a Waters
purification system (Waters corporation, MA, USA) equipped with a 1525 pump, PDA 1996
detector, and Gemini NX-C18 110A column (250.0 × 21.2 mm i.d., 5.0 µm, Phenomenex,
CA, USA).

3.2. Plant Material

The dried leaves of Potentilla chinensis Ser. (Rosaceae) were obtained from COSMAX
BIO (Seongnam-si, Republic of Korea) in April 2021 and were identified by Professor Dae
Sik Jang. A voucher specimen (POCH-2021) has been deposited in the herbarium of the
college of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.

3.3. Extraction and Isolation

The ground plant materials (3 kg) were extracted with 75 kg of 30% EtOH using a
pilot extraction system (60 ◦C, 5 h). The extracts were filtered and then concentrated under
reduced pressure at 45 ◦C to obtain a 30% EtOH extract (LPCE, 351.45 g).

A portion of the EtOH extract (35.15 g) was fractionated using Diaion HP-20
(φ 4.8 × 35.0 cm) column chromatography (CC) with a gradient system (MeOH/H2O
= 0:1 to 1:0, v/v) to afford ten fractions (F1–F10). F2 (3.42 g) was fractionated by Sephadex
LH-20 CC (φ 3.6 × 68.0 cm, 50% MeOH) to obtain nine subfractions (F2-1–F2-9). F2-2 (1.0 g)
was subjected to reverse phased CC (φ 3.5 × 35.0 cm MeOH with 0.1% TFA/H2O with
0.1% TFA = 10:90 to 0:1, v/v) to give compounds 2 (6.4 mg) and 4 (14.8 mg). F2-3 (540 mg)
was separated by flash CC (Redi Sep-RP cartridge 130 g, MeOH with 0.1% formic acid
(FA)/H2O with 0.1% FA = 20:80 to 30:70, v/v) to give compound 1 (68.3 mg). F6 (1.74 g)
was subjected to Sephadex LH-20 CC (φ 3.4 × 72.0 cm, MeOH/H2O = 1:0 to 80:20, v/v) to
afford six subfractions (F6-1–F6-6). F6-5 (482.0 mg) was separated further by flash CC (Redi
Sep-silica cartridge 80 g, CH2Cl2/90% MeOH = 90:10 to 60:40, v/v) to isolate compound 5
(29.3 mg). F9 (767.2 mg) was separated by Sephadex LH-20 CC (φ 2.5 × 62.5 cm, MeOH)
to obtain seven subfractions (F9-1–F9-7). Compound 14 (30.0 mg) was purified by recrys-
tallization in MeOH from F9-7 (67.8 mg). Compound 10 (11.2 mg) was isolated from F9-5
(42.5 mg) using flash CC (Redi Sep-RP cartridge 43 g, MeOH/H2O = 50:50 to 70:30, v/v).

The remaining 30% EtOH extract (316.3 g) was chromatographed over a Diaion HP-20
(φ 8.5 × 54.0 cm), eluting with MeOH-H2O (from 0:1 to 1:0, v/v) to afford seven fractions
(R1–R7). R4 (5.0 g) was fractionated further by Sephadex LH-20 CC (φ 4.5 × 57 cm,
MeOH/H2O = 40:60 to 1:0, v/v) to obtain six subfractions (R4-1–R4-6). R4-2 (3.36 g) was
separated by silica gel CC (230–400 mesh, φ 4.5 × 28.0 cm, CH2Cl2:90% MeOH = 70:30 to
0:1 v/v) to obtain compound 3 (7.4 mg). Compound 15 (78.2 mg) was purified by flash
CC (Redi Sep-RP cartridge 43 g, MeOH with 0.1% FA/H2O with 0.1% FA = 10:90 to 25:75,
v/v) from R4-5 (134.3 mg). R6 (28.3 g) was fractionated into eight subfractions (R6-1–R6-8)
by Sephadex LH-20 CC (φ 5.0 × 55.0 cm, MeOH/H2O = 80:20 to 1:0, v/v). R6-5 (2.0 g)
was separated into seven subfractions (R6-5-1–R6-5-7) by silica gel CC (230–400 mesh; φ
4.0 × 24.0 cm; CH2Cl2/90% MeOH = 80:20 to 70:30, v/v). Compound 12 (1.0 mg) was
obtained from R6-5-6 (159.3 mg) by reversed-phase MPLC with a Redi Sep-C18 cartridge
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(50 g, MeOH-H2O, from 10:90 to 40:60, v/v). Compound 13 (4.3 mg) was purified from R6-
5-7 (230.0 mg) by reversed-phase MPLC with a Redi Sep-C18 cartridge (50 g, MeOH-H2O,
from 10:90 to 40:60, v/v), followed by preparative HPLC on a Gemini NX-C18 110A column
(MeOH with 0.1% FA-H2O with 0.1% FA, 40:60, v/v). R6-7 (2.0 g) was chromatographed
over a Silica gel (230–400 mesh; φ 4.0 × 22.0 cm), eluting with CH2Cl2/90% MeOH (from
70:30 to 0:1, v/v) to afford nine subfractions (R6-7-1–R6-7-9). Compounds 8 (1.0 mg) and 9
(8.4 mg) were obtained from R6-7-3 (49.0 mg) and R6-7-4 (100.0 mg), respectively, by prep
HPLC column (Gemini NX-C18 110A, MeOH with 0.1% FA/H2O with 0.1% FA = 45:55,
v/v). Subfraction R6-7-7(320.0 mg) was separated further by flash CC with a Redi Sep-silica
cartridge (40 g, CH2Cl2/90% MeOH = 80:20 to 65:35, v/v) to give six subfractions (R6-7-7-
1–R6-7-7-6). Subfraction R6-7-7-4 (2.4 g), using a flash chromatographic system with a Redi
Sep-RP cartridge (130 g, acetonitrile/H2O = 60:40 to 75:25, v/v), was used to obtain five
subfractions (R6-7-7-4-1~R6-7-7-4-5). Compounds 6 (2.5 mg), 7 (4.2 mg), and 11 (10.4 mg)
were obtained from R6-7-7-4 (47.4 mg), followed by preparative HPLC on a Gemini NX-C18
110A column (MeOH with 0.1% FA/H2O with 0.1% FA, from 22:78 to 23:77, v/v).

Potentilloside A (1)

Yellow powder; m.p.: 174.1 ◦C; [α]D
22: −31.6 (c 0.1, H2O); UV (H2O) λmax (log ε) 264

(4.02), 346 nm (3.97); IR (ATR) νmax 3395.07, 1792.83, 1653.66, 1603.52, 1503.24 cm−1; HR-
ESI-Orbitrap-MS (positive mode) m/z = 655.1141 [M + H]+ (calcd for C27H27O19, 655.1147);
1H-NMR (DMSO-d6, 500 MHz) and 13C-NMR (DMSO-d6, 125 MHz) data, see Table 1.

3.4. Acidic Hydrolysis of 1 and Sugar Identification

The absolute configuration of the glucuronic acid moiety in compound 1 was deter-
mined as in reference [38]. Compound 1 (1.0 mg) was hydrolyzed in 1% HCl (1 mL) at
100 ◦C for 24 h. The hydrolysate was dissolved in pyridine (500 µL) and L-cysteine methyl
ester hydrochloride (1.2 mg) was added and heated at 60 ◦C for 1 h. σ-Tolyl isothiocyanate
(100 µL) was added and heated again at 60 ◦C for 1 h. The glucuronic acid in the reaction
mixture of 1 was detected at 20.74 min by HPLC under a gradient system (Mobile phase
MeCN−H2O (25:75, v/v) containing 50 mM H3PO4, 30 min). The retention time of the
authentic D-glucuronic acid was 20.77 min under the same HPLC conditions. Therefore,
the absolute configuration of β-glucuronic acid in 1 was confirmed as the D-configuration.

3.5. Cell Culture Conditions

HDFs were purchased from PromoCell (Sickingenstr, Heidelberg, Germany). The cells
were cultured in Dulbecco’s modified Eagle’s medium (Gibco, GrandIsland, NY, USA)
supplemented with 10% fetal bovine serum (Atlas, Fort Collins, CO, USA) and penicillin–
streptomycin solution (Welegen, Seoul, Republic of Korea). Cells were incubated in a humid
cell incubator (Thermo Scientific, Waltham, MA, USA) at 37 ◦C in a 5% CO2 atmosphere.

3.6. Sample Preparations

The extract and compounds 1–15 were dissolved in DMSO (Sigma-Aldrich, St. Louis,
MO, USA) to 10 mM. The final concentration of DMSO was kept below 1% for each sample
treatment. TNF-α (PeproTech, Rocky Hill, NJ, USA) was dissolved in 1% bovine serum
albumin (ROCHE, Basel, Switzerland) solution to obtain 20 µg/mL and stored at −20 ◦C
until use.

3.7. Cell Viability

HDFs were plated in 96-well cell culture plates at a concentration of 5 × 103 cells/well
and incubated in a humid cell incubator for 24 h. After this, the extract and compounds
were treated with the attached cells at the indicated concentration for 24 h. Next, 100 µL of
10% Ez-cytox solution was added to each well to evaluate the cytotoxicity of the extract
and isolates on HDFs. The values were deterimined using a SPARK 10M (Tecan Group
Ltd., Männedorf, Switzerland).
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3.8. ROS Generation Assay

HDFs were seeded in 96-well black plates at a concentration of 1 × 104 cells/well and
incubated in a humid cell incubator for 24 h; then, the media was exchanged with new
media without FBS to arrest the cell cycle. Next, the plated cells were treated with the
extract and compounds at the indicated concentrations for 1h. After that, 20 ng/mL of
TNF-α (PeproTech) was continuously added to each well and incubated. After 15 min of
incubation, the probe dichlorofluorescein diacetate (DCFDA; Sigma-Aldrich) was treated at
a concentration of 10 µM and each well washed with 100 µL of phosphate-buffered saline
(PBS; Welgene, Gyeongsangbuk, Republic of Korea). Fluorescence was measured using a
SPARK 10M, and the wavelength was set to 485/535 nm. The results for the intracellular
ROS levels are presented as a percentage of the vehicle control.

3.9. Enzyme-Linked Immunosorbent Assay (ELISA)

HDFs were seeded in 48-well cell culture plates at a concentration of 2× 104 cells/well
for 24 h. Then, the previous media was replaced with fresh media without FBS to arrest the
cell cycle. Next, the extract and compounds were treated at a specific concentration for 1 h.
Then, 20 ng/mL of TNF-αwas added to each well for 24 h. After this, the supernatants were
collected to measure MMP-1 secretion using an ELISA kit. The results were determined
using a SPARK 10M.

3.10. Statistical Analysis

Experimental data are presented mean ± standard error of the mean (SEM). The
statistical analysis of the experimental results was conducted using a one-way ANOVA
in GraphPad Prism software. The difference between each group was evaluated using
Tukey’s multiple comparison at the range of p < 0.05.

4. Discussion

A new flavonol glycoside (potentilloside A, 1) and 14 known compounds (2–15) were
isolated from a 30% EtOH extract from the leaves of P. chinensis using repeated chromatog-
raphy in the present study. Two flavonol-bis-glucuronides—isorhamnetin-bis-3,7-O-β-D-
glucuronide (2) and kaempferol-bis-3,7-O-β-D-glucuronide (3)—were first isolated from
Geum rivale L (Rosaceae) in 2021 [26]. The presence of quercetin-bis-3,7-O-β-D-glucuronide
(4) was already identified from Potentilla reptans (Rosaceae), but its biological activities
have not yet been reported [26,27]. Although the flavonol or flavone glycosides 5–13,
except for 10, were all found in the same Rosaceae plants, they were first reported as con-
stituents of P. chinensis in this study. Flavonoid glucuronides are rare in nature compared to
other types of flavonoid glycosides. To the best of our knowledge, 211 kinds of flavonoid
glucuronides have been reported to date. Among them, flavonoid bis-glucuronides rep-
resent only 22 kinds—including compounds 2–4 [39]. Thus, the biological activity of
flavonoid glucuronides alone is not sufficient, although some of them have shown vari-
ous pharmacological effects. For example, quercetin-3-O-β-D-glucuronide (5)—one of the
most studied flavonoid glucuronides—exhibits antioxidant [40,41], anti-inflammatory [42],
anticancer [43], amyloid β inhibitory [44], and anti-HIV activities [45]. Kaempferol-3-O-β-D-
glucuronide (6) has also shown antioxidant [41], amyloid β inhibitory [44], and antibacterial
effects [46]. In contrast, two flavone glucuronides—apigenin-7-O-β-D-glucuronide (12)
and luteolin-7-O-β-D-glucuronide (13)—have displayed anti-inflammatory effects [47,48],
vascular protective effects [48], and antigonadotrophic activities [49]. In addition, research
on the various pharmacological activities of flavonoids is in progress. Since flavonoids
are pleiotropic substances, it is difficult to evaluate their pharmacological and therapeutic
potentials with just a few bioassays. Therefore, multifaceted approaches are needed to
understand their pharmacological properties.

The human skin covers the entire surface area of the body to protect against pathogens
and harmful chemical factors such as solar radiation [50,51]. The organ is composed of
several interacting layers: the epidermis, dermis, and subcutaneous tissues. The epidermis
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covers the outermost side of the skin; 95% of it is composed of keratinocyte, which continu-
ously differentiates to renew and protect injured skin against external pathogens [52]. The
epidermis receives nutrients from the dermis [53]. The dermis consists of dermal fibroblasts,
which secrete collagen, elastin, and other proteins [54]. Due to the interactions between the
functional layers, the skin maintains its strength, flexibility, moisture, and thickness [55].
Over time, different intrinsic and extrinsic factors trigger the skin’s aging process through
the degradation of its main components, such as collagen and elastin [56].

Skin aging is a natural process and is mainly categorized as intrinsic or extrinsic
aging. Intrinsic aging is stimulated by endogenous factors such as estrogen hormone
changes and the mutation of genes [57]. Extrinsic aging is caused by exogenous factors
that include smoking, air pollution, and UV exposure [58]. UV exposure mainly causes
photoaging, which causes accumulative damage to the functions of skin cells, such as
fibroblast ECM synthesis, melanocyte pigment genesis, and Langerhans cell cutaneous
immune function [59]. UV radiation provokes excessive pro-inflammatory cytokines,
including IFN-γ, ILs, and TNF-α [60]. TNF-α has been studied and shown to bind a specific
cell surface receptor, TNFR1. TNF-α causes excessive intracellular ROS generation [61,62].
ROS damage mitochondrial DNA and cause mitochondrial dysfunction in the skin. These
lead to the altering of gene expression and accelerate the skin aging process. Additionally,
ROS induce various diseases and pathogenic mechanisms such as cardiac disease, cancer,
and autophagy [63,64]. Thus, the inhibition of TNF-α-induced ROS generation is a crucial
element in preventing skin aging and related diseases. In this study, we investigated the
protective effect of LPCE and its chemical constituents on TNF-α-stimulated HDFs. Our
results showed that all isolates had an inhibitory effect on ROS generation.

Proinflammatory cytokines trigger the synthesis of matrix metalloproteases (MMPs)
such as gelatinase MMP-2, MMP-9, and collagenase MMP-1. Among the MMPs, MMP-1
degrades collagen 1 fibrils, which are the main type of ECM collagen [65]. The LPCE
and four flavonol-bis-glucuronides (1–4) showed a significant inhibitory effect on MMP-1
secretion in TNF-α-induced HDFs. The extract and compounds 1–4 significantly decreased
MMP-1 secretion. These results suggest that the extract and flavonol-bis-glucuronides are
potential natural products that protect the skin against various aging factors. The inhibitory
effects of the following three flavonol-bis-glucuronides on TNF-α- induced ROS generation
and MMP-1 secretion have not yet been reported: isorhamnetin-bis-3,7-O-β-D-glucuronide
(2), kaempferol-bis-3,7-O-β-D-glucuronide (3), and quercetin-bis-3,7-O-β-D-glucuronide (4).

Nevertheless, there are possible limitations to this study. For example, TNF-α-induced
ROS generation triggers MAPK phosphorylation. This leads to the activation of transcrip-
tion pathways such as the AP-1 (c-fos and c-Jun) and NF-κB pathways [66]. Through these
pathways, an increase occurs in MMP-1 secretion and levels of pro-inflammatory cytokines
such as IL-6 and IL-8 [67]. In this study, these pathways have not been presented in detail.
To fully understand the protective effects of the P. chinensis extract and its isolates, further
study is encouraged.

5. Conclusions

A new flavonol-bis-glucuronide, potentilloside A (1)—along with 14 known com-
pounds (2–15)—were isolated from the leaves of P. chinensis in this study. We evaluated
the protective effects of the extract and the compounds isolated from P. chinensis on TNF-
α-stimulated skin aging in HDFs. As a result, the extract and all the compounds tested,
including potentilloside A (1), inhibited ROS generation in TNF-α-induced HDFs. Fur-
thermore, the extract and flavonol-bis-glucuronides (1–4) diminished MMP-1 secretion in
TNF-α-induced HDFs. In particular, potentilloside A (1) significantly decreased MMP-1
secretion compared to the TNF-α treatment group. Although further studies should be
conducted to understand the mechanisms of anti-skin aging effects in their entirety, these
results suggest that extracts from the leaves of P. chinensis and potentilloside A (1) are
candidates to protect skin against photodamage.
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