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Abstract: Kitagawia Pimenov is one of the segregate genera of Peucedanum sensu lato within the Api-
aceae. The phylogenetic position and morphological delimitation of Kitagawia have been controversial.
In this study, we used plastid genome (plastome) and nuclear ribosomal DNA (nrDNA) sequences
to reconstruct the phylogeny of Kitagawia, along with comparative plastome and morphological
analyses between Kitagawia and related taxa. The phylogenetic results identified that all examined
Kitagawia species were divided into Subclade I and Subclade II within the tribe Selineae, and they
were all distant from the representative members of Peucedanum sensu stricto. The plastomes of
Kitagawia and related taxa showed visible differences in the LSC/IRa junction (JLA) and several hy-
pervariable regions, which separated Subclade I and Subclade II from other taxa. Fruit anatomical and
micromorphological characteristics, as well as general morphological characteristics, distinguished
the four Kitagawia species within Subclade I from Subclade II and other related genera. This study
supported the separation of Kitagawia from Peucedanum sensu lato, confirmed that Kitagawia belongs
to Selineae, and two species (K. praeruptora and K. formosana) within Subclade II should be placed in a
new genus. We believe that the “core” Kitagawia should be limited to Subclade I, and this genus can
be distinguished by the association of a series of morphological characteristics. Overall, our study
provides new insights into the phylogeny, plastome evolution, and taxonomy of Kitagawia.

Keywords: Kitagawia; Peucedanum; Apiaceae; morphology; phylogeny; plastome evolution; taxonomy

1. Introduction

Peucedanum sensu lato, with 100–120 species distributed in Eurasia and Africa, is
taxonomically one of the most complex groups in the Apiaceae [1]. Peucedanum sensu
lato has long been regarded as extremely heterogeneous and contains a great diversity of
life-forms, leaf and fruit structures, and chemical constituents [2,3]. Based on morphological
and molecular studies, the genus is now reduced to only a few species allied to the type
species Peucedanum officinale L., called Peucedanum sensu stricto, and several segregates are
recognized as distinct genera [4–9].

Kitagawia Pimenov is one of the segregate genera of Peucedanum sensu lato. This genus
was first described by the Russian botanist M. G. Pimenov in 1986 [10]. By investigating the
carpological, morphological, and biochemical characteristics of species of Peucedanum sensu
lato from the Far East and Siberia, Pimenov identified five species and one subspecies in
the new genus Kitagawia and designated Kitagawia terebinthacea (Fisch. ex Trevir.) Pimenov
as the nomenclatural type [10]. According to the original description of the genus by
Pimenov [10], Kitagawia possesses distinguishing characteristics, such as partial lignification
of mesocarp parenchyma and the absence of several flavonoids common to Peucedanum
sensu lato.
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However, the taxonomy of Kitagawia has long been controversial, and the boundaries
of Kitagawia are poorly determined. Since the establishment of Kitagawia, many authors still
include species treated as Kitagawia in Peucedanum sensu lato, and Kitagawia has been treated
as a synonym of Peucedanum sensu lato [11–14]. In addition, several recently discovered
Korean endemics that morphologically resemble Kitagawia species were also included in
Peucedanum sensu lato [15,16]. Only a few botanists have thought it necessary to separate
Kitagawia from Peucedanum sensu lato. Of them, Pimenov, the authority on Kitagawia, stated
in 1986 that the boundaries of Kitagawia may expand further (“some uncovered species of
Peucedanum sensu lato and Angelica in China and Japan should probably be transferred
to Kitagawia”) [10]. Pimenov and Ostroumova [17] revised the description of the genus
and included nine species in Kitagawia. Meanwhile, four species of Peucedanum sensu
lato endemic in China, Peucedanum formosanum Hayata, Peucedanum ampliatum K.T. Fu,
Peucedanum harry-smithii Fedde ex H. Wolff, and Peucedanum songpanense R.H. Shan &
F.T. Pu, were considered as possible candidates for inclusion in Kitagawia [17]. In 2017,
Pimenov identified five new nomenclatural combinations for Kitagawia by consulting the
type specimens of Chinese Apiaceae [18]. Currently, ten species have been identified in
Kitagawia [4]. Eight of these species, including the type species K. terebinthacea, are found
in China.

The morphological delimitation of Kitagawia is ambiguous. In traditional taxonomy,
fruit characteristics are of crucial importance in the classification system of the Apiaceae,
and this is true for the identification of Kitagawia [10,19–22]. However, three newly identi-
fied Kitagawia species, Kitagawia macilenta (Franch.) Pimenov, Kitagawia formosana (Hayata)
Pimenov, and Kitagawia praeruptora (Dunn) Pimenov have more than one vallecular vitta
and more than two commissural vittae, and the latter two species have hairy mericarps,
all incongruent with the original description of Kitagawia [10–12]. In addition, similar
characteristics such as mesocarp cells with pitted walls, vallecular vittae one, and com-
missural vittae two are shared by Kitagawia, Peucedanum sensu stricto, and other segregate
genera of Peucedanum sensu lato [4], which blur the morphological delimitations among
them. Recently, fruit micromorphological studies performed by Ostroumova [23–25] have
revealed a new diagnostic characteristic for Kitagawia (fruits are either pubescent or have
areas with rugulate cuticles). Nevertheless, this characteristic was not reported in a similar
study by Lee et al. [26]. Therefore, whether fruit micromorphological characteristics can
provide support for the distinction of Kitagawia needs further examination.

The molecular phylogeny of Kitagawia is complicated and unresolved. Kitagawia
terebinthacea (Fisch. ex Trevir.) Pimenov, the type species of Kitagawia, has shown different
phylogenetic placements in several main clades (i.e., the tribe Selineae, Pleurospermeae,
and Acronema Clade) in various phylogenetic analyses [9,27–29]. The bewildering results
undoubtedly imply that some accessions of Kitagawia were misidentifications, as confirmed
by Downie et al. [30]. The result of Downie et al. [30] that Kitagawia was divided into the
tribe Selineae and Acronema Clade may also have been misleading. Recent phylogenetic
studies conducted by Pimenov et al. suggested that Kitagawia was not closely related to
Peucedanum sensu stricto and other segregates of Peucedanum sensu lato but clustered with
Saposhnikovia Schischk., which to some extent supported the separation of Kitagawia [5,9,31].
However, some Kitagawia species belonging to Selineae did not cluster together, according
to Zhou et al.’s [32,33] phylogenetic analyses. Thus, more reliable identification and more
robust phylogenetic reconstruction are required for Kitagawia.

It is notable that the aforementioned phylogenetic analyses relied on single DNA
fragments [e.g., nuclear ribosomal DNA internal transcribed spacer (nrDNA ITS) and
chloroplast DNA (cpDNA) rpl16 and rps16 intron], and they suffered from low branch
support. Plastids are important organelles in plants. In most angiosperms, including
Daucus L. and Foeniculum Mill. in the Apiaceae, plastid genomes (plastomes) are predomi-
nantly maternally inherited [34,35]. Plastomes lack recombination and have low rates of
nucleotide substitutions [36,37]. Adequate phylogenetic informative characters are another
important advantage of plastomes. These characteristics have led to their widespread use in
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analyses of phylogenetic relationships [38–40]. Plastome sequences can effectively improve
the support and resolution of phylogenies at the generic level and beyond [41–46]. In
particular, the plastome-based phylogeny performed by Liu et al. [47] constructed a robust
phylogenetic framework for Peucedanum sensu lato and provided a valuable reference to our
investigation of Kitagawia. In addition, comparative analyses of plastomes can also provide
useful information for eliciting evolutionary and interspecific relationships [48–50], which
should further improve our understanding of the taxonomic classification of Kitagawia.

The combination of molecular data and morphological characteristics has proven to
yield solid evidence for the phylogeny and taxonomy of many Apiaceae [51–55]. In the
present study, we performed comprehensive phylogenetic analyses based on plastomes and
nrDNA sequences, complemented by detailed comparative plastome and morphological
analyses of Kitagawia and related taxa. The objectives of this study were to: (1) reconstruct
the phylogeny of Kitagawia; (2) investigate the plastome features of Kitagawia and related
taxa; (3) verify the taxonomic value of fruit micromorphology for Kitagawia; (4) examine
previous taxonomic treatments and proposals for Kitagawia.

2. Results
2.1. Phylogenetic Analyses

Single-copy coding sequences (CDS) and nrDNA (ITS + ETS) sequences were used
to conduct the phylogenetic analyses. The phylogenetic trees based on the plastome CDS
dataset and nrDNA dataset produced incongruent tree topologies, while they identified
that all six Kitagawia species examined fell into Selineae but were not clustered in one
branch (Figure 1). Two types of support values, maximum likelihood (ML) bootstrap values
(BS) and Bayesian inference (BI) posterior probabilities (PP), are shown on the phylogenetic
trees (Figure 1).
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Figure 1. Phylogenetic trees constructed by maximum likelihood (ML) and Bayesian inference
(BI). The bootstrap values (BS) of ML and posterior probabilities (PP) of BI are listed at each node.
(*) represents maximum support in both analyses. Colored blocks indicate the main clades or
branches with inconsistent phylogenetic placements in both phylogenetic trees. (Left): CDS tree;
(Right): nrDNA (ITS + ETS) tree.



Plants 2022, 11, 3275 4 of 22

The analyses of ML and BI generated identical tree topologies for the plastome CDS
dataset (Figure 1). In Selineae, Kitagawia baicalensis (Redow. ex Willd.) Pimenov, Kitagawia
stepposa (Y.H. Huang) Pimenov, Kitagawia komarovii Pimenov, and K. terebinthacea clustered
with Peucedanum hakuunense Nakai and Peucedanum chujaense K. Kim, S.H. Oh, Chan S. Kim
& C.W. Park forming a robust branch, namely Subclade I (BS = 100%, PP = 1.00). Kitagawia
praeruptora (Dunn) Pimenov, K. formosana, P. harry-smithii var. grande (K.T. Fu) R.H. Shan &
M.G. Sheh, and P. ampliatum formed Subclade II with strong support (BS = 100%, PP = 1.00).
Subclade I and Subclade II were sister to Carlesia sinensis Dunn and Saposhnikovia divaricata
(Turcz.) Schischk. (BS = 100%, PP = 1.00), respectively. Within Subclade I, K. baicalensis
was sister to K. stepposa (BS = 100%, PP = 1.00), then they were clustered with K. komarovii
forming one branch of Subclade I (BS = 100%, PP = 1.00). Peucedanum hakuunense Nakai
was more closely related to P. chujaense (BS = 100%, PP = 1.00), then clustered with K.
terebinthacea forming another branch of Subclade I (BS = 100%, PP = 1.00). Within Subclade
II, P. ampliatum first diverged from the remaining species (BS = 100%, PP = 1.00), followed
by K. formosana (BS = 100%, PP = 1.00), and the branch K. praeruptora + P. harry-smithii
var. grande (BS = 100%, PP = 1.00). The branch Subclade I + C. sinensis were sister to four
Angelica species (BS = 100%, PP = 1.00); they were then clustered with the branch Subclade
II + S. divaricata (BS = 72%, PP = 0.98). Peucedanum morisonii Besser ex Schult. was located at
the base of Selineae (BS = 100%, PP = 1.00) and was distant from Subclade I and Subclade II.

The nrDNA (ITS + ETS) tree topologies generated by ML and BI analyses were also
consistent (Figure 1). In Selineae, the branch Subclade I + C. sinensis were no longer
sister to four Angelica species but were sister to the branch Subclade II + S. divaricata
(BS = 100%, PP = 1.00). For Subclade I, K. stepposa was no longer sister to K. baicalensis, but
formed a sister branch to K. komarovii (BS = 69%, PP = 0.94), then clustered with K. baicalen-
sis (BS = 100%, PP = 1.00). Peucedanum hakuunense Nakai was sister to K. terebinthacea
(BS = 85%, PP = 0.91), and they continued to cluster with K. stepposa, K. komarovii, and K.
baicalensis, but with only moderate support (BS = 68%, PP = 0.87). Within Subclade II,
K. formosana, K. praeruptora, P. ampliatum, and P. harry-smithii var. grande formed a poly-
tomy with strong support (BS = 100%, PP = 1.00). Peucedanum officinale L. was sister to
P. morisonii (BS = 100%, PP = 1.00), and they were clustered with four Angelica species
(BS = 97%, PP = 0.99).

Three clades, Tordyliinae, Coriandreae, and Hymenidium Clade, had very different phy-
logenetic placements in the two phylogenetic trees (Figure 1). In the CDS tree, Tordyliinae
was more closely related to Coriandreae (BS = 100%, PP = 1.00), and they were then clus-
tered with Hymenidium Clade forming a branch with high support (BS = 97%, PP = 1.00). In
the nrDNA (ITS + ETS) tree, the three clades were not clustered in one branch. Hymenidium
Clade was first to diverge (BS = 76%, PP = 0.99), followed by Tordyliinae (BS = 97%,
PP = 1.00), and a Coriandreae + Selineae branch (BS = 63%, PP = 0.77).

2.2. Comparative Analyses of Plastomes
2.2.1. Plastome Features of Kitagawia and Related Taxa

The complete plastome sequences range in size from 146,718 bp (K. formosana) to
148,327 bp (K. terebinthacea) for the 14 species of Kitagawia and related taxa (Table 1,
Figure S1). All these plastomes comprised a pair of inverted repeat (IR) regions (17,987–19,043 bp)
separated by the large single copy (LSC, 91,829–93,700 bp) and small single copy (SSC)
regions (17,377–17,631 bp), exhibiting a typical quadripartite structure [43,47] (Table 1,
Figure S1). The IR regions of three species (17,987 bp for P. morisonii, 18,058 bp for Angel-
ica sylvestris L., and 18,095 bp for C. sinensis) were the shortest in length (Table 1). The
overall GC content was between 37.4–37.6%, with the IR regions richer (44.3–44.8%) than
the LSC (35.9–36.1%) or SSC (30.8–31.1%) regions (Table 1, Figure S1). All 14 plastomes
encoded 113–114 unique genes, with 80 protein-coding genes (PCGs), 29–30 transfer RNA
(tRNA) genes, and 4 ribosomal RNA (rRNA) genes (Table 1 and Table S1). In comparison
to other samples in this study, the plastomes of K. praeruptora, K. formosana, and Peucedanum
harry-smithii var. grande lacked the trnT-GGU gene (Figure S1, Table S1). Fifteen genes
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were duplicated in the IR regions, including five PCGs, six tRNA genes, and four rRNA
genes (Table S1). Incomplete copy of gene ycf1 in the IRb region was regarded as a pseudo-
gene (ψycf1) (Table S1). There were 16 intron-containing genes found, 13 of which were
PCGs, and the remainder were tRNA genes (Table S1). Three genes (ycf3, clpP, and rps12)
possessed two introns, whereas the others each contained only one (Table S1).

Table 1. Features of the 14 plastid genomes of Kitagawia and related taxa.

Taxa
Length (bp) Number of Unique Genes GC Content (%)

Genome LSC SSC IR Total PCG tRNA rRNA Total LSC SSC IR

K. baicalensis 147,985 93,396 17,619 18,485 114 80 30 4 37.5 35.9 31.0 44.6
K. formosana 146,718 91,829 17,581 18,654 113 80 29 4 37.6 36.1 31.0 44.5
K. komarovii 147,790 93,225 17,631 18,467 114 80 30 4 37.5 35.9 31.1 44.6

K. praeruptora 147,035 92,072 17,535 18,714 113 80 29 4 37.6 36.1 31.1 44.5
K. stepposa 147,965 93,376 17,619 18,485 114 80 30 4 37.5 36.0 31.0 44.6

K. terebinthacea 148,327 93,078 17,605 18,822 114 80 30 4 37.5 35.9 30.9 44.3
P. ampliatum 147,403 92,526 17,519 18,679 114 80 30 4 37.6 36.0 31.0 44.5
P. chujaense 147,839 93,335 17,590 18,457 114 80 30 4 37.4 35.9 30.8 44.6

P. hakuunense 147,426 91,915 17,425 19,043 114 80 30 4 37.5 35.9 30.9 44.4
P. harry-smithii var. grande 147,046 92,135 17,527 18,692 113 80 29 4 37.6 36.0 31.1 44.5

P. morisonii 147,105 93,594 17,537 17,987 114 80 30 4 37.6 36.1 31.1 44.8
A. sylvestris 147,158 93,479 17,563 18,058 114 80 30 4 37.5 35.9 31.0 44.8
C. sinensis 147,436 93,700 17,546 18,095 114 80 30 4 37.5 35.9 31.0 44.7

S. divaricata 147,938 93,233 17,377 18,664 114 80 30 4 37.5 35.9 30.8 44.6

2.2.2. Simple Sequence Repeat Analysis

Among the 14 selected plastomes, the total number of simple sequence repeats (SSRs)
ranged from 65 (K. formosana) to 78 (P. hakuunense) (Figure 2, Table S2). The number
of mononucleotides (35–48) was the largest, followed by dinucleotides (14–23), tetranu-
cleotides (8–11), and trinucleotides (1–4) (Figure 2, Table S2). Hexanucleotides were the least
common, only found in K. terebinthacea and A. sylvestris (Figure 2, Table S2). In addition,
bases A and T were the dominant components for all identified SSRs in the 14 plastomes
(Figure 2, Table S2). In all plastomes, mononucleotides, dinucleotides, and trinucleotides
were composed almost entirely of A and T, except for the C/G motif (0–11.11%) of mononu-
cleotides (Figure 2, Table S2).

2.2.3. IR Border Analysis

The IR border regions and adjacent genes of the complete plastomes from 14 selected
species of Kitagawia and related taxa were compared to analyze expansion and contraction
in junction regions. Overall, Subclade I and Subclade II were similar at the four junctions,
while both markedly differed from P. morisonii, C. sinensis, and A. sylvestris. The LSC/IRa
junction (JLA) of the 14 plastomes occurred between genes trnL and trnH. There were
14–111 bp of non-coding sequence between JLA and the 3′ end of gene trnH in Subclade
I and Subclade II, which were considerably less than 928 bp in P. morisonii, 1068 bp in
C. sinensis, and 978 bp in A. sylvestris (Figure 3). Conversely, there were 1255–1848 bp of
non-coding sequence in Subclade I and Subclade II between JLA and the 3′ end of gene
trnL, which were much more than 746 bp in P. morisonii, 873 bp in C. sinensis, and 882 bp in
A. sylvestris (Figure 3). The four junctions in Subclade II were relatively consistent, whereas,
within Subclade I, they were more diverse. The LSC/IRb junction (JLB) was mostly located
within gene ycf2, with 37–576 bp of gene ycf2 duplicated in the IRb region, except that the
distance from JLB to the 3′ end of gene ycf2 was 35–53 bp in K. baicalensis, K. stepposa, and
P. hakuunense in Subclade I (Figure 3). Similarly, the SSC/IRb junction (JSB) were mostly
located between pseudogene ψycf1 and gene ndhF, and were 3–156 bp away from the 3′

end of gene ndhF, except for K. baicalensis, K. stepposa, and K. komarovii, where gene ndhF
spanned JSB, and 33 bp of gene ndhF were duplicated in the IRb region (Figure 3). In the
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14 plastomes, gene ycf1 spanned the SSC/IRa junction (JSA) (Figure 3). For K. baicalensis,
K. stepposa, and K. komarovii in Subclade I, 1884 bp of gene ycf1 duplicated in the IRa region,
while for the remaining plastomes, the duplication portions of gene ycf1 in the IRa region
were longer (1953–2269 bp) (Figure 3).
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Figure 2. Comparison of simple sequence repeats (SSRs) in the 14 plastomes of Kitagawia and related
taxa. (A) number of six types of SSRs; (B) number of all repeat motifs of identified SSRs. Boxes in
pink and green are for Subclade I and Subclade II, respectively.

2.2.4. DNA Rearrangement and Sequence Divergence Analyses

The DNA arrangement of the 14 plastomes examined was relatively conserved.
No gene rearrangements were detected among them (Figure S2). With reference to
K. terebinthacea, the overall sequence identity and divergent regions across the 14 selected
plastomes were analyzed. Clearly, the LSC and SSC regions were more divergent than the
two IR regions, and coding regions showed more sequence conservation than non-coding
regions (Figure 4). In several highly variable regions (e.g., atpF-atpH, petN-psbM, accD-psaI,
ycf2-trnL, rpl32-trnL, ycf1, and ycf2), Subclade I showed a high degree of similarity, which
differed from Subclade II and P. morisonii (Figure 4).
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Figure 3. Comparison of the border regions of the 14 plastomes of Kitagawia and related taxa. Different
boxes for genes represent the gene position.
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Figure 4. Sequence identity plot of the 14 plastomes with K. terebinthacea as the reference. The vertical
scale represents the percentage of identity ranging from 50 to 100%. Coding and non-coding regions
are marked in purple and pink, respectively.

2.3. Morphological Analyses
2.3.1. Fruit Anatomical and Micromorphological Examination

Fruit anatomical and micromorphological characteristics of the five Kitagawia species
studied are shown in Table 2.
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Table 2. Fruit anatomical and micromorphological characteristics of five Kitagawia species.

Taxa K. baicalensis K. stepposa K. komarovii K. terebinthacea K. praeruptora

Mericarps Strongly compressed
dorsally

Strongly compressed
dorsally

Strongly compressed
dorsally

Strongly compressed
dorsally

Slightly compressed
dorsally

Dorsal rib shape Filiform, slightly
prominent

Filiform, slightly
prominent

Filiform, slightly
prominent

Filiform, slightly
prominent Filiform, prominent

Marginal rib shape Winged Winged Winged Winged Narrowly winged

Vallecular vittae 1 1 1 1 3–4

Commissural vittae 2 2 2 2 6

Endosperm Slightly concave Slightly concave Flat Flat Flat

Layers of mesocarp cells 1–2 1–2 1–2 1–2 3–5

Mesocarp parenchyma Lignified parenchyma
with pitted walls

Lignified parenchyma
with pitted walls

Lignified parenchyma
with pitted walls

Lignified parenchyma
with pitted walls

Lignified parenchyma
with pitted walls

Average of marw/fw (%) 42.3 48.8 44.6 50.3 39.8

Average of cow/fw (%) 96.4 94.0 95.4 94.1 85.2

Cell borders (outer
surface of fruits) Inconspicuous Inconspicuous Inconspicuous Inconspicuous Inconspicuous

Fruit surfaces Undulate Rugate Tuberculate Undulate Raised

Cuticular foldings Striate and rugulate Smooth and striate Smooth and striate Striate and rugulate Rugulate and
tuberculate

Epicuticular wax Absent Absent Absent Absent Absent

Inner fruit structure Parenchyma cells with
pitted walls

Parenchyma cells with
pitted walls

Parenchyma cells with
pitted walls

Parenchyma cells with
pitted walls

Parenchyma cells with
pitted walls

Note: marw/fw: the ratio of the total widths of both marginal ribs to the fruit width; cow/fw: the ratio of the
commissure width to the fruit width.

Fruit anatomical characteristics showed that the four Kitagawia species within Subclade
I (i.e., K. baicalensis, K. komarovii, K. stepposa, and K. terebinthacea) all had strongly dorsally
compressed mericarps, filiform and slightly prominent dorsal (one median and two lateral)
ribs, winged marginal ribs, flat or slightly concave endosperm commissural face, solitary
vitta in each furrow, 2 vittae on commissure, 1–2 layers of mesocarp cells closest to the
epidermis, and lignified parenchyma with pitted walls in mesocarp (Table 2, Figure 5).
Kitagawia praeruptora (Dunn) Pimenov within Subclade II had slightly dorsally compressed
mericarps, filiform and prominent dorsal ribs, narrowly winged and thick marginal ribs, flat
endosperm commissural face, 3–4 vittae in each furrow, 6 vittae on commissure, 3–5 layers
of mesocarp cells closest to the epidermis, and lignified parenchyma with pitted walls in
mesocarp (Table 2, Figure 5). The average ratios of the total widths of both marginal ribs
to the entire fruit width were 42.3–50.3% in the four Kitagawia species within Subclade I
(K. baicalensis, K. komarovii, K. stepposa, and K. terebinthacea), while the average ratios of the
commissure width to the fruit width were 94.1–96.4% (Table 2, Figure 5). In K. praeruptora,
these two average ratios were 39.8% and 85.2%, respectively (Table 2, Figure 5).

Fruit micromorphological studies revealed that the five Kitagawia species had incon-
spicuous cell borders of fruit surfaces, different fruit surfaces (undulate: K. baicalensis and
K. terebinthacea; rugate: K. stepposa; tuberculate: K. komarovii; raised: K. praeruptora), various
cuticular foldings (cuticle striate and rugulate: K. baicanlensis and K. terebinthacea; cuticle
smooth and striate: K. stepposa and K. komarovii; dense, tiny prickles and short hairs with
rugulate and tuberculate cuticle: K. praeruptora), without epicuticular wax, and parenchyma
cells with pitted walls in marginal ribs (Table 2, Figure 6).
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clade II, respectively. Scale bar = 0.5 mm in (A); 0.25 mm in (B). 
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Figure 5. Fruit anatomical characteristics of five Kitagawia species. (A) transverse sections; (B) meso-
carp parenchyma in marginal ribs. (1) K. baicalensis; (2) K. stepposa; (3) K. komarovii; (4) K. terebinthacea;
(5) K. praeruptora. Abbreviations: cav = cavity; co = commissure; cv = commissural vittae;
e = endocarp; en = endosperm; ex = exocarp; lr = lateral ribs; m = mesocarp; mar = marginal
ribs; mer = median rib; p = parenchyma without pits; pp = lignified parenchyma with pitted walls;
t = trichomes; vb = vallecular bundles; vv = vallecular vittae. Boxes in pink and green are for Sub-
clade I and Subclade II, respectively. Scale bar = 0.5 mm in (A); 0.25 mm in (B).
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More morphological characteristics for all 15 species studied are summarized in Table S3. 

  

Figure 6. Fruit micromorphological characteristics of five Kitagawia species. (A) surface patterns
of fruits; (B) cuticular foldings of fruit surfaces; (C) inner structure in marginal ribs of fruits.
(1) K. baicalensis; (2) K. stepposa; (3) K. komarovii; (4) K. terebinthacea; (5) K. praeruptora. Rugulate
cuticles are marked with white triangles. Boxes in pink and green are for Subclade I and Subclade II,
respectively. Scale bar = 100 µm in (A); 50 µm in (B,C).

2.3.2. Comparison of General Morphological Characteristics

Considering general morphological characteristics, the four Kitagawia species within
Subclade I shared glabrous stems, 2–3-pinnate leaf blades, lanceolate bracts and bracte-
oles, unequal and adaxial surface hispid rays, white petals, subulate or triangular calyx
teeth, conical stylopodia, and elliptic, glabrous mericarps (Table S3). Kitagawia praeruptora
(Dunn) Pimenov and K. formosana within Subclade II shared hairy stems and rays, linear
or lanceolate bracts and bracteoles, white petals, obsolete or inconspicuous calyx teeth,
conical stylopodia, and ovate-elliptic, sparsely pubescent or hispid mericarps (Table S3).
More morphological characteristics for all 15 species studied are summarized in Table S3.
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3. Discussion
3.1. Phylogenetic Position and Non-Monophyly of Kitagawia

Previous phylogenetic analyses did not specifically examine the genus Kitagawia
and may have been misled by misidentifications of some Kitagawia accessions, failing to
identify a clear phylogenetic position for Kitagawia [27,29,30]. Recent studies have revealed
that Kitagawia is distantly related to Peucedanum sensu stricto and other segregates of
Peucedanum sensu lato, but they relied on single DNA fragments and were limited by low
support [5,9,31]. In this study, we combined complete plastome sequences with nrDNA
sequences to produce a well-supported phylogeny for Kitagawia.

In our study, single-copy CDS plastome sequences produced a robust phylogeny
for Kitagawia. In the CDS tree, all six Kitagawia species examined fell into Selineae and
were divided into two branches (Subclade I and Subclade II) (Figure 1). They were all
considerably distant from P. morisonii, the member of Peucedanum sensu stricto confirmed in
previous studies [2,8,29] (Figure 1). Similar results were presented in the nrDNA (ITS + ETS)
tree (Figure 1). Peucedanum officinale L., the type species of Peucedanum sensu stricto, formed
a sister branch to P. morisonii, which was closely related to four Angelica species and more
distantly related to the six Kitagawia species examined (Figure 1). In both phylogenetic
trees, Subclade I and C. sinensis, and Subclade II and S. divaricata formed sister branches,
respectively (Figure 1). Although there were differences in the topologies of plastome CDS
and nrDNA (ITS + ETS) trees, they consistently indicated considerably distant phylogenetic
relationships between Kitagawia and Peucedanum sensu stricto, thus providing strong
support for the separation of Kitagawia. These trees also revealed that Kitagawia, as defined
by Pimenov, was not monophyletic [4,10,17,18].

We believe that the “core” Kitagawia should be limited to Subclade I, while K. praeruptora
and K. formosana should be removed from the genus. Furthermore, P. hakuunense was treated
as a synonym of K. komarovii by Pimenov [18]; while our results showed that P. hakuunense
should be identified as a distinct species, both P. hakuunense and P. chujaense may belong
to Kitagawia. Our phylogenetic analyses confirmed that Kitagawia does not belong to the
Acronema Clade but to Selineae. There was no doubt that some accessions of Kitagawia used
in previous studies were misidentified [27,29,30]. Our results demonstrate the rationale
behind the separation of Kitagawia and the necessity for its further taxonomic revision.

3.2. Plastome Structure and Evolution and Their Phylogenetic Implications

Our comparative analyses revealed that all 14 plastomes examined displayed a typical
quadripartite structure [43,47] (Figure S1). The plastome structure, GC content, and gene
order were similar to those of species in the Apiaceae tribe Selineae (Figures S1 and S2,
Table 1), implying that plastome structure was highly conserved [43,47,55]. Among the
14 species examined, the plastomes of K. praeruptora, K. formosana, and P. harry-smithii var.
grande lacked the trnT-GGU gene (Table S2), which may suggest that they have different
evolutionary histories when compared to other plastomes [56,57].

SSRs have been widely used as molecular markers in plant population genetics and
evolutionary studies [58–60]. In the 14 studied plastomes of Kitagawia and related taxa,
mononucleotides were the most abundant SSRs, followed by dinucleotides, tetranucleotides,
trinucleotides, pentanucleotides, and hexanucleotides. Such findings are widespread in
Apiaceae, Liliaceae, and Allium L. [47,61,62]. All identified SSRs were mainly composed of
bases A and T, causing an AT richness in the overall plastome [43,63]. IR expansion and
contraction have been recognized as evolutionary markers for illustrating relationships
among taxa [43,55,64]. In this study, the JLA of species within Subclade I and Subclade II
visibly differed from other species examined (Figure 3). Distances between gene trnL and
JLA of species within Subclade I and Subclade II were considerably longer than P. morisonii,
C. sinensis, and A. sylvestris (Figure 3). In contrast, distances from gene trnH to JLA of
species within Subclade I and Subclade II were shorter than for the three above-mentioned
species (Figure 3). Furthermore, the lengths of the IR regions of P. morisonii, C. sinensis,
and A. sylvestris were shorter than for other species examined (18,457–19,043 bp) (Figure 3,
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Table 1). The similar features of JLA and the IR length of P. morisonii, C. sinensis, and
A. sylvestris may imply a common but different evolutionary history that differentiated
them from the others (Subclade I and II and S. divaricata). In addition, sequence divergences
noted in several regions (e.g., ycf1, ycf2, and accD-psaI) separated Subclade I from Subclade II
and P. morisonii (Figure 4). These differences in plastomes may reflect distinct phylogenetic
affinities between the species of Subclade I and the others [55]. Overall, the results of
comparative plastome analyses revealed different evolutionary relationships of Subclade I
and Subclade II to other taxa examined and added some support to the distinct phylogenetic
position and non-monophyly of Kitagawia.

3.3. Morphological Delimitations between Kitagawia and Related Taxa

In this study, we examined fruit anatomical and micromorphological characteris-
tics of five Kitagawia species (i.e., K. baicalensis, K. komarovii, K. praeruptora, K. stepposa,
and K. terebinthacea). The results showed that all species shared filiform dorsal ribs,
winged marginal ribs, flat or slightly concave endosperm commissural face, partly lignified
parenchyma cells with pitted walls in marginal ribs, inconspicuous cell borders of fruit
surfaces, without epicuticular wax (Figures 5 and 6, Table 2). These findings support
the recognition of Kitagawia at a generic level [10]. However, compared with the four
“core” Kitagawia species within Subclade I (K. baicalensis, K. komarovii, K. stepposa, and
K. terebinthacea), K. praeruptora within Subclade II had more vallecular vittae (3–4 vs. soli-
tary) and commissural vittae (6 vs. 2), more layers of mesocarp cells closest to the epidermis
(3–5 vs. 1–2), and narrower marginal ribs and commissure (Figure 5, Table 2). These dif-
ferences run counter to the descriptions of Kitagawia [4,10,17], implying that K. praeruptora
should be removed from Kitagawia. Furthermore, the five Kitagawia species examined had
different fruit surfaces and various cuticular foldings (Figure 6, Table 2). These character-
istics partly overlapped with the fruit micromorphological characteristics of Peucedanum
sensu stricto [23,25,65] and were incongruent with the results of Ostroumova [23–25]. Thus,
micromorphological characteristics of fruit surfaces might vary among populations, which
would make them poor diagnostic characteristics for Kitagawia.

Furthermore, the four “core” Kitagawia species within Subclade I differed from C. sinensis
in bracts and bracteoles (linear or lanceolate vs. linear), mericarp shape (elliptic vs. oblong-
ovate), mericarp surfaces (glabrous vs. densely hirtellous), and marginal rib shape of meri-
carps (winged vs. filiform) [66] (Table S3). Similarly, they were distinct from A. sylvestris,
which has linear bracts and bracteoles, pubescent rays, obsolete calyx teeth, broadly ovate
mericarps, and narrowly winged and obtuse dorsal ribs [17,67] (Table S3). It is notable
that the four “core” Kitagawia species within Subclade I were slightly different from the
representative members of Peucedanum sensu stricto (P. morisonii and P. officinale) in leaf
blades (2–3-pinnate vs. 3–6-ternate), bracts (lanceolate vs. subulate to linear), bracteoles
(lanceolate vs. linear), rays (adaxial surface hispid vs. glabrous), and petals (white vs.
yellow) [11,12,68] (Table S3). These partially overlapping traits reflect the difficulties in
dividing Peucedanum sensu lato and indicate that it is ill-advised to distinguish Kitagawia
from Peucedanum sensu stricto by individual morphological characteristics.

The association of a series of morphological characteristics is regarded as a more pow-
erful tool to distinguish taxonomically difficult taxa compared to a single morphological
characteristic [55]. Through our analyses, the morphological delimitation of Kitagawia (the
four “core” Kitagawia species within Subclade I) should be “stems glabrous, leaf blades
2–3-pinnate, ultimate leaf segments linear to lanceolate, bracts and bracteoles lanceolate,
rays adaxial surface hispid, petals white, calyx teeth subulate or triangular, stylopodia
conical, mericarps strongly compressed dorsally, elliptic and glabrous, dorsal ribs filiform
and slightly prominent, marginal ribs winged, commissure broad, solitary vitta in each
furrow, two vittae on commissure, partly lignified parenchyma cells with pitted walls in
marginal ribs, 1–2 layers of mesocarp cells closest to the epidermis, inconspicuous cell
borders of fruit surfaces, without epicuticular wax”. Considering that P. hakuunense and
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P. chujaense probably belong to Kitagawia, the morphological delimitation of Kitagawia may
need further revision.

3.4. Taxonomic Suggestions for Six Species from Kitagawia and Peucedanum Sensu Lato

Pimenov stated that the generic boundaries of Kitagawia might need to be expanded
and highlighted several Peucedanum sensu lato species that may belong to Kitagawia [10,17].
One example was discussed in the taxonomic treatment of K. formosana [18].

In this study, two Peucedanum sensu lato species considered as candidates for Kitagawia,
P. ampliatum and P. harry-smithii var. grande, were included to investigate the generic
boundaries of Kitagawia. In our phylogenetic trees, P. ampliatum and P. harry-smithii var.
grande clustered with K. praeruptora and K. formosana, forming Subclade II (Figure 1). The
phylogenetic positions of the four species within Subclade II were distant from Subclade I
(“core” Kitagawia) and Peucedanum sensu stricto (Figure 1). Instead, they are closely related
to S. divaricata, the type species of a monotypic genus Saposhnikovia (Figure 1). The rather
distant relationship of Subclade II to Subclade I and Peucedanum sensu stricto suggest
that the four species within Subclade II (including K. praeruptora and K. formosana) should
neither be considered members of Kitagawia nor included in Peucedanum sensu lato, which
is consistent with previous phylogenetic results [32,33,47,69].

In our morphological analyses, the four species within Subclade II, K. praeruptora,
K. formosana, P. ampliatum, and P. harry-smithii var. grande, shared characteristics “stems
pubescent or tomentose, bracts absent or few, linear or lanceolate, bracteoles numerous,
linear or lanceolate, rays pubescent or tomentose on adaxial surface or throughout, petals
white, mericarps pubescent or hispid, dorsal ribs filiform and prominent, marginal ribs
narrowly winged, 3–5 vittae in each furrow, 6–8 vittae on commissure” [11,12,70], which
differed from the four Kitagawia species within Subclade I, supporting the distant phyloge-
netic relationship of K. praeruptora and K. formosana to “core” Kitagawia (Figure 1, Table S3).
These characteristics shared by the four species within Subclade II could also distinguish
them from Peucedanum sensu stricto [4] and Saposhnikovia (the latter have glabrous stems,
rays, and mericarp, few bracteoles, solitary vitta in each furrow, two vittae on commissure,
and one pseudovitta under each primary rib) [71] (Table S3). As far as the present study is
concerned, the members of Subclade II possessed unique fruit anatomical and micromor-
phological characteristics, as well as general morphological characteristics, that could not be
identified in other related genera (Tables S2 and S3, Figures 5 and 6). This may suggest that
their current taxonomic placements are unreasonable. The phylogenetic and morphological
results consistently suggested that K. praeruptora and K. formosana should be placed in a new
genus and the two possible candidate taxa (P. ampliatum and P. harry-smithii var. grande)
should not be included in Kitagawia. For the possible new genus, more extensive population
sampling and study of additional, potentially related taxa are required to determine generic
boundaries and morphological delimitations.

Two Peucedanum sensu lato species found in Korea, P. hakuunense and P. chujaense,
fell into Subclade I. Of these, P. hakuunense was treated as a synonym of K. komarovii [18].
Peucedanum chujaense K. Kim, S.H. Oh, Chan S. Kim & C.W. Park was thought to be mor-
phologically most similar to Kitagawia species [15]. Our phylogenetic analyses revealed
that P. hakuunense and P. chujaense nested into Subclade I, suggesting they may need to
be included in Kitagawia (Figure 1). However, specimens of P. hakuunense and P. chujaense
were not available and morphological evaluations could not be undertaken. In our mor-
phological analyses, therefore, the general morphological characteristics of P. hakuunense
and P. chujaense were directly referenced from previous literature [15,72,73] to document
the morphological similarity of these two species with the four Kitagawia species within
Subclade I (Table S3). Phylogenetic and morphological evidence suggests that P. hakuunense
and P. chujaense probably belong to Kitagawia. More evidence is needed for a complete
taxonomic treatment of P. hakuunense and P. chujaense and for the clarification of interspecific
relationships within Subclade I. To that end, international cooperation will be needed to
produce a more detailed revision of Kitagawia.
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3.5. Topologic Incongruence between Phylogenies based on Plastome and NrDNA Sequences

Previous molecular phylogenetic studies have identified a common phylogenetic in-
congruence between plastid and nuclear gene trees [43,74]. Several evolutionary processes,
such as hybridization, introgression, and incomplete lineage sorting (ILS), are regarded as
plausible explanations for the discordance of plastid and nuclear DNA phylogenies [75,76].

In our phylogenetic analyses, the phylogenetic positions of three main clades
(i.e., Tordyliinae, Coriandreae, and Hymenidium Clade) differed between the two phy-
logenetic trees (Figure 2). These differences were also reported by Wen et al. [46]. We agree
with Wen et al. [46] that the conflicting positions of the three main clades (Tordyliinae,
Coriandreae, and Hymenidium Clade) between the plastome CDS and nrDNA (ITS + ETS)
trees were mainly caused by chloroplast capture. In Selineae, some branches (e.g., the
branch Subclade I + C. sinensis and the branch Subclade II + S. divaricata) and even some
species within the same branch differed in their phylogenetic placements in the phylo-
genies based on plastome CDS and nrDNA (ITS + ETS) sequences (Figure 1). Similar to
the three main clades (Tordyliinae, Coriandreae, and Hymenidium Clade), the incongruent
positions of the four branches (i.e., “Peucedanum sensu stricto group”, “Angelica group”,
Subclade I + Carlesia, and Subclade II + Saposhnikovia) between the plastome CDS and
nrDNA (ITS + ETS) trees may also have been generated by early chloroplast capture events
due to hybridization. Our phylogenetic results supported a chloroplast capture hypothesis
that the early lineage of the branch Subclade I + Carlesia may have successively captured the
chloroplast genome of ancestors of the “Angelica group”. The strongly supported polytomy
of Subclade II in the nrDNA (ITS + ETS) tree suggested the insufficiency of phylogenetic
informative characters in the nrDNA dataset, which is also thought to contribute to the
incongruent topologies between plastid and nuclear gene trees [77,78]. The lack of infor-
mative characters is usually derived from rapid radiation and hybridization [79,80]. In
our study, hybridization is not a reasonable explanation for the polytomy of Subclade II
because the four species within Subclade II included two stenochoric species (K. formosana
and P. ampliatum) with non-overlapping distributions [12,70]. Rapid radiation may be the
most likely mechanism for the polytomy of Subclade II in the nrDNA (ITS + ETS) tree. The
hairy stems and fruits and numerous mericarp vittae may be synapomorphies of the four
species within Subclade II (Table S4), and they may have undergone rapid morphological
differentiation by a founder effect [81], which can coincide with rapid radiation.

4. Materials and Methods
4.1. Taxon Sampling

Fresh green leaves from adult plants of seven taxa, including five Kitagawia species
(K. baicalensis, K. komarovii, K. praeruptora, K. stepposa, and K. terebinthacea), C. sinensis,
and S. divaricata were collected from the wild, and then immediately dried with silica
gel to preserve them for DNA extraction. Special permission was not required to collect
these materials because they are not key-protected plants. In addition, we requested and
obtained the genomic DNA of K. formosana from the Herbarium of the Institute of Botany
(PE), Chinese Academy of Sciences. The formal identification of all samples was undertaken
by Professor Xingjin He (Sichuan University). The voucher information of the eight samples
is summarized in Table S4.

4.2. DNA Extraction, Sequencing, Assembly, and Annotation

The total genomic DNA of the eight taxa was extracted from silica gel-dried leaves or
herbarium specimens with a modified CTAB protocol [82]. The primers ITS4 (5′-TCC TCC
GCT TAT TGA TAT GC-3′) and ITS5 (5′-GGA AGT AAA AGT CGT AAC AAG G-3′) were
used in the polymerase chain reaction (PCR) amplification of the complete ITS region [83].
The ETS sequences were amplified with primers 18S-ETS (5′-ACT TAC ACA TGC ATG GCT
TAA TCT-3′) and Umb-ETS (5′-GCG CAT GAG TGG TGA WTK GTA-3′) [84,85]. The 30-µL
PCR reactions contained 2 µL extracted total genomic DNA, 10 µL ddH2O, 1.5 µL each of
10 pmol µL−1 forward and reverse primers, and 15 µL Taq MasterMix (CWBio, Beijing,
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China). The PCR program of ITS and ETS regions started with an initial denaturation
at 94 ◦C for 4 min, followed by 30 cycles of denaturation at 94 ◦C for 45 s, annealing at
54 ◦C for 45 s, and extension at 72 ◦C for 1 min, with a final extension at 72 ◦C for 10 min.
All PCR products were separated on a 1.5% (w v−1) agarose TAE gel and sent to Sangon
(Shanghai, China) for sequencing. The newly sequenced ITS and ETS sequences of the
eight taxa were examined and edited with Geneious v9.0.2 [86], and consensus sequences
were obtained separately.

Plastomes of the eight taxa, namely K. baicalensis, K. formosana, K. komarovii, K. praeruptora,
K. stepposa, K. terebinthacea, C. sinensis, and S. divaricata, were sequenced. We provided 20 µL
of total genomic DNA per species for the sequencing process, and total genomic DNA
was sequenced on an Illumina HiSeq X Ten platform (paired-end, 150 bp) by Novogene
(Beijing, China). At least 5 GB of raw data per species were generated. Quality control of
the raw reads was performed using fastP v0.15.0 (-n 10 and -q 15) [87], yielding high-quality
reads for each species. The program GetOrganelle v1.7.5.3 [88] was used to assemble the
complete plastomes with the custom parameters (-F embplant_pt; -R 15; -k 21, 45, 65, 85,
105, 121). Assembled plastomes of the eight taxa were annotated with PGA [89]. Geneious
v9.0.2 [86] was then used to manually adjust the annotation for uncertain start and stop
codons based on comparisons with homologous genes from other annotated plastomes.
The circular plastome maps were generated with OGDRAW v1.3.1 [90].

The newly obtained complete plastomes, ITS, and ETS sequences of the eight taxa stud-
ied were submitted to GenBank under accession numbers OP379697-OP379704, OP377020-
OP377027, and OP379688-OP379695, respectively (Table S5).

4.3. Phylogenetic Analyses

After preliminary analyses, 28 species from Selineae, Tordyliinae, Coriandreae, Hy-
menidium Clade, Apieae, Careae, Pyramidoptereae, and Acronema Clade were selected to
conduct the phylogenetic reconstruction. The type species of Peucedanum sensu stricto
and Angelica, P. officinale and A. sylvestris, were included due to the blurred boundaries
and potential expansion of Kitagawia [10]. Similarly, P. ampliatum and P. harry-smithii var.
grande were added to examine the possible candidates for Kitagawia according to Pimenov
and Ostroumova [17]. Pternopetalum davidii Franch. and Pternopetalum vulgare (Dunn)
Hand.-Mazz., which belong to Acronema Clade, were chosen as the outgroup to root the
phylogenetic tree, based on the results of Downie et al. [30]. The names of the main clades
refer to the contributions of Downie et al. [30] and Gou et al. [51].

Two datasets were constructed for the phylogenetic analyses. The CDS dataset con-
sisted of single-copy CDS sequences from complete plastomes of 27 taxa (6 species from
Kitagawia and 21 species from other genera in the above-mentioned clades). To provide
greater branch support [85], the nrDNA dataset concatenated the complete ITS and ETS
regions from 27 taxa of the same genera used in the CDS dataset. Peucedanum officinale L.
and P. chujaense could not be added to the CDS dataset and nrDNA dataset, respectively,
due to a lack of online data. All sequences used in phylogenetic analyses are available in
GenBank (Table S5).

The 79 single-copy CDS sequences from 27 complete plastomes were extracted and
connected using PhyloSuite v1.2.2 [91]. The nrDNA (ITS + ETS) sequences of 27 taxa
were also concatenated with PhyloSuite v1.2.2 [91]. Sequences of the two datasets were
aligned with MAFFT v7.221 [92] and then manually corrected with MEGA7 [93]. Maximum
likelihood (ML) and Bayesian inference (BI) methods were adopted to infer phylogenetic
relationships. RAxML v8.2.10 [94] was used to perform the ML analyses for the two datasets
based on the GTRGAMMA model and 1000 rapid bootstrap replicates. MrBayes v3.2.7 [95]
was used to perform the BI analyses with the best substitution model as determined by
MrModeltest v2.4 [96]. The selected models for the CDS dataset and nrDNA dataset in
BI analyses were GTR + I + G and GTR + G, respectively. Four independent Markov
chains were run for 10,000,000 generations with random initial trees, sampling every
1000 generations. The first 25% of trees were discarded as burn-in, and the remaining
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trees were used to build a 50% majority-rule consensus tree. The phylogenetic trees were
visualized and edited with FigTree v1.4.4 [97] and MEGA7 [93].

4.4. Comparative Analyses of Plastomes

To better understand the genomics and evolution of Kitagawia plastomes, 14 plastomes
representing Kitagawia and related taxa were selected for comparative analyses of plastomes
based on our phylogenetic results. They consisted of six Kitagawia plastomes (K. baicalensis,
K. formosana, K. komarovii, K. praeruptora, K. stepposa, and K. terebinthacea), five Peucedanum
sensu lato plastomes (P. ampliatum, P. chujaense, P. hakuunense, P. harry-smithii var. grande,
and P. morisonii), A. sylvestris, C. sinensis, and S. divaricata.

Simple sequence repeats (SSRs) for each plastome were detected with MISA (http:
//pgrc.ipk-gatersleben.de/misa/ (accessed on 21 May 2022)) [98]. The minimum numbers
of the SSRs were set as 10, 5, 4, 3, 3, and 3 for mono-, di-, tri-, tetra-, penta-, and hexa-
nucleotides, respectively.

The expansion or contraction between IR border regions of the 14 plastomes of Kita-
gawia and related taxa were drawn by IRscope [99] and adjusted manually.

The DNA rearrangements among the 14 selected plastomes were detected using
Mauve Aligner [100] implemented in Geneious v9.0.2 [86]. Sequence divergence of the
14 complete plastomes was visualized with mVISTA [101] under Shuffle-LAGAN alignment
mode [102] with K. terebinthacea as the reference.

4.5. Morphological Analyses
4.5.1. Fruit Anatomical and Micromorphological Characteristics

Mature fruits of five Kitagawia species (K. baicalensis, K. komarovii, K. praeruptora, K. step-
posa, and K. terebinthacea) were collected from the wild and preserved in formaldehyde–
acetic acid–alcohol (FAA) for morphological examination. Fruit anatomy was evaluated by
paraffin section. For each of the five species, the fruits of at least three individuals from the
same population were examined. All fruits were treated following the method of Feder and
O’Brien [103] for embedding in glycol methacrylate (GMA). A Leica RM2016 microtome
was used to prepare transverse sections through the center of the mericarp, about 3–5 mm
in thickness, and they were stained with toluidine blue. Sections were observed and pho-
tographed under an Olympus BX43 microscope. Morphological terminology followed
Kljuykov et al. [104].

Fruit micromorphology was examined by scanning electron microscope (SEM). Af-
ter dehydration using graded ethanol, all mature fruits were directly mounted on clean
aluminum stubs with conducting carbon adhesive tabs, coated, and then scanned with a
JSM-7500F scanning electron microscope. The micromorphological characteristics studied
and micromorphological terminology follow the contributions of Ostroumova [23,24].

4.5.2. General Morphological Characteristics

We examined the general morphological characteristics of the 14 species used in
the above comparative plastome analyses together with P. officinale, the type species of
Peucedanum sensu stricto. The characteristics examined included features of the stem, leaf,
bract, bracteole, ray, flower, and fruit. Data from the five Kitagawia species (K. baicalensis,
K. komarovii, K. praeruptora, K. stepposa, and K. terebinthacea) were obtained mainly from our
field-based observations and anatomy research. For some taxa and characteristics, data
were obtained directly from previous literature [11,12,15,17,66–68,71–73].

5. Conclusions

In this study, we newly sequenced complete plastomes of eight species from Kitagawia,
Carlesia, and Saposhnikovia. The phylogeny reconstruction of Kitagawia was performed based
on plastome CDS and nrDNA (ITS + ETS) sequences. Our results revealed that Kitagawia is
a member of the tribe Selineae but is divided into two branches (Subclade I and Subclade
II). The distant phylogenetic relationships between Kitagawia and Peucedanum sensu stricto

http://pgrc.ipk-gatersleben.de/misa/
http://pgrc.ipk-gatersleben.de/misa/
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verified the rationale behind the separation of Kitagawia. The visible differences in JLA and
several highly variable regions added some support to the distinct phylogenetic position
and non-monophyly of Kitagawia. Similarly, fruit anatomical and micromorphological
characteristics, as well as general morphological characteristics, distinguished Subclade
I from Subclade II and other related taxa, further supporting the results of phylogenetic
analyses. These findings demonstrated that P. ampliatum and P. harry-smithii var. grande
should not be included in Kitagawia and suggested that K. praeruptora and K. formosana
should be placed in a new genus and that P. hakuunense and P. chujaense probably belong to
Kitagawia. We believe that the “core” Kitagawia should be limited to Subclade I, and this
genus can be distinguished by the association of a series of morphological characteristics.
In short, our study confirmed the distinct generic status of Kitagawia and clarified the
morphological delimitations between Kitagawia and related taxa, providing a foundation
for further taxonomic and evolutionary research on Kitagawia.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11233275/s1, Figure S1: Gene maps of the eight plastomes
of Kitagawia, Carlesia, and Saposhnikovia; Table S1: List of genes identified in the 14 plastomes of
Kitagawia and related taxa; Table S2: Number of all identified SSRs in the 14 plastomes; Figure
S2: Mauve alignment of the 14 plastomes of Kitagawia and related taxa; Table S3: Synopsis of
general morphological characteristics from the 15 species involved in this study; Table S4: Collection
locality and voucher information are provided for the eight sequenced plastomes; Table S5: GenBank
accession numbers of DNA sequences used in this study.
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