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Abstract: Synthetic fungicides have been the main control of phytopathogenic fungi. However,
they cause harm to humans, animals, and the environment, as well as generating resistance in
phytopathogenic fungi. In the last few decades, the use of microorganisms as biocontrol agents of
phytopathogenic fungi has been an alternative to synthetic fungicide application. Actinomycetes
isolated from terrestrial, marine, wetland, saline, and endophyte environments have been used
for phytopathogenic fungus biocontrol. At present, there is a need for searching new secondary
compounds and metabolites of different isolation sources of actinomycetes; however, little information
is available on those isolated from other environments as biocontrol agents in agriculture. Therefore,
the objective of this review is to compare the antifungal activity and the main mechanisms of
action in actinomycetes isolated from different environments and to describe recent achievements
of their application in agriculture. Although actinomycetes have potential as biocontrol agents of
phytopathogenic fungi, few studies of actinomycetes are available of those from marine, saline, and
wetland environments, which have equal or greater potential as biocontrol agents than isolates of
actinomycetes from terrestrial environments.

Keywords: antifungal activity; marine; saline; wetland; post-harvest

1. Introduction

One of the key problems in agriculture is the damage caused by phytopathogenic
fungi [1]. Conventional methods to control phytopathogenic fungi have been carried out by
using synthetic fungicides; however, their application causes resistance in microorganisms
and harm to human, animal, and environmental health [2]. With the objective of achieving
food production efficiency from an ecological and economic points of view, the search for an
alternative to decrease the use of synthetic fungicides in agriculture is a global priority [3].

In recent years, the use of actinomycetes as a biocontrol agent on phytopathogenic
fungi has been an alternative to the application of synthetic fungicides [4]. Actinomycetes
are Gram-positive bacteria found in different habitats, humidity, pH, and temperature [5].
Actinomycetes have been isolated from different environments, such as terrestrial, marine,
hypersaline, wetlands, and plant endophytes, among others [6,7].

The main antagonistic mechanisms of actinomycetes to control phytopathogenic
fungi are competence for space and nutrients [8], antibiotics [9], siderophores [10], lytic
enzymes [11], volatile organic compounds (VOCs) [12], and host resistance induction [13].
Additionally, actinomycetes promote plant growth and development through the synthesis
of phytohormones, atmospheric nitrogen fixation, and mineral solubilization, among
others [14]. Several studies of actinomycetes have been reported; however, few studies have
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focused on actinomycetes, isolated from different environments, used as biocontrol agents
due to their effect in agriculture and antagonistic mechanisms to phytopathogenic fungi.

2. General Characteristics of Actinomycetes

Actinomycetes form vegetative or aerial mycelia and are capable of reproducing by
binary fission [15]. In vitro culture and the natural environment have a typical smell of
humid soil because of the production of two geosmin and 2-methylisoborneol volatile
organic compounds [16]. Spore production is a result of nutrient depletion, allowing
actinomycetes to remain latent until they find favorable conditions for growth [14]. Ad-
ditionally, filamentous and sporulating natures allow them to compete more efficiently
against other organisms found in the rhizosphere [17]. Their cell wall is a rigid structure
formed by complex compounds, such as peptidoglycan, teichoic and teichuronic acids,
and polysaccharides. Actinomycetes also have a high guanine and cytosine content in
DNA [18].

3. Actinomycetes as Biocontrol Agents

The importance of the use of actinomycetes as biocontrol agents is explained by
inherent positive characteristics: (1) they are not harmful to human and animal health;
(2) they are not toxic to plants; (3) they improve plant yield; and (4) they decrease the use of
synthetic fungicides [19,20]. Among the different genera, Streptomyces has been investigated
extensively because it is easy to isolate [21]. Actinomycetes have a slower growth than
bacteria. Thus, growth improvement techniques should be applied to obtain desirable
actinomycetes in culture media. These techniques are based on selective isolation media
and the pretreatment of samples, such as: soil with calcium carbonate, both by drying and
heating, wet, and chemical pretreatments, among others [22]. One of the ways to stimulate
actinomycete populations in soil is by adding biostimulants and organic fertilizers, such as
compost and vermicompost. S. sampsonii and S. flavovariabilis isolates from soil amended
with vermicompost showed the highest antagonistic activity towards Rhizoctonia solani,
Alternaria tenuissima, Aspergillus niger, and Penicillium expansum [23]. In addition, soil
amended with Brassica napus and Brassica rapa leaf residues promoted the increase in
actinomycete populations in the soil. The increase in the actinomycete population showed
a strong correlation with the suppression of the R. solani wilt disease [24]. Different
actinomycetes have been studied as biocontrol agents on phytopathogenic fungi and as
mechanisms of action (Table 1).

Table 1. Antagonistic mechanisms of actinomycetes for the control of phytopathogenic fungi.

Actinomycete Phytopathogen Host In Vivo
Inhibition

Antagonistic
Mechanisms Reference

Streptomyces sp. Colletotrichum fragariae Strawberry 100% Secondary metabolites [19]

S. sampsonii Sclerotinia sclerotiorum Green bean 100% Secondary metabolites [11]

Streptomyces sp. Ralstonia solanacearum Tomato 97% Induction of host resistance [13]

S. sichuanensis Fusarium oxysporum Banana 51% Siderophores [25]

Amycolatopsis sp. F. graminearum Maize 79% Lytic enzyme [26]

Arthrobacter humicola A. alternata Tomato 31% Secondary metabolites [27]

Nocardiopsis dassonvillei Bipolaris sorokiniana Wheat 72% Siderophores and lytic enzyme [28]

S. rameus R. bataticola Bean 70% Siderophores and lytic enzyme [10]

S. globisporous R. solani Tomato 50% Induction of host resistance [29]
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4. Main Actinomycete Antagonistic Mechanisms to Phytopathogenic Fungi

Biocontrol agents use a combination of several antagonistic mechanisms of action to
control phytopathogenic fungi [30]. The main antagonistic mechanisms of actinomycetes
are their competence for space and nutrients, antibiotics, siderophores, lytic enzymes,
and induction of host resistance, among others [1,13,19] (Figure 1). Understanding the
mechanisms of action of biocontrol agents is essential in order to improve their viability
and increase their potential [31].
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4.1. Competence for Space and Nutrients

Competition is an indirect mechanism of actinomycetes for the growth inhibition of
phytopathogenic fungi [8]. Competence between two or more microorganisms begins for
the same carbon source (carbohydrates such as sucrose, glucose, maltose, and fructose)
or space for their growth [32,33]. The ecological plasticity and fast growth of antagonistic
microorganisms allow them to assimilate the available nutrients in the host at a greater
amount than phytopathogenic fungi; thus, the spore germination stage and infection
processes to the host are reduced [34]. Competence is also an effective biocontrol mechanism
when the antagonist is found in sufficient volumes and assimilates nutrients faster and in
greater quantity than phytopathogenic fungi [30].

4.2. Antibiotic Production

Actinomycetes produce secondary metabolites with antifungal properties [1]. Approx-
imately 80% of antibiotics, such as streptomycin, spectinomycin, neomycin, tetracycline,
erythromycin, and nystatin, are produced by actinomycetes [35].

Furthermore, many metabolites have been discovered with antimicrobial properties
similar to phytopathogenic fungi, such as amphotericin B, macrolides, actinomycin D,
natamycin, antimycin, and neopeptine [36–38]. Macrolides are a group of antibiotics
produced by actinomycetes that inhibit fungus protein synthesis [39]. Amphotericin B joins
selectively to ergosterol in the fungal cell membrane, producing changes in permeability
and inducing cell lysis [40]. Moreover, actinomycin D production by Streptomyces sp.
strains limit microbial growth and RNA synthesis [9]. Antimycin inhibits the mitochondrial
electron transport chain between cytochromes b and c [41]. Natamycin blocks fungal
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growth when it joins to the ergosterol of the fungus cell membrane [42]. Neopeptine is
an inhibitor of the microbial cell wall biosynthesis at the enzymatic level [37]. Another
important process that involves antibiotic production is symbiosis between actinomycetes
and plants, as the antibiotic protects the plant from phytopathogenic fungi, and the plant
exudates allow actinomycete development [43].

4.3. Siderophore Production

Siderophores are molecules that perform sequestration on low-molecular weight irons
(500–1000 Da) and link with Fe3+ ions to be transported to the cell and secreted in re-
sponse to low Fe3+ availability [44]. Siderophores are classified as: phenolate, catecholate,
hydroxamate, and carboxylate; some have a group mix (mixed types) [45]. Siderophore
production has been demonstrated by Streptomyces strains that produce hydroxamate-
type siderophores known as deferoxamine [20]. Moreover, heterobactins are catecholate-
hydroximate mixed-type siderophores that have been found in Rhodococcus erythropolis [46],
and albisporachelin is a hydroxamate-type siderophore produced by Amycolatopsis albis-
pora [47]. A sufficient amount of siderophore production by biocontrol agents limits Fe3+

availability for phytopathogenic fungi. Thus, growth and virulence are limited because
microorganisms without iron in their environment cannot perform vital processes, such
as synthesis and repair of nucleic acids, respiration, photosynthetic transport, and nitrate
reduction or free radical detoxification [48].

4.4. Lytic Enzyme Production

Actinomycetes produce lytic enzymes, such as chitinase, β-1,3-glucanase, and protease
that degrade the fungal cell wall [26] and cause loss of membrane integrity, set intracellular
material free, and cell death [1]. The fungus cell wall is responsible for a cell’s physical
integrity, formed by chitin, β-1,3-glucan, and protein [49]. The β-1,3 glucanase hydrolyze
β-D-glycosidic bonds of β-1,3 glucan, and chitinases hydrolyze chitin β-1,4 N-acetyl-β-
D-glycosamide bonds, breaking fungal cell walls [31,50]. Proteases hydrolyze proteins,
specifically mannoproteins, make up the phytopathogenic fungi cell wall [51].

4.5. Volatile Organic Compounds (VOCs)

Volatile organic compounds (VOCs) are low molecular weight compounds that evapo-
rate easily at a normal temperature and pressure, which gives them the ability to diffuse
through the atmosphere and soil [52]. Most VOCs are lipid-soluble and thus have low
water solubility. These organic compounds travel great distances in structurally hetero-
geneous environments, as well as in solid, liquid, or gaseous compounds [31]. VOCs
produced by actinomycetes inhibit the growth of phytopathogenic fungi, promote plant
growth, possess nematocidal activity, and induce systemic resistance in plants [11,12]. They
inhibit the mycelia, causing swelling, conidia collapse, and structural alterations in the
fungal cell wall [53]. The Streptomyces species produces 2-ethyl-5-methylpyrazine and
dimethyl disulfide that inhibit mycelial growth and spore germination [12]. VOCs such
as S-methyl ethanethioate, 1,2-dimethyldisulfane, 2-methyl propanoic acid, acetic acid,
3-methyl-butanoic acid, undecan-2-one, nonan-2-one, and 2-isopropyl-5-methylcyclohexan-
1-ol have been reported from the actinomycetes Nocardiopsis sp., which inhibit mycelial
growth of fungi [54].

4.6. Induction of Host Resistance

Induced resistance in plants is activated by antagonist actinomycetes that cause a
defense response in the host through several chemical or biochemical reactions [13]. Sys-
temic acquired resistance (SAR) and induced systemic resistance (ISR) are two forms of
induced resistance, characterized based on signaling pathways [30]. SAR stimulates a rapid
response in the phytopathogens and actinomycetes, stimulating a special ISR state called
“priming”, for faster and stronger defense responses [55,56]. Actinomycetes are capable of
inducing defense responses in plants through the overproduction of: (1) enzymes related to
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defense, which strengthen the cell wall structure, avoiding the entrance of phytopathogenic
fungi, their colonization toward the plant, and catalyzing phenolic compound oxidation
to quinones that are toxic for fungi [29]; (2) proteins (PR) related to pathogenesis, such as
chitinase hydrolytic enzymes, and β-1,3-glucanase that break the phytopathogenic fungi
cell wall structure [57]; (3) phytoalexins, which are toxic for phytopathogenic fungi, inhibit
germ tube elongation and growth, decrease mycelial growth and limit glucose absorp-
tion [30,58]; (4) lignification promotion that contributes to plant cell wall hardening [59];
and (5) callus formation induction that isolates stress (biotic and abiotic) in the tissue,
locally, by depositing a physical barrier [56,60].

5. Actinomycete Isolation from Different Environments

Actinomycetes have been isolated from different environments, such as terrestrial,
marine, hypersaline, wetland, as well as plant endophytes, among others. Marine envi-
ronments cover more than 67% of terrestrial surface, and only 1% of the microorganisms
have been studied [61]. Marine actinomycetes living in extreme environmental conditions
are ideal for the synthesis of new secondary metabolites because of their adaptation to
reproduce, grow, and feed [5]. Endophyte actinomycetes are microorganisms that inhabit
plant tissues during the totality or part of the life cycle and do not cause negative effects in
the host [17]. Additionally, molecules produce functions as growth promoter metabolites,
antimicrobials to phytopathogenic fungi, improve gene expression of plant defense that
codify enzymes, such as phenylalanine ammonia-lyase (PAL), and improve nutrient absorp-
tion [62]. Wetlands are biologically important ecosystems that provide habitat, food, and
spawning areas for a number of plants and animals [7]. Hypersaline environments are ex-
treme habitats with high concentrations of salt, alkalinity, and low oxygen. Actinomycetes
have been isolated from different hypersaline environments, such as salt lakes, salt flats, salt
mines, and brine wells; however, these environments remain unexplored [6]. Compounds
and secondary metabolites of terrestrial microorganisms have been studied extensively,
hence the importance of searching for new isolation sources for actinomycetes [33].

6. Antifungal In Vitro Activity of Actinomycetes Isolated in Different Environments

The Streptomyces, Micromonospora, and Nocardiopsis species are within the main acti-
nomycetes that have been studied for their antifungal in vitro activity [63,64] and isolated
from different environments, such as terrestrial, marine, saline, and wetland (Figure 2).

Actinomycetes of terrestrial origin, such as Streptomyces sp., have demonstrated to
reduce the mycelial growth of R. bataticola by 65.3% [10]. Similar results were obtained for
Streptomyces sp. isolated from a terrestrial environment, reducing the mycelial growth of
Botrytis cinerea by 77% [59]. The antifungal activity of Streptomyces sp. VOCs of terrestrial
origin inhibited the mycelial growth of F. solani by 69% [53]. In addition, in another
investigation, Streptomyces sp. VOCs reduced the mycelial growth of C. acutatum by
77% [64]. Endophytic actinomycetes from marine and wetland environments have also
inhibited the growth of phytopathogenic fungi under in vitro conditions. A study of
S. polychromogenes endophytes from date palm roots inhibited the mycelial growth of
F. solani; the in vitro antifungal activity was associated with the production of lytic enzymes
that degrade the cell wall [1]. A Streptomyces sp. Extract of marine origin containing
oligomycin A inhibited the growth of Pyricularia oryzae hyphae by 83%, which damaged
the fungal membrane, inhibited conidial germination and appressoria formation [65].
Streptomyces spp. From marine environments have also inhibited the growth of Penicillum
digitatum, A. niger and F. solani by 92, 73, and 72%, respectively [66]. Actinomycetes from
marine environments, such as Streptomyces sp. And N. lucentensis, inhibited the mycelial
growth of F. solani by 72 and 68%, respectively, and Streptomyces sp. showed no significant
differences with the synthetic fungicide [67].
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7. Antifungal Activity of Actinomycetes In Vivo Isolated from Different Environments

The diseases transmitted by soil phytopathogenic fungi are difficult to control with
synthetic fungicides [21]. Plant diseases cause a yield loss of 50%, particularly in de-
veloping countries [86]. The antifungal activity of actinomycetes isolated from different
environmental conditions has been demonstrated in vitro conditions. However, research
in actinomycetes as biocontrol agents in vivo conditions has been limited to the study of
terrestrial actinomycete isolates (Figure 3) due to difficulties in sampling and culturing
microorganisms of marine, saline, and wetland environments, among others [5]. Neverthe-
less, interest still exists in finding more efficient strains that differ considerably with respect
to their biocontrol efficiency [19].

Streptomyces species from terrestrial environments have been shown to significantly
reduce the incidence of B. cinerea disease on chickpea plants by 47%, compared to the
control, and induce resistance in the host plant through antioxidant enzymes and phenolic
compounds [59]. The antifungal activity of the S. sichuanensis strain from terrestrial environ-
ments towards F. oxysporum was associated with siderophore production and whose extracts
induced apoptosis of phytopathogen cells. In the greenhouse experiment, the S. sichuanensis
strain significantly inhibited F. oxysporum infection in roots and bulbs of banana seedlings
and reduced the disease index by 51% [25].
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Moreover, the actinomycete endophytes of date palms decreased the sudden decline
syndrome (SDS) disease, caused by F. solani, by 86% under greenhouse conditions; these ef-
fects are related to the production of antifungal metabolites of the S. coeruleoprunus strain [1].
Studies of Streptomyces sp. extracts from marine environments have shown that the disease
index of F. oxyspoum significantly decreased by 80%. This effect could have been associated
with secondary metabolites causing the loss of osmotic balance, cell membrane rupture and
leakage of cellular components of F. oxyspoum [85]. Similarly, the application of S. vinaceus-
drappus from the marine environment on tomato plants showed a disease reduction (71%) of
root rot caused by R. solani compared to the untreated control [73]. In detached tomato leaves,
co-inoculation of A. solani with S. puniceus extract from wetland environments reduced the
disease by 98%, relative to the control, due to the presence of antifungal metabolites, such as
Alteramide A [77]. These investigations confirm the potential of actinomycetes isolated from
different environments, not only terrestrial, in plant disease management.

8. Antifungal Activity of Actinomycetes Isolated in Different Environments in
Postharvest Fruit

The main losses in post-harvest fruit are caused by phytopathogenic fungi, which
represent more than 50% of agricultural production [98]. In post-harvest fruit manage-
ment, antagonists are subjected to changes in pH, temperature, and humidity because in
these conditions the efficiency of biocontrol agents can be affected [99]. Actinomycetes
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from marine, saline, hypersaline, and wetland environments are subjected to extreme
environmental conditions that allow them to adapt to the changes in temperature, pH, and
humidity that occur post-harvest [19,100]. However, in most of the studies of actinomycetes
and biocontrol of phytopathogenic fungi in post-harvest fruit, the isolates provided are
from terrestrial environments (Figure 4). More studies should be performed with these
microorganisms isolated from different environments.

In the post-harvest trial on strawberries inoculated with B. cinerea, VOCs from Strepto-
myces sp. isolated from terrestrial environment inhibited the development of gray mold
symptoms on fruit by more than 87% compared to untreated control strawberries. In ad-
dition, B. cinerea conidia showed symptoms of swelling and crumbling and the fungal
mycelium showed structural alterations [53]. Moreover, incubation of apples infected
with C. acutatum in semi-closed boxes with Streptomyces sp. strains showed that the VOCs
produced by Streptomyces sp. reduced the rotting areas of the apples by 66% in relation to
the control treatment [64].

Marine actinomycetes, such as S. chumphonensis, reduced citrus green mold disease
caused by P. digitatum by 93%. The authors suggest that this effect may be related to the
production of antimicrobial substances [101]. Furthermore, Streptomyces sp. species from
marine environments and their metabolites showed high efficacy in the control of C. fragariae
in strawberry fruit, reducing the severity of anthracnose disease by 76%, in addition, fruit
hardness and color were maintained [80].
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9. Commercial Products Based on Actinomycetes

The main problem in obtaining commercial products based on microorganisms is that
their biocontrol capacity is different in in vitro trials and field experiments. In addition,
developing a commercial microorganism product is a complex, time-consuming, costly and
interactive process. The success of a biocontrol agent is its formulation, which must include
a specific concentration of the new microorganisms and a set of other inert ingredients
to produce a commercial product for its use in field conditions, and must show repeated
positive results, reasonable prices and easy handling [17]. The efficiency of these biocontrol
agents is affected by environmental factors, such as temperature, humidity, precipitation,
among other abiotic aspects which synthetic fungicides have overcome [33].

The factors outlined above all make the transfer of an effective biocontrol agent
under controlled laboratory conditions to a commercially available product for application
under field conditions difficult. Although the use of microorganisms as a biocontrol agent
is a current option to reduce synthetic fungicides, the ratio of actinomycetes registered
as biocontrol agents for commercial availability is still low [110]. From the commercial
products based on actinomycetes, Mycostop is the only product registered in Canada, the
European Union, and the United States of America (Table 2). Overall, an open field for the
industry is envisaged for actinomycete-based products in agriculture.

Table 2. Commercial products based in actinomycetes.

Commercial
Product Actinomycete Registered

Countries
Phytopathogen

Species/Target Disease Main Effects Reference

Mycostop S. griseovirids
Canada, UE

countries, and
USA

Alternaria, R. solani,
Fusarium, Botrytis,

Phytophthora, and Pythium

Space and nutrient
competence and

produces polyenic
antibiotics

[111]

Actinovate S. lydicus Canada and USA

Pythium, Fusarium,
Phytophthora, Rhizoctonia,
and Verticillium, powdery
and downy mildew, and

Botrytis, Alternaria,
Geotrichum, and Sclerotinia

Induces resistance
in plants and

produces
extracellular

chitinases

[112]

Mycocide KIBC S. colombiensis South Korea Powdery mildews, grey
mold, and brown patch

Produces enzymes
and antibiotics [113]

Safegrow KIBC S. kasugaensis South Korea Sheath blight and large
patch

Produces enzymes
and antibiotics [113]

Kasugamycin,
Kasumin S. kasugaensis Ukraine Leaf spot, scab, and root

rot
Inhibit protein
biosynthesis [114]

Agrimycin,
Paushak,

Cuprimicin 17,
Astrepto 17

S. griseus

India, USA, New
Zealand, China,

Ukraine and
Canada

Bacterial rots, Xanthomona,
and Pseudomonas

Inhibit protein
biosynthesis [112]

Polyoxorim
(Endorse, Polyoxin

Z and Stopit)

S. cacaoi var.
asoensis UE countries

Sphaerotheca, powdery
mildews, Botrytis,

Sclerotium, Corynespora,
Cochliobolus, Alternaria,

sheath blight, and
Helminthosporium

Inhibit cell wall
biosynthesis and
causes abnormal
spore germ tube

swelling and
hypha points

[115]

Validacin, Valimun,
Dantotsupadan-
valida, Mycin
Hustler, Valida

S. hygroscopicus - Rhizoctonia Inhibit trehalase in
Rhizoctonia [116]

10. Conclusions

Actinomycetes are an option to control phytopathogenic fungi in agriculture and
their application reduces the use of synthetic fungicides. Marine, saline, and wetland
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environments are important sources for actinomycete isolation and in the discovery of
new compounds and secondary metabolites. Biocontrol studies have focused on isolates of
actinomycetes from terrestrial environments. Nevertheless, actinomycetes from marine,
saline, and wetland environments have equal or greater antifungal activity than those from
terrestrial environments.
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