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Abstract: In order to elucidate the salt tolerance mechanism of Populus talassica × Populus euphratica,
the growth, physiology and anatomical characteristics of P. talassica × P. euphratica were studied
under different concentrations of NaCl-stress treatments. In this study, the annual seedlings of
Populus talassica × Populus euphratica were used as the test material in a field potted control exper-
iment. The basic salt content of the culture soil was the control (CK), and two NaCl treatments of
200 mmol/L and 400 mmol/L were established. The pot experiment showed that: (1) Compared
with CK, the 200 mmol/L NaCl-stress treatment significantly increased the growth parameters of
P. talassica × P. euphratica, such as leaf area, plant height, ground diameter, biomass, root length, root
surface area, root fork number and root-shoot ratio. However, compared with CK, the 400 mmol/L
NaCl-stress treatment significantly reduced most growth parameters. (2) The 200 and 400 mmol/L
NaCl-stress treatments significantly decreased various physiological parameters such as relative
water content (RWC), chlorophyll content, water potential, stomatal opening and photosynthetic
parameters and increased the accumulation of MDA and Pro compared with CK. The 200 mmol/L
NaCl-stress treatment significantly increased the activity of antioxidant enzymes, and the 400 mmol/L
NaCl-stress treatment significantly decreased the activity of antioxidant enzymes. (3) Compared
with CK, 200 and 400 mmol/L NaCl-stress treatments significantly improved the leaf palisade tissue
thickness and palisade-to-sea ratio, as well as the stem xylem and stem phloem thickness and pith
diameter, and significantly increased the root xylem thickness, root phloem thickness, and root
cross-cutting diameter of P. talassica × P. euphratica. The growth, physiological characteristics and
anatomical characteristics of P. talassica × P. euphratica under NaCl-stress treatments showed that it
had good salt tolerance and adaptability, and the 200 mmol/L NaCl-stress treatment promoted the
growth of P. talassica × P. euphratica to a certain extent. This study provided a theoretical basis for the
study of the salt-tolerant mechanism of P. talassica × P. euphratica.

Keywords: Populus talassica× Populus euphratica; NaCl-stress treatments; growth index; physiological
characteristics; anatomical structures

1. Introduction

Soil salinization seriously affects China’s agricultural production and ecological en-
vironment [1]. Xinjiang is located in an arid and semi-arid area with little precipitation,
abundant sunshine and strong evaporation. Soil salinization is particularly evident in
Xinjiang. The total area of salinized soil in Xinjiang is approximately 14.6 million hectares,
accounting for 40.7% of the national salinized soil area [2,3]. It is the largest distribution
area of salinized soil in China. Saline soils, containing predominantly Na+ and Cl−, are
widespread globally and affect major crop production [4]. Salinity in soil or water repre-
sents a significant abiotic stress that alters multiple processes in plants [5]. Abiotic stresses
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negatively affect the physiology and biochemistry of plants, consequently altering plant
growth and development [6].

Depending on the ability of plants to grow in saline environments, they are classi-
fied as either glycophytes or euhalophytes and their response to salt stress differs [7,8].
Halophytes, naturally grow in, or even depend on, elevated or high NaCl environments.
They can survive and complete their life cycles in media containing more than 200 mmol/L
NaCl [9–15]. Halophytes are remarkable in their abilities to regulate their physiology to
adapt to changes in saline conditions [16]. However, glycophytes are defined as species
that cannot survive in a saline environment [17]. Glycophytes, which include most crops,
cannot grow in the presence of high salt levels; their growth is inhibited or even completely
prevented by NaCl concentrations of 100–200 mmol/L, resulting in plant death [18].

Nevertheless, some studies on the salt tolerance of poplar species have used young
rooted cuttings for experimental material [19–26]. The choice of younger plants is required
by the fast growth rate of most poplars: trees more than 1 or 2 years old become too large for
easy handling in the laboratory or greenhouse [27]. P. talassica has been widely considered
as a model species for elucidating abiotic resistance mechanisms of trees, e.g., responses to
salinity or drought stress [28–30].

The genus Populus is a member of the Salicaceae family and dominant tree species
in arid areas, adapted to a variety of conditions, resulting in a rich source of variation
in tree morphology, anatomy, physiology and respond to abiotic and biotic stress [31].
Populus talassica× Populus euphratica is a new cultivar obtained by cross breeding P. euphratica
as the male parent and P. talassica as the female parent. The seedling population has excellent
characteristics, such as drought resistance and saline-alkali tolerance, and a fast growth rate.
Compared with P. euphratica, its asexual reproductive ability is significantly improved. It has
certain promotive and planting values in saline-alkali areas with dry and barren soils [32].

The adverse effects of salinity on Populus have been investigated in a wide variety of
economically important species and ecotypes [33]. The tolerance mechanisms of plants to
salinity have been intensively studied in the last decades [34–38]. Plant responses to salinity
include a complex set of traits that involve morphological, physiological and cellular
processes [39]. However, the current research on the growth, physiology and anatomical
characteristics of P. talassica × P. euphratica is not sufficient. Therefore, there is an urgent
need to fully understand the response mechanism of P. talassica × P. euphratica to salt stress
and apply relevant knowledge to improve the salt tolerance of P. talassica × P. euphratica.

In this experiment, annual potted P. talassica × P. euphratica seedlings served as experi-
mental materials, and the phenotypic and physiological responses of P. talassica × P. euphratica
to NaCl-stress were studied using the potted method under controlled conditions. Three NaCl
concentrations were chosen for treatments in this experiment, being control (CK), 200 and
400 mmol/L NaCl. Growth, physiological characteristics and anatomical structures of
P. talassica × P. euphratica were investigated under the three treatment conditions in this
study. The adaptive mechanisms of P. talassica × P. euphratica to NaCl-stress were explored.
The purpose of this study was to provide reliable growth, physiological and structural in-
dicators for the identification of the salt-tolerance mechanisms of P. talassica × P. euphratica
germplasm materials.

2. Results
2.1. Effects of Salinity on P. talassica × P. euphratica Growth
2.1.1. Effects of Different Concentrations of NaCl-Stress Treatments on Leaf Length, Leaf
Width, Leaf Area, Leaf Number and the Survival Rate of P. talassica × P. euphratica

After 45 d of NaCl-stress treatments, the results showed that under the conditions of
200 mmol/L NaCl-stress treatment, leaf length, leaf width and leaf area of the P. talassica ×
P. euphratica seedlings all reached maximum values compared with CK, and the number
of leaves increased. When the NaCl concentration increased to 400 mmol/L, the growth
indexes of the P. talassica × P. euphratica seedlings decreased significantly compared with
CK, and individual plant deaths occurred, decreasing the survival rate (Table 1).
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Table 1. Effects of different concentrations of NaCl-stress treatments on leaf length, leaf width, leaf
area, leaf number and the survival rate of P. talassica × P. euphratica.

NaCl Leaf Area Leaf Length Average Leaf Width Number of Leaves Survival Rate
(mmol/L) (cm2) (cm) (cm) (Pieces) (%)

CK 10.07 ± 0.18 b 10.24 ± 0.22 b 0.90 ± 0.07 a 17.60 ± 1.14 b 100.00 ± 0.00 a
200 10.60 ± 0.35 a 11.04 ± 0.24 a 0.98 ± 0.16 a 19.80 ± 0.84 a 100.00 ± 0.00 a
400 8.56 ± 0.23 c 7.10 ± 0.16 c 0.67 ± 0.04 b 15.20 ± 0.84 c 91.60 ± 1.14 b

Note: The data in the table represent means ± standard errors, and different lowercase letters indicate significant
differences (p < 0.05).

2.1.2. Effects of Different Concentrations of NaCl-Stress Treatments on P. talassica ×
P. euphratica Biomass

After 45 d of NaCl-stress treatments, the results showed that under the conditions
of 200 mmol/L NaCl-stress treatment, the aboveground, underground and whole plant
biomasses (dry weight) of the P. talassica× P. euphratica seedlings all reached their maximum
values compared with CK. When the NaCl increased to 400 mmol/L, the biomass decreased
significantly. In addition, as the NaCl concentration gradually increased, the root/shoot
ratio increased (Table 2).

Table 2. Effects of different concentrations of NaCl-stress treatments on P. talassica × P. euphratica
biomass.

NaCl Aboveground Biomass Underground Biomass Whole Plant Biomass Root to Shoot Ratio
(mmol/L) (g) (g) (g)

CK 7.49 ± 0.53 a 4.33 ± 0.30 b 11.82 ± 0.70 a,b 0.58 ± 0.04 b
200 7.91 ± 0.30 a 5.41 ± 0.51 a 13.32 ± 0.58 a 0.68 ± 0.07 a
400 6.12 ± 0.47 b 4.49 ± 0.46 b 10.61 ± 0.93 b 0.73 ± 0.02 a

Note: The data in the table represent means ± standard errors, and different lowercase letters indicate significant
differences (p < 0.05).

2.1.3. Effects of Different Concentrations of NaCl-Stress Treatments on P. talassica ×
P. euphratica Root Vitality

After 45 d of treatments with NaCl-stress, as shown in Table 3, the root length, root
surface area, volume, average diameter and number of forks all reached maximum values
under the 200 mmol/L NaCl-stress treatment conditions compared with CK. When the
NaCl concentration was increased to 400 mmol/L, the root correlation index of P. talassica
× P. euphratica was significantly decreased and growth was inhibited (Table 3).

Table 3. Effects of different concentrations of NaCl-stress treatments on P. talassica × P. euphratica
root vitality.

NaCl Length Surface Area Volume Average Diameter Number of Forks
(mmol/L) (cm) (cm2) (cm3) (mm)

CK 1080.35 ± 81.94 b 459.76 ± 58.56 b 39.54 ± 2.79 b 0.99 ± 0.03 b,c 3475.80 ± 328.77 b
200 1703.38 ± 144.41 a 620.01 ± 57.51 a 51.06 ± 4.17 a 1.22 ± 0.31 a,b 6068.40 ± 652.26 a
400 769.91 ± 171.04 c 330.47 ± 51.10 c 29.82 ± 1.37 c 0.87 ± 0.08 b,c 2574.40 ± 572.54 c

Note: The data in the table represent means ± standard errors, and different lowercase letters indicate significant
differences (p < 0.05).

2.1.4. Effects of Different Concentrations of NaCl-Stress Treatments on the Plant Height,
Ground Diameter and Crown Width of P. talassica × P. euphratica

The measured values are shown in Table 4. After 45 d of NaCl-stress treatments, there
were no significant differences in growth indexes of the P. talassica × P. euphratica seedlings
in the control group and the treatment group before the NaCl-stress treatments. The plant
height, ground diameter, crown width and relative growth reached maximum values under



Plants 2022, 11, 3025 4 of 26

the 200 mmol/L NaCl-stress treatment conditions compared with CK. The growth indexes
decreased significantly under the 400 mmol/L NaCl-stress treatment (Table 4).

Table 4. Effects of different concentrations of NaCl-stress treatments on the plant height, ground
diameter and crown width of P. talassica × P. euphratica.

Growth Indexes (cm)
NaCl (mmol/L)

CK 200 mmol/L 400 mmol/L

Crown width before NaCl treatment (cm) 12.88 ± 0.18 a 12.84 ± 0.24 a 12.87 ± 0.19 a
Crown width 45 d after NaCl treatment (cm) 15.77 ± 0.25 b 16.97 ± 0.29 a 14.92 ± 0.30 c

Relative crown growth (cm) 2.89 ± 0.17 b 4.13 ± 0.25 a 2.05 ± 0.16 c
Plant height before NaCl treatment (cm) 9.97 ± 0.32 a 10.02 ± 0.32 a 10.04 ± 0.27 a

Plant height 45 d after NaCl treatment (cm) 10.68 ± 0.32 b 11.06 ± 0.32 a 10.45 ± 0.23 b
Relative plant height growth (cm) 0.71 ± 0.07 b 1.04 ± 0.07 a 0.41 ± 0.10 c

Ground diameter before NaCl treatment (cm) 0.71 ± 0.02 a 0.71 ± 0.02 a 0.70 ± 0.02 a
Ground diameter 45 d after NaCl treatment (cm) 1.20 ± 0.03 b 1.35 ± 0.07 a 1.08 ± 0.04 c

Relative ground diameter growth (cm) 0.49 ± 0.01 b 0.65 ± 0.05 a 0.39 ± 0.02 c

Note: The data in the table represent means ± standard errors, and different lowercase letters indicate significant
differences (p < 0.05).

2.2. Effects of Different Concentrations of NaCl-Stress Treatments on P. talassica × P. euphratica
Physiological Properties
2.2.1. Effects of Different Concentrations of NaCl-Stress Treatments on Leaf Surface Salt
Secretion of P. talassica × P. euphratica

After 45 d of NaCl-stress treatments, the leaf surface of P. talassica × P. euphratica
is observed with a microscope. It was found that the P. talassica × P. euphratica leaves
have microhairs on their adaxial surface furrows that secrete salt. As shown in Figure 1,
compared with CK, under the 200 and 400 mmol/L NaCl-stress treatments, the main veins
of P. talassica × P. euphratica leaves and the adjacent leaf surfaces secreted large volumes
of salt crystals, and more salt crystals were secreted on the leaf surface the 400 mmol/L
NaCl-stress treatment group (Figure 1).
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Figure 1. Effects of different concentrations of NaCl-stress treatments on salt secretion of P. talassica
× P. euphratica leaf surfaces. (A) CK (1×); (B) 200 mmol/L NaCl (1×); (C) 400 mmol/L NaCl (1×).

2.2.2. Effects of Different Concentrations of NaCl-Stress Treatments on the Diurnal
Variation in the P. talassica × P. euphratica Leaf Water Potential

After 45 d of NaCl-stress treatments, the leaf water potential of P. talassica ×
P. euphratica was determined, and the diurnal variation curve of water potential was
shown in Figure 2. From 8:00 to 20:00, the leaf water potential showed regular changes. The
variation trends in the three treatments were basically the same, with the water potential
being low at 8:00 in the morning and increased at 11:00 a.m. The water potential reached
its lowest value at 14:00, then gradually increased, reaching a maximum value at 17:00, and
then, it gradually decreased. As the NaCl concentration increased, compared with CK, the
water potential of P. talassica × P. euphratica leaves gradually decreased, reaching its lowest
value of approximately −3.80 under the 400 mmol/L NaCl-stress treatment. The water
potential of the CK group was the largest, with a maximum value of approximately −0.75
(Figure 2).
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2.2.3. Effects of Different Concentrations of NaCl-Stress Treatments on the Relative Water
Contents and Water Saturation Deficits of P. talassica × P. euphratica Leaves

After 45 d of NaCl-stress treatments, the RWC of the leaves of P. talassica× P. euphratica
was determined and the WSD was calculated. The RWC gradually decreased as the NaCl
concentration increased (Figure 3). Compared with CK, when the NaCl concentration
reached 400 mmol/L, the RWC of the leaves decreased sharply. The differences between
the RWC of CK and those that were treated were more significant. During the treatment
period, the WSD was between 14.0% and 19.4%. The higher the NaCl concentration, the
more serious the leaf water loss, which further decreased the RWC of the leaves (Figure 3).
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Figure 3. Effects of different concentrations of NaCl-stress treatments on the relative water contents
and water saturation deficits of P. talassica× P. euphratica leaves. (A) Effects of different concentrations
of NaCl-stress treatments on the relative water contents in leaves of P. talassica × P. euphratica;
(B) Effects of different concentrations of NaCl-stress treatments on the water saturation deficits in
leaves of P. talassica × P. euphratica. Bars represent means and standard deviations of biological
replicates. Letters above bars indicate statistical signifcance by one-way ANOVA, different lowercase
letters indicate significant differences, p < 0.05.

2.2.4. Effects of Different Concentrations of NaCl-Stress Treatments on the P. talassica ×
P. euphratica Leaf Chlorophyll Content

As shown in Table 5, compared with CK, as the NaCl concentration increased, the
chlorophyll content gradually decreased. The chlorophyll content of the 400 mmol/L NaCl
treatment group was significantly lower than that of the CK group, and the chlorophyll
a/b also significantly decreased (Table 5). The total chlorophyll content of the 400 mmol/L
NaCl-stress treatment group was less than 50% that of the CK, and the difference was
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significant (p < 0.05). At the higher NaCl concentration, the chlorosis of plant leaves was
more severe, which further led to a decrease in leaf chlorophyll content.

Table 5. Effects of different concentrations of NaCl-stress treatments on the P. talassica × P. euphratica
leaf chlorophyll content.

NaCl Chlorophyll a Content Chlorophyll b Content Chlorophyll a/b Total Chlorophyll Content Carotene Content
(mmol/L) (mg/g) (mg/g) (mg/g) (mg/g)

CK 13.80 ± 1.37 a 4.40 ± 0.47 a 3.14 ± 0.07 a 18.20 ± 1.84 a 3.26 ± 0.30 a
200 9.19 ± 0.82 b 2.93 ± 0.31 b 3.14 ± 0.14 a 12.13 ± 1.10 b 2.13 ± 0.16 b
400 4.48 ± 0.72 c 1.49 ± 0.25 c 3.01 ± 0.15 b 5.98 ± 0.97 c 1.18 ± 0.11 c

Note: The data in the table represent means ± standard errors, and different lowercase letters indicate significant
differences (p < 0.05).

2.2.5. Effects of Different Concentrations of NaCl-Stress Treatments on the Size, and the
Opening and Closing, of P. talassica × P. euphratica Leaf Stomata

After 45 d of NaCl-stress treatments, the changes in P. talassica × P. euphratica leaf
stomata in the three groups, CK, 200 mmol/L NaCl and 400 mmol/L NaCl, were observed
using a microscope. Figure 4A–C show the leaf stomatal morphology of the three treatment
groups, CK, 200 mmol/L NaCl and 400 mmol/L NaCl, respectively, under a microscope at
a 10×magnification. As shown in Figure 4A–C, the number of stomata in the CK group
leaves was relatively high, whereas the number of stomata in the 400 mmol/L NaCl-stress
treatment group leaves decreased sharply. Figure 4D–F shows the leaf stomatal morphology
of the CK, 200 mmol/L NaCl and 400 mmol/L NaCl-stress treatment groups, respectively,
at a 40×magnification. As shown in Figure 4D–F, the proportion of open stomata in the CK
group leaves was larger, and the proportions of open stomata in the 200 and 400 mmol/L
NaCl-stress treatment groups leaves decreased sharply compared with the CK group.
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Figure 4. Effects of different concentrations of NaCl-stress treatments on the size, and the opening
and closing, of P. talassica × P. euphratica leaf stomata. (A–E) Microstructures of leaf stomata in
leaves: (A) in their natural state (×10); (B) treated with 200 mmol/L NaCl (×10); (C) treated with
400 mmol/L NaCl (×10); (D) in their natural state (×40); (E) treated with 200 mmol/L NaCl (×40);
(F) treated with 400 mmol/L NaCl (×40).

After 45 d of NaCl-stress treatments, the stomata of the leaves of P. talassica ×
P. euphratica were observed and measured, and the effects of different concentrations of
NaCl on the size, and the opening and closing, of P. talassica × P. euphratica leaf stomata are
shown in Table 6. Compared with CK, the stomatal lengths in the 200 mmol/L NaCl-stress
treatment group leaves did not change significantly, whereas the stomatal length in the
400 mmol/L NaCl-stress treatment group leaves significantly decreased. As the NaCl
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concentration increased, the stomatal width, stomatal area, stomatal density, stomatal area
index and the proportion of open stomata in P. talassica × P. euphratica leaves significantly
decreased. Different NaCl-stress treatments closed the stomata to different degrees, and
they significantly affected the number of stomata, which were significantly different from
the number in the CK group. This indicated that plants could rapidly self-regulate, make
adaptive changes, and show increased salt resistance under a certain level of NaCl-stress.

Table 6. Effects of different concentrations of NaCl-stress treatments on the size, and the opening and
closing, of stomata in P. talassica × P. euphratica leaves.

NaCl Stomatal Length Stomatal Width Stomatal Area Stomatal Density Stomatal Area Index Proportion of Opened Stomata
(mmol/L) (µm) (µm) (µm2) (number mm−2) (%) (%)

CK 32.98 ± 0.69 a 14.92 ± 1.15 a 328.23 ± 5.41 a 573.12 ± 14.52 a 0.18 ± 0.01 a 0.44 ± 0.02 a

200 31.20 ± 0.82 a 12.08 ± 0.49 b 283.87 ± 6.63 b 474.31 ± 23.88 b 0.14 ± 0.01 b 0.32 ± 0.02 b

400 22.65 ± 2.10 b 8.22 ± 0.98 c 123.34 ± 8.68 c 350.99 ± 12.31 c 0.04 ± 0.01 c 0.15 ± 0.03 c

Note: The data in the table represent means ± standard errors, and different lowercase letters indicate significant
differences (p < 0.05).

2.2.6. Effects of Different Concentrations of NaCl-Stress Treatments on the Photosynthetic
Characteristics of P. talassica × P. euphratica Leaves

After 45 d of NaCl-stress treatments, the photosynthetic index of the leaves of
P. talassica × P. euphratica was determined, and the effects of different concentrations of
NaCl treatment on the photosynthetic characteristics of P. talassica × P. euphratica were
shown in Figure 5. The effects of NaCl-stress on the Pn, Gs, Tr, and Ls values of
P. talassica × P. euphratica seedlings were significantly different (p < 0.05). Compared with
CK, 200 and 400 mmol/L NaCl-stress treatments significantly reduced Pn, Gs, Tr and Ls
values in P. talassica × P. euphratica leaves, but increased Ci values significantly. NaCl-stress
treatments had no significant effect on the WUE value of P. talassica × P. euphratica, but
the average value was slightly greater than that of the CK, indicating an upward trend
(Figure 5).
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Figure 5. Effects of different concentrations of NaCl-stress treatments on the photosynthetic physiol-
ogy of P. talassica × P. euphratica. (A) Effects of different concentrations of NaCl-stress treatments on
the net photosynthetic rate in leaves of P. talassica × P. euphratica; (B) Effects of different concentra-
tions of NaCl-stress treatments on the stomatal conductance in leaves of P. talassica × P. euphratica;
(C) Effects of different concentrations of NaCl-stress treatments on the intercellular CO2 concentration
in leaves of P. talassica × P. euphratica; (D) Effects of different concentrations of NaCl-stress treatments
on the transpiration rate in leaves of P. talassica × P. euphratica; (E) Effects of different concentrations
of NaCl-stress treatments on the stomatal limitation in leaves of P. talassica × P. euphratica; (F) Effects
of different concentrations of NaCl-stress treatments on the the water use efficiency in leaves of
P. talassica × P. euphratica. Bars represent means and standard deviations of biological replicates.
Letters above bars indicate statistical signifcance by one-way ANOVA, different lowercase letters
indicate significant differences, p < 0.05.

2.2.7. Effects of Different Concentrations of NaCl-Stress Treatments on the Contents of
MDA, Pro, Soluble Sugar and Soluble Protein in P. talassica × P. euphratica Leaves

After 45 d of NaCl-stress treatments, the content of MDA, Pro, soluble sugar and
soluble protein content in the leaves of P. talassica × P. euphratica under different concen-
trations of NaCl-stress treatments was determined, and the measurement results were
shown in Figure 6. As shown in Figure 6A, compared with CK, the 200 and 400 mmol/L
NaCl-stress treatments significantly increased the MDA content and reached a maximum at
400 mmol/L NaCl-stress treatment, and the difference was extremely significant (p < 0.05).
As shown in Figure 6B, compared with CK, the 200 and 400 mmol/L NaCl-stress treatments
significantly increased the Pro content and reached a maximum at 400 mmol/L NaCl-stress
treatment, and the difference was extremely significant (p < 0.05).
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trations of NaCl-stress treatments on the malondialdehyde content in leaves of
P. talassica × P. euphratica; (B) Effects of different concentrations of NaCl-stress treatments on
the proline content in leaves of P. talassica × P. euphratica; (C) Effects of different concentrations of
NaCl-stress treatments on the soluble sugar content in leaves of P. talassica × P. euphratica; (D) Effects
of different concentrations of NaCl-stress treatments on the soluble protein content in leaves of
P. talassica × P. euphratica. Bars represent means and standard deviations of biological replicates.
Letters above bars indicate statistical signifcance by one-way ANOVA, different lowercase letters
indicate significant differences, p < 0.05.

As shown in Figure 6C, when the NaCl concentration reached 200 mmol/L, the soluble
sugar content decreased significantly compared with CK, and when the NaCl concentration
reached 400 mmol/L, the soluble sugar content reached its highest value (Figure 6C). As
shown in Figure 6D, compared with CK, when the NaCl concentration was 200 mmol/L,
the soluble protein content decreased significantly compared with CK, and when the NaCl
concentration reached 400 mmol/L, the soluble protein content reached maximum values,
which was greater than that of the CK (Figure 6D).

2.2.8. Effects of Different Concentrations of NaCl-Stress Treatments on the Activities of
Three Antioxidant Enzymes and the Relative Conductivity in P. talassica× P. euphratica Leaves

As shown in Figure 7A, compared with CK, when the NaCl concentration was at
200 mmol/L, the SOD activity reached maximum values. When the concentration of NaCl
increased to 400 mmol/L, the SOD activity decreased significantly. As shown in Figure 7B,
compared with the CK group, at 200 mmol/L, the POD activity was highest. When the
NaCl concentration increased to 400 mmol/L, the POD activity decreased significantly. As
shown in Figure 7C, compared with CK, when the NaCl concentration was 200 mmol/L, the
CAT activity reached its maximum. When the NaCl concentration increased to 400 mmol/L,
the CAT activity decreased significantly. Conductivity is a measure of the ease with which
electrical current will pass through water; the greater the salinity, the greater the conductiv-
ity [37]. The relative conductivity measurements are shown in Figure 7D. Compared with
CK, the 200 and 400 mmol/L NaCl-stress treatments significantly increased the relative
conductivity content of the blades, and when the NaCl concentration was 400 mmol/L, the
relative electrical conductivity of leaves reached maximum values.
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centrations of NaCl-stress treatments on the activity of superoxide dismutase in P. talassica ×
P. euphratica leaves; (B) Effects of different concentrations of NaCl-stress treatments on the activity of
peroxidase in P. talassica × P. euphratica leaves; (C) Effects of different concentrations of NaCl-stress
treatments on the activity of catalase in P. talassica × P. euphratica leaves; (D) Effects of different
concentrations of NaCl-stress treatments on the relative conductivity in P. talassica × P. euphratica
leaves. Bars represent means and standard deviations of biological replicates. Letters above bars
indicate statistical signifcance by one-way ANOVA, different lowercase letters indicate significant
differences, p < 0.05.

2.3. Effects of Different Concentrations of NaCl-Stress Treatments on the Root, Stem and Leaf
Anatomy of P. talassica × P. euphratica
2.3.1. Effects of Different Concentrations of NaCl-Stress Treatments on the Leaf Anatomy of
P. talassica × P. euphratica

The P. talassica × P. euphratica mesophyll cells were composed of upper and lower
epidermal cuticle, upper and lower epidermis, palisade tissue, spongy tissue, xylem,
phloem, cambium, parenchyma and stomata (Figure 8).
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Figure 8. Microstructures of leaves treated with different concentrations of NaCl-stress treatments
(20×). (A) CK (20×); (B) 200 mmol/L NaCl (20×); (C) 400 mmol/L NaCl (20×).

The leaf vascular bundle structure of P. talassica × P. euphratica was well developed,
and it was approximately oval, consisting of xylem, phloem and the vascular cambium
between the xylem and phloem. The xylem and phloem were connected by a vascular
cambium (Figure 9A–C). The palisade tissue was composed of two to three layers of
parenchymal cells, which were closely arranged, and the cells were long cylindrical in
shape and contained many chloroplasts (Figure 9D–F). The spongy tissue was irregular in
shape, loosely arranged and had obvious intercellular spaces between the tissues. It was
composed of five to six layers of loosely arranged cells of approximately circular size, with
more crystals distributed (Figure 9G–I).

The effects of NaCl-stress on leaves were mainly reflected in the thickness of palisade
and spongy tissues. As shown in Table 7, compared with CK, the thickness of palisade
tissues in 200 mmol/L and 400 mmol/L NaCl-stress treatment groups increased by 33.30%
and 64.62%, respectively, the thickness of sponge tissue in 200 mmol/L and 400 mmol/L
NaCl-stress treatment groups decreased by 10.84% and 24.43%, respectively, and the
differences were significant (p < 0.05). Moreover, the 200 and 400 mmo/L NaCl-stress
treatments significantly increased the leaf thickness, CP and the tightness of the blade
structure of P. talassica × P. euphratica.

Table 7. Effects of different concentrations of NaCl-stress treatments on the anatomical structures of
P. talassica × P. euphratica leaves.

NaCl Palisade Tissue Thickness Spongy Tissue Thickness Blade Thickness CP The Tightness of the Blade Structure
(mmol/L) (µm) (µm) (µm)

CK 274.12 ± 12.42 c 423.31 ± 12.06 a 762.85 ± 17.90 a 0.66 ± 0.04 c 0.36 ± 0.01 c
200 365.40 ± 17.77 b 377.43 ± 13.68 b 790.79 ± 16.36 b 0.83 ± 0.03 b 0.46 ± 0.02 b
400 451.25 ± 10.45 a 319.91 ± 14.45 c 812.78 ± 20.25 c 1.30 ± 0.04 a 0.56 ± 0.01 a

Note: The data in the table represent means ± standard errors, and different lowercase letters indicate significant
differences (p < 0.05).
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Figure 9. Local microstructure of leaves treated with different concentrations of NaCl-stress treat-
ments (40×). (A–C) Microstructures of leaf vascular bundles: (A) under natural condition (40×);
(B) in leaves treated with 200 mmol/L NaCl (40×); (C) in leaves treated with 400 mmol/L NaCl
(40×). (D–F) Microstructures of leaf palisade tissues: (D) under natural condition (40×); (E) in leaves
treated with 200 mmol/L NaCl (40×); (F) in leaves treated with 400 mmol/L NaCl (40×). (G–I) Mi-
crostructures of leaf sponges: (G) under natural conditions (40×); (H) treated with 200 mmol/L NaCl
(40×); (I) treated with 400 mmol/L NaCl (40×).

2.3.2. Effects of Different Concentrations of NaCl-Stress Treatments on the Stem Anatomy
of P. talassica × P. euphratica

The cross-section of a P. talassica × P. euphratica stem is approximately circular, con-
sisting of epidermis, pericyte, cortical parenchyma, xylem, phloem and pith in the center
(Figure 10).
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The stem vascular cambium was obvious, the xylem was arranged radially and the
number of xylem vessels was large (Figure 11A–C). The phloem was relatively narrow
and contained bast fibers inside (Figure 11D–F). The central medulla was well developed
and consisted of large water-storing parenchymal cells, and there were discrete individual
crystal-containing cells in the medulla and medullary rays (Figure 11G–I). The phloem
contained many phloem fibers, which were embedded in the phloem and consisted of
many granular cells (Figure 11J–L).
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Figure 11. Local microstructures of P. talassica × P. euphratica stems treated with different concentra-
tions of NaCl-stress treatments. (A) Microscopic local structure of natural stems (×10); (B) Micro-
scopic local structure of the stems under 200 mmol/L NaCl-stress treatment (×10); (C) Microscopic
local structure of the stem under 400 mmol/L NaCl-stress treatment (×10); (D) Microstructure of
the phloem of the stems in the natural state (×20); (E) Microstructure of the phloem of the stems
under 200 mmol/L NaCl-stress treatment (×20); (F) Microstructure of the phloem of the stems under
400 mmol/L NaCl-stress treatment (×20); (G) Natural stem pith microstructure (×10); (H) Stem
pith microstructure under 200 mmol/L NaCl-stress treatment (×10); (I) Stem pith microstructure
under 400 mmol/L NaCl-stress treatment (×10); (J) Microstructure of natural stems phloem fibers
(×40); (K) Microstructure of stems phloem fibres under 200 mmol/L NaCl-stress treatment (×40);
(L) Microstructure of stem phloem fibres under 400 mmol/L NaCl-stress treatment (×40).
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The measurements of stem anatomy are shown in Table 8. As shown in Table 8, the
200 and 400 mmol/L NaCl-stress treatments significantly increased the thickness of the
epidermis and cortex of stem, the thickness of the phloem and xylem and the diameter
of the pith. Under the treatment of 400 mmol/L NaCl-stress, the stem indicators reached
maximum values, and the differences were significant (p < 0.05).

Table 8. Effects of different concentrations of NaCl-stress treatments on the anatomical structures of
P. talassica × P. euphratica stems.

NaCl Epidermal Thickness Cortical Thickness Phloem Thickness Xylem Thickness Pith Diameter
(mmol/L) (µm) (µm) (µm) (µm) (µm)

CK 20.58 ± 1.75 c 59.90 ± 4.05 c 325.85 ± 8.14 c 761.71 ± 24.96 c 921.67 ± 13.22 c
200 26.13 ± 1.17 b 74.94 ± 3.82 b 402.36 ± 9.81 b 819.33 ± 6.30 b 1026.27 ± 28.47 b
400 29.66 ± 0.84 a 92.32 ± 1.98 a 479.27 ± 22.23 a 859.22 ± 17.34 a 1169.68 ± 48.38 a

Note: The data in the table represent means ± standard errors, and different lowercase letters indicate significant
differences (p < 0.05).

2.3.3. Effects of Different Concentrations of NaCl-Stress Treatments on the Root Anatomy
of P. talassica × P. euphratica

The secondary structures of P. talassica × P. euphratica roots, from outside to in-
side, consisted of pericytes, secondary phloem, vascular cambium and secondary xylem
(Figure 12).

Plants 2022, 11, x FOR PEER REVIEW 14 of 28 
 

 

Table 8. Effects of different concentrations of NaCl-stress treatments on the anatomical structures 

of P. talassica × P. euphratica stems. 

NaCl 
Epidermal Thick-

ness 
Cortical Thickness Phloem Thickness Xylem Thickness Pith Diameter 

(mmol/L) (μm) (μm) (μm) (μm) (μm) 

CK 20.58 ± 1.75 c 59.90 ± 4.05 c 325.85 ± 8.14 c 761.71 ± 24.96 c 921.67 ± 13.22 c 

200 26.13 ± 1.17 b 74.94 ± 3.82 b 402.36 ± 9.81 b 819.33 ± 6.30 b 1026.27 ± 28.47 b 

400 29.66 ± 0.84 a 92.32 ± 1.98 a 479.27 ± 22.23 a 859.22 ± 17.34 a 1169.68 ± 48.38 a 

Note: The data in the table represent means ± standard errors, and different lowercase letters indi-

cate significant differences (p < 0.05). 

2.3.3. Effects of Different Concentrations of NaCl-Stress Treatments on the Root Anat-

omy of P. talassica × P. euphratica 

The secondary structures of P. talassica × P. euphratica roots, from outside to inside, 

consisted of pericytes, secondary phloem, vascular cambium and secondary xylem (Fig-

ure 12). 

 

Figure 12. Microstructural characteristics of P. talassica × P. euphratica secondary root structures un-

der different concentrations of NaCl-stress treatments. (A) CK (4×); (B) 200 mmol/L NaCl (4×); (C) 

400 mmol/L NaCl (4×). 

Due to the thickening of the root, the epidermis and cortex break, and the cork cam-

bium formed a new protective tissue, the pericyte. The pericyte cells were oblong, neatly 

and tightly arranged and shed (Figure 13A–C). The xylem contained a large number of 

vessels that transport water, and wood rays were also arranged in the xylem (Figure 13D–

F). The secondary phloem was located in the cortex and was composed of phloem paren-

chymal cells. The cells were irregular in shape and tightly arranged. There was a large 

number of storage cells and secretory cells distributed among the phloem cells (Figure 

13G–I). The phloem was also inlaid with a small amount of bast fibers. The bast fibers 

were composed of many round cake-like particles embedded in the phloem, and all the 

bast fibers together formed a ring (Figure 13J–L). 

Figure 12. Microstructural characteristics of P. talassica × P. euphratica secondary root structures
under different concentrations of NaCl-stress treatments. (A) CK (4×); (B) 200 mmol/L NaCl (4×);
(C) 400 mmol/L NaCl (4×).

Due to the thickening of the root, the epidermis and cortex break, and the cork cam-
bium formed a new protective tissue, the pericyte. The pericyte cells were oblong, neatly
and tightly arranged and shed (Figure 13A–C). The xylem contained a large number of
vessels that transport water, and wood rays were also arranged in the xylem (Figure 13D–F).
The secondary phloem was located in the cortex and was composed of phloem parenchy-
mal cells. The cells were irregular in shape and tightly arranged. There was a large number
of storage cells and secretory cells distributed among the phloem cells (Figure 13G–I). The
phloem was also inlaid with a small amount of bast fibers. The bast fibers were composed
of many round cake-like particles embedded in the phloem, and all the bast fibers together
formed a ring (Figure 13J–L).

Under NaCl-stress, plant roots adopted their own adaptive strategies. The measure-
ments of root secondary structures are shown in Table 9. Compared with CK, the 200
and 400 mmol/L NaCl-stress treatments significantly increased the root xylem thickness,
phloem thickness, xylem vessel diameter and root cross section diameter of P. talassica ×
P. euphratica. All of the above indicators reached maximum values under 400 mmol/L
NaCl-stress treatment (Table 9).
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Figure 13. Microstructural characteristics of P. talassica × P. euphratica secondary root structures
under different concentrations of NaCl-stress treatments. (A) Local microstructure of natural roots
(×10); (B) Local root microstructure under 200 mmol/L NaCl-stress treatment (×10); (C) Local root
microstructure under 400 mmol/L NaCl-stress treatment (×10); (D) Microstructure of natural root
xylem (×10); (E) Root xylem microstructure under 200 mmol/L NaCl-stress treatment (×10); (F) Root
xylem microstructure under 400 mmol/L NaCl-stress treatment (×10); (G) Natural root phloem
microstructure (×40); (H) Microscopic structure of root phloem under 200 mmol/L NaCl-stress treat-
ment (×40); (I) Microscopic structure of root phloem under 400 mmol/L NaCl-stress treatment (×40);
(J) Natural root phloem fibers microstructure (×40); (K) Root phloem fibers microstructure under
200 mmol/L NaCl-stress treatment (×40); (L) Root phloem fibers microstructure under 400 mmol/L
NaCl-stress treatment (×40).

Table 9. Effects of different concentrations of NaCl-stress treatments on the root secondary structures
of P. talassica × P. euphratica.

NaCl Peripheral Thickness Phloem Thickness Xylem Thickness Xylem Vessel Diameter Root Cross Section Diameter
(mmol/L) (µm) (µm) (µm) (µm) (µm)

CK 19.95 ± 1.32 a,b 629.44 ± 52.66 c 1739.67 ± 88.77 c 121.26 ± 8.09 c 2510.32 ± 106.45 c
200 19.42 ± 1.14 b 786.87 ± 37.04 b 2140.24 ± 112.59 b 167.14 ± 6.28 b 3113.67 ± 132.22 b
400 21.19 ± 1.75 a 960.38 ± 49.10 a 3405.23 ± 214.93 a 234.69 ± 12.66 a 4621.50 ± 231.73 a

Note: The data in the table represent means ± standard errors, and different lowercase letters indicate significant
differences (p < 0.05).

3. Materials and Methods
3.1. Overview of the Study Area

The study area is located in the seedlings base of the 10th Regiment of the 1st Division
of the Xinjiang Production and Construction Corps (40◦34′6.14” N; 81◦15′32.64” E and
altitude of 1014 m). It belongs to an extreme continental arid desert climate in the warm
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temperate zone. The extreme high temperature reaches 35 ◦C, the extreme minimum
temperature is −28 ◦C and the annual average sunshine is 2556.3–2991.8 h. There is very
little rainfall, little snow in winter and strong surface evaporation. The average annual
precipitation is 40.1–82.55 mm, and the average annual evaporation is 1876.6–2558.9 mm.
The soil type is mainly sandy.

3.2. Plant Material and Imposition of Salt Stress

Annual potted P. talassica × P. euphratica seedlings served as experimental materials,
and the seedlings were treated with different concentrations of NaCl using the open-air
potted soil cultivation method. The potted seedling had plant heights of 61–81 cm, ground
diameters of 0.8–1.2 mm and crown widths of 16–34 cm. The 16 cm high plastic pot had
an upper diameter of 24 cm and bottom diameter of 12 cm. The pots contained 9.82 kg
of nursery mellow soil: pH 7.9; soil salinity, 0.49 g/kg; soil density, 1.36 g/cm3; soil
conductivity, 852.6 µs/cm; soil organic matter content, 21.04 g/kg; and available potassium
content, 148.96 mg/kg. The contents of available phosphorus and alkali-hydrolyzed
nitrogen were 7.49 mg/kg and 139.58 mg/kg, respectively.

The experiment was conducted in a completely randomized design. The selected
1-year-old potted P. talassica × P. euphratica seedlings showed consistent growth, good
growth and no pests and diseases. They were divided into three groups, with 20 plants in
each group, totaling 60 plants that were then subjected to NaCl-stress treatments. The salt
content of the soil itself (4.8 g/pot; CK) was used as a control, and two other concentra-
tion gradients were set as 200 mmol/L and 400 mmol/L. To avoid salinity shock and to
acclimatize seedlings to high NaCl concentrations, P. talassica × P. euphratica was treated
with increasing NaCl concentrations progressively until the predetermined concentrations
were reached, and the NaCl concentration in the basin was kept constant [40]. The 200
and 400 mmol/L NaCl-stress treatment groups were watered with 1 L of the prepared
NaCl solution per pot each time, and the CK group was irrigated with 1 L of deionized
water per pot each time. Treatments were performed every 3 d for a total of five treatments,
eventually reaching the preset NaCl concentration. After maintaining the same growth
conditions for 45 d, the growth, physiological indicators, photosynthetic parameters and
anatomical structures of roots, stems and leaves were observed and measured.

3.3. Growth Index Measurement Methods

Growth indexes were measured before and after NaCl-stress treatments for 45 d. Plant
height was measured using a tape measure to an accuracy of 0.1 cm [41]. The ground
diameter was measured with an electronic digital Vernier caliper with an accuracy of
0.02 mm [25]. The plant heights, ground diameters and crown widths of seedlings in the
three treatment groups before and after 45 d of NaCl-stress treatments were counted, as
were any differences.

After 45 d of NaCl-stress treatments, 10 leaves with good growth and no disease and
insect pests were taken from each plant in the CK group and the treatment groups. Using a
leaf area meter to acquire data such as leaf length, leaf width, and leaf area. Simultaneously,
the number of leaves per seedling in the three treatment groups was counted, and the final
calculations were averaged [27].

Five seedlings of P. talassica × P. euphratica were selected from the treatment group and
the CK group, totaling 15 seedlings, and they were dug out with the root systems. After
excavating whole plants, they were taken to the laboratory and washed with deionized
water. The above- and the underground parts were separated, placed in labeled envelopes,
fixed in an oven at 110 ◦C for 20 min and then placed in an oven at 80 ◦C to dry to constant
weights. The dry masses of the above- and the underground parts of each plant were
weighed [26]. The sum of the dry masses of the two parts of each plant represented the
dry mass of the whole plant. The ratio of the dry mass of the underground part (dry mass
of roots) to the dry mass of the aerial part (dry mass of stems and leaves) of each plant
represented the root/shoot ratio.
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Additionally, whole P. talassica × P. euphratica seedlings were taken out of the flow-
erpots, rinsed with deionized water and scanned using a Microtek i800 Plus scanner to
obtain root images. Then, the root system configuration parameters, such as root length,
root surface area, root volume, root average diameter and number of forks, were measured
using an LA-S series plant image analyzer system. The measurements of all the growth
indicators were repeated three times, and the statistical results were averaged.

3.4. Physiological Index Measurement Methods

The salt secretion on the leaf surfaces of P. talassica × P. euphratica in different NaCl-
stress treatment groups were observed and imaged using a microscope (Nikon SMZ1500),
and the salt crystals secreted on the leaf main vein and the adjacent leaf surfaces were
observed and imaged. After 45 d of NaCl-stress treatments, five plants were taken from
each treatment group, three leaves were cut from the same part of each seedling and the
chlorophyll contents of the leaves were determined by ethanol extraction [41]. At the same
time, three plants were taken from each treatment group and five leaves were cut from the
same part of each seedling. The relative water contents (RWC) of the leaves were measured
using the weighing method [41]. First, the fresh weight Wf of the leaves were found, and
then the leaves were immersed in distilled water for several hours to make the leaves
absorb water into a saturated state. The leaves were taken out and the water absorbed on
the surface with absorbent paper, immediately put into a weighing bottle of known weight
then put in distilled water for a period of time to absorb the moisture on the outside and
finally weighed again until the weight no longer increased. At this time, Wt is the weight
when the leaf is saturated with water, after which the sample is dried to obtain the tissue
dry weight Wd and the RWC of the leaf is calculated. At the same time, the percentage of
WSD is calculated:

RWC = (Wf −Wd)/(Wt −Wd) × 100% (1)

WSD = (1 − RWC) × 100% (2)

In total, 10 leaves from each treatment were picked and leaf imprints from the backs
of the leaves were lifted using nail polish (three separate regions per leaf). Stomatal density
was assessed using an optical Leitz microscope (Leitz DIA LUX 22EB) equipped with a
digital camera (Hitachi KP-D 40 Color Digital). Stomata were counted using the analysis
software program for image analysis (Delta-T Devices Ltd., Cambridge, UK).

Plant leaves of the same size were selected and washed them with distilled water three
times. Filter paper was used to absorb the surface moisture, and the leaves were cut into
strips of suitable length (avoiding opening the main vein). For each treatment group, 0.1 g of
three fresh samples were weighed, placed into 10 mL deionized water in graduated test tubes,
covered with glass stoppers and soaked at room temperature for 12 h. A conductivity meter
was used to measure the conductance (R1) of the leaching solution. Samples were then heated
in a boiling water bath for 30 min, cooled to room temperature, shaken and the conductance
(R2) of the leaching solution was remeasured. Relative conductivity = R1/R2 × 100%.

After a 45 d NaCl-stress treatments, on a sunny day, the leaf water potential was
measured every 3 h from 08:00 to 20:00, using a pressure chamber water potential me-
ter (PMS Instrument Company, Albany, OR, USA) to determine the diurnal variation.
Three seedlings were measured for each treatment, and three leaves were measured per
young tree. The leaves selected were in the same position, with uniform illumination, and
showed healthy consistent growth (mature leaf samples were all from in the middles of
peripheral branches). The average value of three leaves, with nine replicates, was taken to
represent the average leaf water potential of P. talassica × P. euphratica.

The malondialdehyde (MDA) content was determined using the thiobarbituric acid
method. The Pro content was determined by ninhydrin colorimetry [41], and superoxide
dismutase (SOD) activity was measured using the nitroblue tetrazolium method [42]. Per-
oxidase (POD) activity was determined using the guaiacol method [41], and catalase (CAT)
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activity was determined using the UV absorption method [42]. The soluble sugar content
was determined using the anthrone colorimetric method [41], and the soluble protein
content was determined using the Coomassie brilliant blue method [43]. Physiological and
biochemical indicator kits were purchased from Suzhou Keming Biotechnology Co, Ltd.,
Suzhou, China. All the physiological index measurements were repeated three times, and
the statistical results were averaged.

Photosynthetic indicators were determined using a LI-6400 portable photosynthesis
system when the weather was sunny and sky was cloudless. The measurement period was
9:00–11:00. The middle leaves of the plants were used to measure net photosynthetic rate
(Pn), transpiration rate (Tr), intercellular CO2 concentration (Ci) and stomatal conductance
(Gs). The stomatal limitation (Ls) and leaf water-use efficiency (WUE) were calculated.
The measured light intensity was 1100 µmol·m−2.s−1, the temperature was approximately
25 ◦C, and the atmospheric CO2 concentration (Ca) was approximately 400 µmol·mol−1. In
total, 10 plants were measured per treatment and 3 leaves from the same part of each plant
were selected for measurements, which were averaged. The formulae for calculations were
as follows:

Ls = 1 − Ci/Ca (3)

WUE = Pn/Tr (4)

3.5. Determination of the Anatomical Structural Index of Roots, Stems, and Leaves

After 45 d of NaCl-stress treatments, five plants were taken from each treatment group,
and the roots, stems and leaves of each P. talassica × P. euphratica seedling were taken,
fixed and preserved in FAA solution. These were transformed into permanent film using
the paraffin section method [44]. For leaves, the palisade tissue thickness, spongy tissue
thickness and leaf thickness were measured with an industrial digital camera (OPLENIC
CORP, Zhejiang, China). For roots, the periderm, phloem and xylem thicknesses, vessel
diameter and root diameter were measured under a Leica microscope. For stems, the stem
epidermis, cortex, phloem, xylem and pith thickness were measured with an industrial
digital camera (OPLENIC CORP) [45]. Five fields of view were observed for each root,
stem and leaf section, and 10 structures were observed in each field of view. The average
values of the anatomical structural parameters of the rhizomes and leaves from five fields
of view were used as the values for P. talassica × P. euphratica. The CP and tightness of leaf
tissue structure were calculated suing the following formulae:

CP = Palisade tissue thickness/Spongy tissue thickness (5)

Tightness of leaf tissue structure = (Palisade tissue thickness/Blade thickness) × 100% (6)

3.6. Data Processing and Analyses

The experimental data were analyzed, processed and plotted using Microsoft Excel
2010 software. Statistical analyses were performed using SPSS 25.0 software. Significant
differences between means were determined using the least significant difference test at
p < 0.05.

4. Discussion
4.1. Growth Characteristics of P. talassica × P. euphratica

Plant responses to salinity vary with the degree and duration of stress and the develop-
mental stage at time of exposure [46]. Many halophytes require a quite high concentration
of NaCl (100–200 mmol/L) for optimum growth [12]. Saline-alkali stress has serious effects
on plant growth rate [4,14], biomass, plant height, leaf area and root length [47–50]. Traits
such as survival and leaf damage have been the most common criteria for identifying
salinity tolerance [51,52].
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Some reports have showed clearly that salt stress inhibits the growth of poplar [53–55].
In this study, compared with CK, the 200 mmol/L NaCl-stress treatment significantly
increased the leaf length, leaf width, leaf area and leaf numbers of P. talassica × P. euphratica,
and it promoted the growth of P. talassica × P. euphratica. The 400 mmol/L NaCl-stress
treatment inhibited the growth of P. talassica × P. euphratica and decreased the survival
rate, but it caused no obvious damage to the leaves of P. talassica × P. euphratica. Under
the 400 mmol/L NaCl-stress treatment conditions, the leaves of P. talassica × P. euphratica
became smaller, which decreased the water use by the plant, thereby allowing it to conserve
soil moisture and prevent an escalation in the salt concentration [56]. This is similar to a
study by Z Zhu et al. (2012), in which the control, moderate NaCl conditions (200 mmol/L
NaCl) significantly increased the leaf dry weight, leaf area and leaf numbers of Bruguiera
gymnorrhiza, whereas the severe NaCl-stress treatment (500 mmol/L NaCl) significantly
decreased each growth parameters [39]. In addition, S Chen et al. (2001) observed that leaf
abscission of the P. euphratica and the hybrid P. talassica × (P. euphratica + Salix alba) tended
to increase with increasing NaCl in the soil [23]. This is also similar to our study.

Under 200 mmol/L NaCl-stress treatment, the survival rate of P. talassica× P. euphratica
remained unchanged, while under 400 mmol/L NaCl-stress treatment, the survival rate of
P. talassica × P. euphratica was 91.6%, which was significantly lower than the CK. Similar
to our findings, Shin Watanabe et al. (2000) observed the survival ratio of Pyramidalis
× P. tomentosa was 78% at 150 mmol/L NaCl-stress treatment and 0% at 250 mmol/L
NaCl-stress treatment [57]. Moreover, salt stress affects plant growth and development
by influencing fresh and dry weights of roots and shoots, as well as shoot length [58].
In general, plant height and fresh and dry biomasses are inhibited by high levels of salt
stress [59–61]. In this study, the 200 mmol/L NaCl-stress treatment significantly increased
the aboveground, belowground, and whole plant biomasses and promoted the dry matter
accumulation of P. talassica × P. euphratica. Furthermore, the 200 mmol/L NaCl-stress
treatment significantly increased root length, root surface area, root volume and average
root diameter of P. talassica × P. euphratica, whereas the 400 mmol/L NaCl-stress treatment
decreased the biomasses, and the root-related indexes decreased significantly. However,
the root/shoot ratio increased gradually along with the NaCl concentration. Similar to our
findings, E Bijanzadeh et al. (1997) reported that salt stress increased root/shoot ratios in
Afzal and Karoon cultivars [62].

Root development and activity were inhibited when P. talassica × P. euphratica was
grown in a saline environment (such as 400 mmol/L NaCl), which caused a series of
depressive effects on the physiological functions of the aerial plant parts [63,64]. This
further decreased the dry matter mass of the aboveground parts [63,64]. In addition, here,
the reduction in the shoot dry weight of P. talassica × P. euphratica under the high salt
stress (400 mmol/L NaCl) treatment may also be due to the reductions in plant height
and leaf number. This is similar to a study by WH Bolu et al. (2004) observed low salinity
stimulated root and shoot biomass formation of Populus canescens, resulting in increased
biomass as compared to controls over the whole experimental period. The reduction in
root length and number reflects the sensitivity of this organ to salt stress [55]. In this study,
the 200 mmol/L NaCl-stress treatment significantly promoted the growth of the aerial and
underground parts of the roots of P. talassica × P. euphratica, indicating that the cultivar has
a certain salt tolerance [65]. The 200 mmol/L NaCl-stress treatment significantly increased
the plant height, ground diameter and crown width of P. talassica × P. euphratica, whereas
the 400 mmol/L NaCl-stress treatment significantly decreased these growth parameters.
Similar to our findings, N Orcen et al. (2016) reported that a 200 mmol/L NaCl treatment
group had the tallest Salicornia plants, whereas the 500 mmol/L NaCl treatment group had
the shortest Salicornia plants [42]. Here, the moderate salinity (200 mmol/L NaCl) had a
positive effect on the growth of P. talassica × P. euphratica. In addition, WH Boluet al. (2004)
observed immediate inhibition of root length growth of Populus canescens after exposure to
high salinity [66].
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4.2. Physiological Characteristics of P. talassica × P. euphratica

The trees allocated large proportions of NaCl into the leaves, which served as a salt
elimination mechanism [29]. A large number of halophytes show the presence of specialized
salt secretory structures in their leaves that are epidermal in origin and essentially modified
trichomes [67,68]. In this study, the main vein of leaves in the NaCl-stress treatment group,
and the surfaces of adjacent leaves, secrete large amounts of salt crystals. Compared with
the CK, the 400 mmol/L NaCl-stress treatment group secreted more salt crystals on the
P. talassica × P. euphratica leaf surfaces. This is because P. talassica × P. euphratica transfers
excess salt absorbed by the root system to the leaves in response to salt stress [69].

Under salt stress, leaf water physiology also changed adaptively [55]. Water potential
is an important indicator for the estimation of the water status of a plant [70,71]. High salt
stress disrupts homeostasis in water potential and ion distribution. Drastic changes in ion
and water homeostasis lead to molecular damage, growth arrest and even death [72]. In
this study, the diurnal variations in the water potential of P. talassica × P. euphratica at all
the observed time points showed the same trend. The treatment with the highest NaCl
concentration had the most negative water potential during the day and the lowest water
potential at noon. Trends in the control and treatment groups were consistent throughout
the experiment. The greater the negative water potential of P. talassica × P. euphratica
seedlings under NaCl-stress, the greater the effect of NaCl-stress on the water supply of
P. talassica × P. euphratica seedlings. The higher the concentration of osmotically active Na+

and Cl− ions, the lower the water potential of the soil and the greater the negative water
potential of the plant, which is an adaptation that enables the plant to absorb water from
the soil [73].

Salinity changes the RWC of the leaves [74]. In this study, compared with the CK, the
RWC of the leaves and chlorophyll content of P. talassica × P. euphratica leaves significantly
decreased under different levels of NaCl-stress treatments. This decrease in leaf relative
water content (RWC) could be caused by a lower water availability under stress conditions
or by root systems that are not able to compensate for water lost by transpiration through a
reduction in the absorbing surface [75,76]. In addition, the total chlorophyll concentration
significantly decreased after exposing plants to higher salinity, which may result in the
destruction of chloroplast structures, eventually leading to a decrease in the chlorophyll
content [77]. Likewise, M Gorai et al. (2011) observed that the parameters of all leaf water
relations in Phragmites decreased as the NaCl concentration increased [78]. Furthermore, S
Cha-Um et al. (2009) also showed that the chlorophyll a and b, total chlorophyll and total
carotenoid contents of sugarcane shoots are reduced due to decreases in salt stress, which
is also similar to our study results [79].

Studies have confirmed that the inhibitory effect of salt stress on physiological and
biochemical processes, which inhibits photosynthesis and destroys cell membranes [80].
Photosynthesis is the most important process for forming organic matter in plants, and
the effects of water and salinity on photosynthesis determine the growth and survival
of the plants [81]. In this study, compared with the CK, the Pn, Gs, Tr and Ls values of
P. talassica × P. euphratica leaves gradually decreased as the NaCl concentration increased,
whereas the Ci value increased gradually. This resulted from the photosynthetic capacity
of the mesophyll cells of P. talassica × P. euphratica seedlings being further reduced, along
with the utilization of CO2, resulting in excess CO2 and a corresponding reduction in
photosynthetic products. Similar to our findings, HC Ma et al. (1997) observed that
when the high salt (200 mmol/L NaCI) treatments, photosynthesis of both P. euphratica
and hybrids decreased 1 day after irrigation with a high salinity solution. There was a
significant reduction by day 5 for the hybrids and by day 10 for P. euphrutica [21]. In general,
Pn reduction as response to an initial osmotic shock, caused by moderate drought or salinity
stress, resulted from a stomatal closure [82].

The researchers found that salinity caused physiological modifications in plants such
as stomatal density, shape and size [83]. NaCl-stress caused different degrees of stomatal
closure and decreased stomatal density. Under salt stress, plant leaves close through
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stomata or reduce leaf stomatal density to reduce the transpiration rate [84]. In this study,
the stomatal length, stomatal width, stomatal area, stomatal density and stomatal opening
rate of P. talassica × P. euphratica leaves were decreased to varying degrees by salt stress.
Similar to our findings, V. D. Rajput et al. (2015) observed three months of enhanced
salinity resulted in increased stomatal density of one year old P. euphratica seedlings at
50, 100 and 150 mmol/L NaCl, whereas at 200 mmol/L salt concentration, it decreased
in comparison with other salt treatments, and the area of stomata was declined as well.
Salinity also affected the length of stomata openings; it decreased in salt-treated plants to
reduce evaporation [85]. Improving stomatal regulation has been regarded as the most
effective approach to alleviate salt stress in plants [86,87].

In this study, 200 mmol/L and 400 mmol/L NaCl-stress treatments significantly in-
creased Pro and MDA contents in P. talassica × P. euphratica leaves. In the study of Zhang
Min et al., under the 50–200 mmol/L NaCl-stress treatments, compared with the control,
the MDA content of P. talassica × P. euphratica seedlings treated with 50–150 mmol/L NaCl
solution had no significant change, and tended to normal physiological indicators. This
indicated that P. talassica × P. euphratica seedlings were weakly affected by NaCl solu-
tion at the concentration of 50–150 mmol/L, and when the NaCl concentration reached
200 mmol/L, the MDA content of P. talassica × P. euphratica seedlings increased signif-
icantly [2]. This was because 200 mmol/L NaCl-stress treatment aggravated the lipid
peroxidation of P. talassica × P. euphratica seedlings and damaged the cell membrane.

In addition, the relationship between the concentration of proline and the reaction to
salt stress has been confirmed for many species of plant organisms, including poplar and
aspen [18]. Similar to our findings, Shin Watanabe et al. (2000) observed that a high proline
content in P. euphratica grown under both mannitol and NaCl-stress [57]. The soluble sugar
and soluble protein contents significantly increased under the 400 mmoll/L NaCl-stress
treatment, which may be involved in the salt-stress resistance of P. talassica × P. euphratica.

In this study, 200 and 400 mmol/L NaCl-stress treatments significantly increased the
relative electrical conductivity (REC) of P. talassica × P. euphratica leaves. In the study of
Zhang Min et al., under the 50–200 mmol/L NaCl-stress treatments, the relative conduc-
tivity (REC) of leaves of P. talassica × P. euphratica seedlings did not change significantly.
This is because 50–200 mmol/L NaCl-stress treatments did not change the cell membrane
permeability of P. talassica × P. euphratica seedlings [2].

Under normal conditions, ROS production and scavenging is well regulated. The
enzymatic ROS scavenging mechanisms in plant included production of superoxide dismu-
tase (SOD), peroxidase (POD), catalase (CAT) and so on, which can minimize the cellular
damage caused by ROS [88]. In this study, compared with the CK, the low salt concentration
increased the activities of the three antioxidant enzymes, whereas their activities decreased
significantly at the high salt concentration. SOD, POD and CAT decreased significantly in
plants under higher salinity conditions, suggesting that the excess H2O2 was not effectively
scavenged, thereby causing more serious oxidative stress. This may lead to decreases in
the activity levels of the three antioxidant enzymes. Similar to our findings, V. D. Rajput
et al. (2015) observed anti-oxidative activity after three months of salt stress in one-year-old
P. euphratica seedlings, and results showed POD activity increased with increasing rate of
salt concentrations at all level of salt treatments (50, 100, 150, 200 mmol/L NaCl) [85]. A
high POD activity may play an important defensive role against salt stress [89].

4.3. Anatomical Characteristics of P. talassica × P. euphratica Roots, Stems and Leaves
4.3.1. Anatomical Features of P. talassica × P. euphratica Leaves

Salinity affected anatomical and morphological characters along with physiological
parameters [85]. Plants generally develop salt-resistance mechanisms and unique structures
to survive under high saline stress conditions [90,91]. The studying of changes in leaf
anatomy is an appropriate way to research into abiotic stress situations, including salt
stress [18]. In this study, compared with the CK, NaCl-stress treatments significantly
increased the palisade tissue thickness and leaf thickness, but significantly decreased
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spongy tissue thickness, of P. talassica × P. euphratica leaves. Increases in leaf thickness can
be induced by the exposure of roots to high concentrations of NaCl [80,86]. Increasing the
palisade tissue thickness and leaf thickness of P. talassica × P. euphratica may be structural
changes that help to resist salt stress. Similar to our findings, Mohsen et al., on guava,
Salem et al., on apple seedling, and Sherin and Pfeiffer et al., on olive, found that increasing
salinity levels were accompanied by increases in the thicknesses of leaf blades [92–95].

Interestingly, contrary to our findings, E Karimi et al. (2012) observed an increase in
spongy mesophyll thickness due to salt stress, along with a slight reduction in palisade
mesophyll thickness [96]. Therefore, the response of P. talassica × P. euphratica to external
adversity stress can be significantly reflected in the structures of leaves first, which then
affects their physiological and biochemical responses.

4.3.2. Anatomical Features of P. talassica × P. euphratica Stems

In the stem, adaptive features include a thickening epidermis and increasing phloem
area [97]. In our current research, compared with the CK, the anatomical characteristics
of P. talassica × P. euphratica seedling stems changed significantly under different concen-
trations of NaCl. The NaCl-stress increased stem epidermal thickness, cortex thickness,
phloem and xylem thickness and pith diameter. Both the cortical and pith increased in the
salt range population. These tissues can enhance the storage capacity, which is crucial under
unfavorable moisture conditions [98]. Similar to our findings, the stem cortex thickness of
the Palestinian tomato (Solanum lycopersicon) increases significantly at 100 mmol/L NaCl
compared with the control [84]. Moreover, Younis et al. observed that the phloem cell
areas and pith cell areas of stems increase under salt stress [99], which was similar to our
findings. This increased succulence in stems may aid to store additional water, and hence,
increase survival, under harsh environmental conditions [100]. Furthermore, epidermal
thickness greatly increased, indicating increased adaptability because a thick epidermis is a
characteristic feature of salt-tolerant species. This characteristic is critical when moisture
availability is limited because a thick epidermis is capable of checking water loss through
stems [101–104].

4.3.3. Anatomical Features of P. talassica × P. euphratica Roots

The effects of salinity on the root anatomy of plants have been reported previously [105–107].
In this study, root xylem thickness, phloem thickness, xylem vessel number, xylem vessel
diameter and root cross-sectional diameter all showed a significant upward trend as the
NaCl concentration increased. In addition, the variation in the diameter of the xylem
vessels influenced the salinity tolerance. The diameter of the xylem is considerably larger
in salt-treated plants [108]. Contrary to our findings, Maryani et al. showed that increases
in NaCl concentrations caused decreases in root diameters and xylem tissue thickness.
However, in their findings, similar to our results, high concentrations of NaCl tended to
increase the diameters of xylem vessels in roots [109]. The diameters of the xylem vessels
affect the water transport capacity [110]: the larger the diameters of the xylem vessels, the
stronger the water transport capacity.

5. Conclusions

The growth, physiological and photosynthetic characteristics of P. talassica × P. euphratica
seedlings, as well as root, stem and leaf anatomy are highly dependent on soil moisture and
salinity conditions. Under low-salt stress (200 mmol/L NaCl), these indicators were limited,
but P. talassica × P. euphratica could adapt to the low-salt stress by changeing the leaf area,
leaf thickness, root length, root branch number, plant height, ground diameter, crown width
and biomass allocation, improving water use efficiency, changing stomatal density and
size, increasing the content of Pro, MDA, soluble sugar and soluble protein, increasing the
activities of three antioxidant enzymes (SOD, POD and CAT), and changing the anatomical
structure of P. talassica × P. euphratica, etc. A series of strategies are used to adapt to the
salt environment, so that they can grow normally, and to a certain extent promote their
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growth. P. talassica × P. euphratica can survive and reproduce at a concentration of more
than 200 mmol/L NaCl, which proves that it has salt [11,69,111]. However, under high
salt stress (400 mmol/L NaCl), various growth parameters of P. talassica × P. euphratica
seedlings decreased, biomass accumulation decreased, photosynthesis decreased signifi-
cantly, WUE decreased and antioxidant enzyme activities decreased, indicating that the
above mechanisms cannot offset the salt coercion effect.

In accordance with the related growth, physiological and photosynthetic characteristics
of P. talassica × P. euphratica in response to salt stress, as well as the anatomical structural
characteristics of roots, stems and leaves, P. talassica × P. euphratica appeared to have a
certain salt tolerance, and moderate salt stress was beneficial to its growth. The growth
and physiological characteristics of P. talassica × P. euphratica in response to salt stress, as
well as changes in its structures, were adaptive mechanisms to cope with salt stress. This
study provides reliable physiological, biochemical and structural indicators for exploring
the salt tolerance mechanism of P. talassica × P. euphratica, and provides a certain reference
for the improvement and sustainable development of soil saline-alkali land in Xinjiang in
the future.
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