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Abstract: The aim of this study is to compare the functions of the physiologically active compounds
of three types of mulberry leaf by cultivar, and to confirm the changes using hot-melt extrusion
(HME−ML). The active components of mulberry leaf were analyzed using the HPLC system, and
total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity were measured.
Among the three varieties, the highest contents of rutin and isoquercetin were detected in Cheongil, of
TPC in Cheongol, and of TFC in Cheongil. It was confirmed that this bio-accessibility was increased
in HME−ML compared with the control. The DPPH radical scavenging activity of Cheongol showed
greater antioxidant properties, and HME showed improvement in the antioxidant properties of all
mulberry leaves. These results suggest that the application of HME technology can improve the
biological activities of mulberry leaf.

Keywords: mulberry leaf; hot-melt extrusion (hme); water solubility; rutin; isoquercetin; antioxi-
dant activity

1. Introduction

Mulberry leaf (Morus alba L.) has been used in traditional medicine and is an edible
plant used to grow silkworms [1]. It is currently used to make diet foods or to develop
products, such as fortified beverages, yogurts, and teas [2]. Mulberry leaf is used in tra-
ditional Chinese medicine to treat diabetes and hyperlipidemia and contains secondary
metabolites, such as flavonoids, organic acids, alkaloids (1-deoxynojirimycin, fagomine),
and polyphenols [3–5]. Mulberry leaf includes the effects of lowering blood sugar, antioxi-
dant, anti-inflammatory, high-density lipoprotein–cholesterol increase, and low-density
lipoprotein–cholesterol reduction [6–8]. A previous study found that the functional compo-
nents of mulberry leaves differ between varieties [9]. Therefore, it is important to select
suitable mulberry leaves through activity studies according to variety.

The active components of the mulberry leaf include rutin, isoquercetin, and quercetin [4,10].
Isoquercetin and rutin are flavonoids, which are a family of polyphenolic compounds. The
content difference between total phenol content (TPC) and total flavonoid content (TFC)
may be caused by growth environment, contamination, and pathogens [11,12]. The water
solubility of rutin and isoquercetin was 0.125 g/L and 0.095 g/L. Although many biological
activities have been revealed due to poor water solubility, they have the disadvantage of
showing low bioavailability and absorption when applied to food development [13,14].

Hot-melt extrusion (HME) has proven to be a successful technique in drug delivery
systems (DDS) and several applications through properties such as the improved solubility
of poorly soluble compounds, targeting, drug delivery, and the preparation of nanoparti-
cles [15]. HME is widely used in the food industry and pharmaceuticals. HME converts
a mixture into having certain properties, such as uniform shape and density, by forcing
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the mixture through a die [16]. The principle of HME is to induce melting and further
solubilization and fusion by applying heat and friction (interparticle friction, sample and
wall friction, sample, and screw friction) to the mixture [17]. The advantage of HME is that
it is an eco-friendly technology that does not use organic solvents, improves the dispersal
of the drug and the solubility of the poorly soluble drugs, and increases bioavailability.
However, the disadvantage of HME is that it requires high temperature and must be stable
under thermal decomposition [18]. Charunuch et al. compared antioxidant activity and
TPC according to the various conditions of HME by mixing mulberry leaf and instant cereal
beverage powder. As the content of mulberry leaf in the mixture increased, antioxidant
activity and TPC increased [19].

The HME increases solubility by producing a stable amorphous solid dispersion and
increased energy form through a combination of processing and excipients [20]. Whey
protein isolate (WPI) is receiving attention as a food biopolymer in the food industry, and
heat treatment above 60 degrees causes the denaturation of WPI, exposing many hydropho-
bic functional groups on the surface of protein particles [21]. Among natural emulsifiers,
lecithin is an amphiphilic surfactant that can bind proteins through hydrophobic interac-
tions [22]. Lecithin, used as a surfactant, improves the solubility of active ingredients by
improving solubility, and is also used as a plasticizer for the matrix [23]. During the HME
process, the addition of plasticizer could decrease processing temperature and achieve
higher dispersion [24,25]. Citric acid was used as a pH adjuster to control drug release in
hydroxypropyl methylcellulose (HPMC) matrix tablets [26] and was used as a solid-state
plasticizer when preparing a solid dispersion through HME [27–29]. Ascorbyl palmitate,
an amphiphilic synthetic derivative of ascorbic acid, is used as a natural antioxidant in
the food industry [30,31] and can be used as an emulsifier [32]. In HME studies with
Moringa oleifera Lam, ascorbyl palmitate was used as a plasticizer [33]. Vitamin C is
widely used in food as a naturally occurring antioxidant and has been used as a plasticizer
for biodegradable polymers [34]. Ascorbyl palmitate, Vitamin E, and WPI were mixed and
coated to protect peanuts from lipid oxidation [35].

The purpose of the study was to improve the active compound water solubility of
three mulberry leaf varieties through the HME. The mulberry leaf and HME-mulberry leaf
(HME−ML) were compared through high-performance liquid chromatography (HPLC),
antioxidant, and TPC and TFC analysis.

2. Materials and Methods
2.1. Materials

The materials used in this study are three types of mulberry leaf grown in Korea,
namely the Cheongol, Iksu, and Cheongil varieties. To avoid any effect from pedoclimatic
factors, the three varieties were grown and collected at the same place, the National Institute
of Agricultural Sciences, (Wanju, Korea) in early May. Acetic acid was purchased from
Duchefa (Haarlem, The Netherlands). Acetonitrile (ACN) was purchased from Fisher
(A9984, Waltham, MA, USA). Folin–Ciocalteu’s phenol reagent (F9252), gallic acid (G7384),
and quercetin (Q4951) were purchased from Sigma–Aldrich (St. Louis, MO, USA). Sodium
carbonate was purchased from Daejung (7541-3300, Siheung, Korea). Potassium acetate
was purchased from TCI (P2786, Tokyo, Japan). Aluminum chloride hexahydrate, 2,2-
diphenyl-1-picrylhydrazyl (DPPH) (044150), and L-ascorbic acid (011188) were purchased
from Alfa Aesar (Ward Hill, MA, USA).

2.2. Extraction Method

The weights of the mulberry leaf and HME−ML were all calibrated to 1 g (100%) and
weighed. Deionized water (D.W.; 50 mL) was used as an extraction solvent. An ultrasonic
cleaner (UCP-20, JeioTech Co., Ltd., Daejeon, Korea) was used for ultrasonic extraction
(40 ◦C, 30 min). The extract was centrifuged at 3000 rpm, and the supernatant was filtered
by Whatman filter paper No. 6 (Cytiva, Marlborough, MA, USA) and recovered by rotary
pressure concentration (Eyela Co., Ltd., Tokyo, Japan).
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2.3. Preparation of HME-ML

After mixing the mulberry leaf and each additive, the HME process (STS-25HS tween
screw extruder, Hankook E.M. Ltd., Pyoung-Taek, Korea) was performed. As additives,
whey protein isolate, soy lecithin, vitamin C, vitamin E 50%, citric acid, and ascorbyl
palmitate were used, after mixing in predetermined ratios (Table 1). The ratio of additives
in HME processing was carried out under the same conditions to compare the activity
according to the varieties of mulberry leaves. The processing temperature was fixed at
100 ◦C. The conditions of HME process were 40~50 bar of pressure and 50 rpm of screw
speed. The HME-ML was used for subsequent experiments after drying.

Table 1. The composition of HME−ML.

Chemical
Formulation (%)

HME−
Cheongol

HME−
Iksu

HME−
Cheongil

Mulberry leaf 79 79 79
WPI 10 10 10

Soy Lecithin 2.5 2.5 2.5
Vit C 2 2 2

Vit E 50 2 2 2
Citric acid 2 2 2

Ascorbyl palmitate 2.5 2.5 2.5

Total Ratio (%) 100 100 100

2.4. HPLC Analysis

The mulberry leaf was extracted with distilled water to prepare 1 mg/mL and ana-
lyzed. The calibration curve was prepared with rutin and isoquercetin (Sigma–Aldrich Co.,
St. Louis, MO, USA). The instrument used for HPLC analysis was a Simadzu LC-20AT
HPLC system (Tokyo, Japan). Samples were filtered with a syringe filter (0.45 µm) before
analysis. Water containing 0.5% acetic acid and acetonitrile (ACN) was used as a solvent. It
proceeded according to the analysis conditions (Table 2).

Table 2. The HPLC analysis conditions.

Column YMC-ODS AM C18 (5 µm, 12 nm) 250 mm × 4.6 mm
Detector UV-VIS detector (356 nm)

Solvent A Water containing 0.5% acetic acid
Solvent B Acetonitrile (ACN)
Flow rate 1 mL/min

Oven 35 ◦C
Injection volume 10 µL

Time (min)
Gradient elution system

% A % B
Initial 82 18

9 65 35
11 82 18
22 82 18

2.5. Total Phenolic Content (TPC)

TPC was tested using the Folin–Denis method [36]. The concentration of the sample
was 1 mg/mL, and in 20 µL of the sample, 100 µL of Folin–Ciocalteu’s phenol reagent
and 80 µL of 7.5% sodium carbonate were added. Absorbance was measured at 760 nm
using a microplate reader (Epoch, Agilent Technologies Inc., Santa Clara, CA, USA) at room
temperature (RT) for 45 min in the dark. The standard curve was prepared at 20, 40, 60, 80,
and 100 µg/mL using gallic acid, respectively, and a calibration curve was then prepared.
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2.6. Total Flavonoid Content (TFC)

The TFC was tested using the Dowd method [37]. The concentration of the sample
was 1 mg/mL, and after adding 60 µL of 95% ethanol, 4 µL of 10% aluminum chloride
hexahydrate, 4 µL of 1 M potassium acetate, and 112 µL of D.W. to 20 µL of the sample,
it was reacted at RT for 40 min. Absorbance was measured at 415 nm using a microplate
reader. The standard curve was prepared at 20, 40, 60, 80, and 100 µg/mL using quercetin,
respectively, and a calibration curve was then prepared.

2.7. Antioxidant Activity

Antioxidant activity was tested using 2,2-diphenyl-1-picrylhydrazyl (DPPH) [38]. Sam-
ples were prepared at 0, 1000, 2000, 3000, 4000, and 5000 µg/mL, and then 150 µL of 0.4 mM
DPPH solution that was prepared in methanol was added to 5 µL of each sample, followed
by reaction in the dark at RT for 30 min, and the absorbance was measured at 517 nm.
L-ascorbic acid was used as a control, and a comparative experiment was performed after
preparation at 0, 20, 40, 60, 80, and 100 µg/mL. DPPH radical scavenging activity was
measured by IC50 (µg/mL), which is a concentration that reduces DPPH radical by 50%.
The inhibition rate of the mulberry leaf was calculated using the following equation:

Inhibition (%) =

(
blank absorption − extract sample absorption

blank absorption

)
× 100

2.8. Statistical Processing

The results of repeated HPLC, TPC, TFC, and DPPH radical scavenging activity
experiments using SAS 9.4 (SAS Institute Inc., Cary, NC, USA) were expressed as the mean
± standard deviation. Significant differences between samples were tested for significance
at the Duncan’s Multiple Range Test (DMRT) 5% level (p < 0.05).

3. Results and Discussion
3.1. Analysis of Isoquercetin and Rutin Contents of Mulberry Leaf and HME-ML

The isoquercetin and rutin content of mulberry leaf and HME−ML before and after
HME showed different results in Figure 1. Cheongil had the highest isoquercetin content,
and it was confirmed that there was a difference of about two times compared to other
varieties. After HME processing, isoquercetin content was increased in all varieties, and
HME−Cheongil showed the highest content in the HME formulation. The rutin content
was the highest in Cheongil, and after HME processing, the rutin content was increased in
all varieties, and HME−Cheongil showed the highest content in the HME formulation.

The rutin content of mulberry leaf extracted using methanol was reported to be the
highest in Cheongol and the lowest in Choengil [39]. Rutin and isoquercetin are generally
poorly soluble in water [14,40], and HME increases the solubility of liposoluble compo-
nents [41–43]. Park et al. confirmed the increased rutin content through HME processing of
buckwheat flour, and the rutin content increased as the mixed yeast content increased [44].
When lecithin and vitamin E were added in the HME processing of buckwheat and potato,
the content of rutin was increased. In addition to rutin, the increase in phenol and flavonoid
contents may be due to the encapsulation of active components through lecithin liposome
formation [45]. The results show that through the HME process, the solubility of liposoluble
components, rutin, and isoquercetin increased in water, resulting in an enhanced amount
of hydrophobic active compounds.
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Figure 1. (A) Isoquercetin and (B) rutin contents of mulberry leaf and HME-ML extract; and (C)
HPLC chromatogram of rutin and isoquercetin in Cheongil and HME-Cheongil extract. Data are
expressed as mean ± standard deviation (n = 3). Means with different letters vary significantly with
Duncan’s Multiple Range Test (DMRT) at 5% level (p < 0.05) within samples.

3.2. Total Phenolic Content

The TPC results are presented using gallic acid as a standard. Among the three
mulberry leaf varieties, Cheongol had the highest TPC content. In all mulberry leaf
varieties, TPC was higher after HME, and HME−Cheongol showed the highest TPC content
of 31.14 ± 4.63 mg/g (Table 3). High temperature and shear forces applied to phenolic
compounds can form amorphous structures and lead to increased solubility through the
destruction of cellular components [46]. An increase in TPC by HME was also reported in
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another study [45]. It was confirmed that for all mulberry leaf varieties, TPC was higher
after extrusion than before extrusion. This suggests that when HME is applied to mulberry
leaf, TPC is increased. This result could be explained as the increased water solubility of
rutin and isoquercetin correlating with the total amount of phenolic content.

Table 3. Total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity by
DPPH of mulberry leaf extract.

Sample
TPC TFC DPPH

GAE·mg/g QE·mg/g IC50 (µg/mL)

Cheongol 14.48 ± 0.73 cd 8.82 ± 0.35 b 7880.56 ± 1084.82 b

HME−Cheongol 31.14 ± 4.63 a 19.68 ± 1.48 a 4480.83 ± 35.63 d

Iksu 11.96 ± 4.15 d 8.77 ± 0.66 b 8733.33 ± 196.392 a

HME−Iksu 15.72 ± 0.58 cd 22.12 ± 3.91 a 4530.83 ± 51.30 d

Cheongil 11.17 ± 4.31 d 12.26 ± 1.12 b 8963.33 ± 297.75 a

HME−Cheongil 23.96 ± 5.78 ab 22.02 ± 2.97 a 5778.33 ± 235.39 c

Ascorbic acid - - 167.49 ± 15.69 e

Data are expressed as mean ± standard deviation (n = 3). Means with different letters vary significantly with
DMRT at 5% level (p < 0.05) within samples.

3.3. Total Flavonoid Content

The TFC results are presented using quercetin as a standard. Among the three mul-
berry leaf varieties, Cheongil had the highest TFC content, and in HME−ML, HME−Iksu
showed the highest TFC content of 22.12 ± 3.9 mg/g (Table 3). It was confirmed that for all
mulberry leaf varieties, TFC was higher after extrusion than before extrusion. This suggests
that when HME is applied to mulberry leaf, TFC is increased. Wang et al. suggested that
the total flavonoid solubility of Ginkgo biloba extract was increased through HME and
could increase oral bioavailability [47].

3.4. Antioxidant Activity

The antioxidant activity of mulberry leaf extracts was compared by DPPH radi-
cal scavenging activity (Table 3). Among the three mulberry leaf varieties, Cheongol
had the lowest IC50, and in HME−ML, HME−Cheongol showed the lowest IC50 of
4480.83 ± 35.63 µg/mL. HME−ML had a higher IC50 value than ascorbic acid, but all
mulberry leaf varieties showed a lower IC50 value than non-HME−ML. The DPPH radical
scavenging activity was increased after HME processing in all mulberry leaf varieties, and it
was confirmed that the inhibition rate was increased in a concentration-dependent manner.
This suggests that the application of HME to mulberry leaf increases antioxidant activity.
Among the natural antioxidants, phenolic compounds, which are secondary metabolites
produced by plants, are contained the most. The TFC and TPC in mulberry leaf have been
found to have a significant effect on antioxidant activity [12]. Phaseolus bulgaris L. shows a
difference in antioxidant activity depending on the cultivar, and the free radical scavenging
activity was faster in the extrudate extract [48].

4. Conclusions

In this study, HME with proper additives enabled improved water solubility of rutin
and isoquercetin. The isoquercetin content of the three kinds of the mulberry leaf was
high in the order Cheongil > Cheongol > Iksu, and it was confirmed that the rutin content
was high in the order Cheongil > Iksu > Cheongol. Through HME, it was confirmed that
the content of isoquercetin and rutin in all mulberry leaves was increased, and through
this, it was confirmed that the solubility of the active ingredient, which showed low water
solubility, was improved. TPC was the highest in the order Cheongol > Iksu > Cheongil,
and TFC was the highest in the order Cheongil > Cheongol > Iksu. In antioxidant activity
using DPPH assay, Cheongol showed the lowest IC50 value in the order Cheongol <
Iksu < Cheongil, and after HME processing, all mulberry leaves showed a decrease in
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IC50 value. HME-treated Cheongil was found to have the highest contents of rutin and
isoquercetin. Moreover, it showed the highest antioxidant activity in the DPPH assay,
suggesting that the correlation between the active compound and antioxidant activity
contributed to the improvement of antioxidant capacity. The results provide information
that different mulberry leaf varieties may be used for different purposes in the future.
Furthermore, this suggests that HME can be used as a candidate to enhance the biological
activities of the mulberry leaf.
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