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Abstract: Primula veris is a valuable medicinal plant species with declining populations, protected
in Bulgaria by the Biodiversity Act. The present study aimed to increase its extremely low seed
germination rate, starting with seeds originating from two Bulgarian populations, and to set up
an ex situ field collection. The stimulation effect of three factors was tested in in vivo and in vitro
experiments: seeds treated with gibberellic acid (in different concentrations and exposure time),
light quality (white, infrared, red, and blue or dark), and cold stratification. The combination of
factors resulted in 36 treatment variants in vivo and 8 treatment variants in vitro. No germination
was observed in control treatment variants. The highest germinating rate (95%) was noticed in vivo
under blue monochromatic light after seed soaking into 0.2% GA3 for 10 h; however, the best results
(55% of well-developed seedlings) were observed with a combination of blue light and 0.3% GA3 for
5 h. Seedlings were successfully strengthened in vermiculite in a phytotron, potted in soil and grown
in a greenhouse, and then 75 plants were transferred to the field plot, where most of them bloomed
at the first vegetation season. These results are intended to serve as a basis for establishing a pilot
agriculture of the species.

Keywords: cowslip; seed germination; gibberellic acid; monochromatic lights

1. Introduction

Primula veris L. (Primulaceae), known as cowslip, is a herbaceous polycarpic perennial
species native to Europe and western Asia [1]. The species has been used as a medicinal
plant since the Middle Ages, for treatment of gout, headache, and rheumatism [2]. Today,
P. veris is widely used for its diverse medicinal effects: secretolytic, expectorant, anti-
inflammatory, diuretic, antimicrobial, antifungal, and sedative [3–6]. Presently, cowslip
is less abundant in Europe than in the past, and the sustainable supply of the source
material has become more difficult [7,8]. The species is included in the European Red
List of Medicinal plants under the category “Least Concern” [9]; however, according to
the European Pharmacopoeia, it is still used as a source of Primula roots together with
P. elatior [10]. In Poland, some of the natural populations of P. veris are endangered as
a result of plowing, grazing, digging up for decorative purposes, and the species being
under partial legal protection [11]. One of the reasons causing the loss of some populations
could be related to the very low genetic variation in the natural populations [12]. Another
reason is the reduced reproduction capacity of the populations, which might be partly
explained by the presence of an imbalance of flower morphs, leading to a lack of compatible
pollen [7,13].

In Bulgaria, P. veris is widespread, but most of its populations are small and frag-
mented, and the estimated seed viability is extremely low [14]. Seed production is known
to be a function of population size, i.e., seeds originating from large populations have
higher germination success, which increases with increasing seed mass [7,15]. The limited
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size of Bulgarian populations of P. veris and the low seed viability create a long-term risk
for its extinction [14]. The species is protected by the Biodiversity Act, Annex 4 (2002) [16]
and is under a special regime of use based on the Medicinal Plants Act (2000) [17]. It
is included in the list of medicinal plant species under the special regime of protection
and use (Ordinance no. RD-71/2007), i.e., flowers and roots of cowslip are harvested
according to the annual quotas of the Ministry of the Environment and Waters. A good
alternative would be the introduction of P. veris in agriculture, which requires research
aimed at accelerating plant reproduction.

Seed germination in Primula spp. has been reported to be difficult [18–20], and
propagation by cuttings cannot be realized due to the morphology of the plants, i.e., dense
rosettes of leaves close to the ground [21]. Propagation from seeds is usually cheap and
effective, but in P. veris it is impeded by a number of factors controlling seed germination.
The main of these factors is the seed dormancy, the biological purpose of which is to avoid
seed germination during years with unfavorable environmental conditions. Dormancy
may occur at the level of the embryo, seed coat, or seed covering [22].

Seed dormancy is controlled by the balance between two plant hormones: abscisic acid
(ABA) and gibberellic acid (GA3) [23]. High levels of endogenous ABA in mature seeds
cause their dormant state, while increases in GA3 levels leads to dormancy breaking [24].
The ABA:GA3 ratio is influenced by abiotic factors such as natural changes in temperature,
moisture, or light. In laboratory conditions, the balance of the two hormones can be
controlled by either treatment with exogenous GA3 or with cold stratification, which
induces the transcription of GA3 biosynthesis genes, stimulating spikes in endogenous
GA3 [25]. Seed dormancy of P. veris seeds was reported to be overcome in vitro owing
to the application of GA3 [21]. In addition to seed dormancy, some factors affecting
seed germination are also the age and the nutrition of the mother plants during seed
maturation [26], the population size [7], the time of seed collection, and the duration of
seed storage [27].

Small seeds, such as those of P. veris, need light to germinate because their nutrient
reserves are limited and their seedlings must reach the soil surface and begin to photosyn-
thesize before depleting seed nutrients [28]. Many authors suggest that seed mass and light
requirements coevolved to ensure germination [29]. According to the light requirements
of seeds for germination, plants are classified into three groups: positive, negative, and
neutral photoblastic [30].

In order to ensure the mass propagation of plants from Primula species needed for agri-
culture establishment, in vitro experiments on seed germination and plantlets regeneration
were carried out with P. obconica [18,31,32], P. vulgaris [33], P. malacoides [32], P. cuneifolia,
P. scotica, P. veris, P. latifolia, P. heterochroma [34–38], and several Primula hybrids [39]. Shoot
multiplication and in vitro rooting were obtained in some cowslips on media containing
different cytokinins [34,37,40–42]. Recently, a protocol for the in vitro micropropagation of
P. veris subsp. veris was established [21].

The aim of the present study was to increase the extremely low seed germination of
P. veris, comparing different approaches in parallel and starting with seeds originating from
Bulgarian populations, and to set up an ex situ field collection of the species. These results
are intended to serve as a basis for establishing a pilot agriculture of the species.

2. Materials and Methods
2.1. Plant Material

P. veris plants gathered in April 2019 from two Bulgarian native populations: on Golo
Bardo Mt over the town of Pernik (42.563822◦ N, 23.073438◦ E; 910 m altitude) and near
the village of Ilindentsi in Pirin Mt (41.680444◦ N, 23.297083◦ E; 970–1100 m altitude), were
used for the establishment of an ex situ collection on the experimental field plot of the
Institute of Biodiversity and Ecosystem Research at the Bulgarian Academy of Science
(IBER-BAS). Seeds from these plants and from the natural populations were collected in
June–July 2020 and used for in vitro and in vivo experiments on germination immediately
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or after 2- or 6-month storage at room temperature or stratification at 4 ◦C. The obtained
plants from these seeds were used to expand the ex situ collection. All trials were conducted
at the Laboratory of Plant Anatomy and Embryology, the Biotechnological Laboratory of
Medicinal Plants, and the experimental field plot of IBER-BAS (N 42.67115; E 023.36458,
506 m altitude).

2.2. Experimental Design and Statistical Analysis

Seeds were germinated in vitro and in vivo in parallel. Seeds designated for in vitro
germination were first surface sterilized by standard procedure (consecutive soaking into
70% ethanol for 1 min, and commercial bleach, Cl < 0.5%, for 6 min), then rinsed three times
with sterile distilled water for 5, 10, and 15 min. Seeds were put on basal MS medium [43]
free of plant growth regulators (PGRs) or MS supplemented with 0.5 mg/L kinetin (Kin) and
1.0 mg/L gibberellic acid (GA3) (medium G1K5) or 5.0 mg/L GA3 (medium G5K5) (all PGRs
from Duchefa, NL). Before incubating seeds on basal MS medium, they were pretreated
with 0.1% GA3 for 20 h or with 0.3% GA3 for 20 h or for 5 h; in the control treatment, variant
seeds were soaked in water for 20 h. In addition, 2-month cold stratification at 4 ◦C was
applied before incubation of seeds on MS control medium and on medium G5K5. All media
contained 30 g/L sucrose and were adjusted to pH 5.75, solidified with 6.5 g/L plant agar
(Duchefa, NL), autoclaved at 121 ◦C, 1 atm for 20 min, and poured into containers with
a grid (Duchefa, NL). Cultivation conditions in the culture room were: 23 ± 2 ◦C, 16/8 h
light/dark period. Each treatment variant consisted of 2 repetitions, 50 seeds per repetition.
Germination rate in all 8 treatment variants was assessed in percentage first at the end of
the 10th week, then 5 months after seed incubation.

In vitro sub-cultivation was performed on MS medium supplemented with 1 mg/L
BAP + 0.2 mg/L 2,4-D (medium B1D2) using 20 in vitro seedlings with removed roots as
explants. Propagation coefficient was evaluated as the number of new shoots obtained per
explant. For in vitro rooting of the shoots, a half-strength MS medium containing 20 g/L
sucrose and supplemented with 0.5 mg/L IBA + 1 g/L activated charcoal (medium MSroot)
was used. Cultivation conditions were the same as for in vitro seed germination.

The influence of light quality and GA3 on seed germination was tested in vivo as a
two-step treatment, using seeds taken from the ex situ collection. Before exposure to different
lights, seeds were pretreated with GA3. Solution of GA3 was applied in four concentrations
(0% used as a control, 0.1%, 0.2%, and 0.3%) and three time exposures (5 h, 10 h, and 20 h)
in a total of 6 joint levels (0% 20 h, 0.1% 5 h, 0.1% 20 h, 0.2% 10 h, 0.3% 5 h, and 0.3%
20 h). Six levels of illumination were tested: white light from fluorescent tube (F) used as
a control, white light-emitting diodes (W), infrared (I), red (R), blue (B), and darkness (D).
Combinations tested of the factors resulted in 36 treatment variants in vivo, 20 seeds per
treatment variant (Table 1). Seeds were placed in petri dishes on wet filter paper, 20 seeds per
petri dish. The temperature was 23 ± 2 ◦C, and the photoperiod 12/12 h light/dark, except
for the treatment variants in darkness. The germination rate was assessed in each treatment
variant at the end of the 8th week. In addition, germination of seeds taken from the natural
populations was tested in vivo in a growth camera at 11 ± 1 ◦C, and fluorescent light with
the same photoperiod, after 6-month stratification at 4 ◦C.

Statistical analyses were performed with Excel’s two-factor ANOVA without replica-
tion. The effects of the light quality and the pretreatment with GA3 on the seed germination
were assessed by grouping the treatment variants with equal levels of these factors, thus
evaluating the relative importance of the light and the gibberellic acid. Since a lot of seeds
stopped their development at the embryonic root stage, the same analysis was performed
taking into account only the seedlings with cotyledons or/and first pair of true leaves. In
addition, differences between the levels of one and the same factor were assessed with
Excel t-test paired analysis.
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Table 1. Treatment variants tested for in vivo seed germination of P. veris: codes show the factors
tested (light and pretreatment with solutions of GA3) and their levels.

Treatment
Variants 1

Control
0% 20 h

GA3
0.1% 5 h

GA3
0.1% 20 h

GA3
0.2% 10 h

GA3
0.3% 5 h

GA3
0.3% 20 h

F CF 0.1F5 0.1F20 0.2F10 0.3F5 0.3F20
W CW 0.1W5 0.1W20 0.2W10 0.3W5 0.3W20
I CI 0.1I5 0.1I20 0.2I10 0.3I5 0.3I20
R CR 0.1R5 0.1R20 0.2R10 0.3R5 0.3R20
B CB 0.1B5 0.1B20 0.2B10 0.3B5 0.3B20
D CD 0.1D5 0.1D20 0.2D10 0.3D5 0.3D20

1 Light level: F—fluorescent white; W—white LED; I—infrared; R—red; B—blue; D—darkness. Gibberellic acid:
concentration and exposure time of GA3 are jointly presented.

2.3. Establishment of an Ex Situ Collection

To establish the ex situ collection of P. veris on the experimental field plot of IBER-
BAS in Sofia (506 m altitude), ten plants were used gathered from two natural Bulgarian
populations (on Golo Bardo Mt, over the town of Pernik, and near the village of Ilindentsi
in Pirin Mt), five individuals from each one. They were planted in two flower beds, at a
distance of 40 cm between them, and cultivated under controlled conditions: watering,
weeding, etc.

Viable in vivo obtained seedlings were transferred to containers with perlite or ver-
miculite for 3 months. Surviving plants were potted in soil mixture (light soil, sand, and
coconut fibers in proportion 2:1:1) for further adaptation in a room phytotron with a win-
dow, then in the greenhouse. Cultivation conditions in the phytotron varied around the
clock: temperature between 18 and 26 ◦C, relative air humidity from 30% to 60%, mixed
daylight and artificial white LED 16/8 h light/dark. Plants were planted on the ex situ
collection twice: in late September 2021 and in early April 2022.

3. Results
3.1. In Vitro Cultivation
3.1.1. In Vitro Germination

Our first trials to germinate seeds gathered from two Bulgarian natural populations
of P. veris, immediately after their collection in July 2019 and after storage of 6 months at
room temperature, were unsuccessful, as only one seed germinated from 400 incubated,
regardless of the medium composition. Seeds also did not germinate in a growth camera at
11 ± 1 ◦C, after 6-month stratification at 4 ◦C. Therefore, the next experiments were carried
out with seeds collected from the plants growing in the ex situ collection originating from
the Golo Bardo population, which was chosen as a model population.

Stratification was of crucial importance for the successful germination under in vitro
conditions. The most successful factor combination was a 2-month seed stratification at
4 ◦C followed by seed pretreatment with 0.1% GA3 for 20 h prior to seed incubation on
medium G5K5—50% germinated seeds. With the same factor combination, on the basal MS
medium free of PGRs, the germination rate was 20% (Figure 1A).

Among treatment variants without cold stratification, seed germination was relatively
high when GA3 was added to the medium: 36% on medium G1K5, while in the treatment
variants with seed pretreatment with GA3 solution, the percentages of the germinated
seeds varied between 4% and 22% according to the concentration of the solution and the
time of exposure. No seeds germinated in the control treatment variant. It is worth noting
that a total of 29% of all germinated seeds necrotized and that seedlings with a pair of true
leaves developed only in two treatment variants: 12% on medium G1K5 and 8% on MS
medium when seeds were pretreated with 0.3% GA3 for 20 h.
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Figure 1. In vitro cultivation of P. veris: (A) Seed germination on medium G1K5; (B,C) Shoot-clump
after sub-cultivation on medium B1D2.; (D) Separated shoots from the shoot-clump; (E) Shoot with
rudiments of roots.

3.1.2. Sub-Cultivation and In Vitro Rooting

In vitro seedlings with removed roots were sub-cultured on medium B1D2. The
survival rate after 2 months of cultivation was 90%, and almost all explants formed 2 to
5 adventitious shoots (Figure 1B,C). The propagation coefficient was 3.05 shoots per explant
(Figure 1D). Leaves of few shoots turned white. Shoots were separated from one another
and put on medium Mroot for rooting. After 6 weeks, 34.4% of the shoots necrotized, and
only 3.1% of the surviving shoots formed rudiments of roots, but they were not suitable for
ex vitro adaptation (Figure 1E).

3.2. In Vivo Germination and Seedlings Growth

The first attempts to germinate seeds gathered from the natural populations of P. veris
were unsuccessful. As no seeds germinated from a total of 400 used, the next trials were
undertaken with seeds collected from the plants growing in the ex situ collection, similar to
the in vitro experiments.

The cold stratification had no effect on seed germination: no germination was observed
after the storage of seeds at 4 ◦C over 6 months.
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3.2.1. Effect of GA3 and Monochromatic Lights on Germination Efficiency

The variation in the germination rate following the treatment variants tested is pre-
sented in two diagrams corresponding to the factors GA3 pretreatment, with jointly pre-
sented levels of concentration and exposure time of GA3 (Figure 2A), and light (Figure 2B).
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of treatment variants with equal levels of the factors: (A) GA3-pretreatment; (B) light quality
(F—fluorescent white; W—white LED; I—infrared; R—red; B—blue; D—darkness).

The pretreatment with GA3 before seed exposure to different lights was crucial for the
successful seed germination. When seeds were soaked in water instead of GA3 solutions,
no seeds germinated except in the dark (treatment variant CD), where only 15% of the seeds
germinated and all stopped developing at the embryonic root stage. All combinations of
GA3 concentration and exposure time stimulated seed germination; however, relatively
high concentrations and shorter exposure times appeared to be most favorable concerning
seedling quality.

The effect of the monochromatic lights was positive or negative depending on their
wavelengths. The highest germination rates were noticed when seeds were incubated
under blue or red light. In the best treatment variants with blue light, up to 95% (i.e., 19
from 20 seeds) and 65% (i.e., 13 from 20 seeds) of the seeds germinated after soaking into
0.2% GA3 for 10 h and into 0.3% GA3 for 5 h, respectively. In the case of red light, up to
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60% of the seeds germinated in treatment variants 0.1R5, 0.1R20, and 0.2R10. However,
red light caused the etiolation and death of many seedlings, while blue light stimulated
the development of large cotyledons and leaves (Figure 3). Survival rate depended on the
formation of cotyledons and the first pair of leaves, which was mostly stimulated by the
blue light.
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The results for seed germination and seedling development in each treatment variant
are presented in Table 2. The statistical analyses showed significant differences among
treatment variants in terms of germination rate (from 0% to 95%) between the two factors
tested (p < 0.001 concerning GA3 pretreatment and p < 0.01 concerning lights) (Table 2(A)).
In 13 treatment variants, half or more of the seeds germinated. However, in all treatment
variants, a number of seeds stopped their development at root stage and were eliminated.
Differences between treatment variants remained significant regarding the percentage of
the seedlings with cotyledons or with cotyledons and first pairs of true leaves (p < 0.001 for
GA3 pretreatment and p < 0.05 for light), ranging between 0% and 55% of seeds developing
into seedlings (Table 2(B)).

Table 2. Percentages of germinated seeds and seedlings with cotyledons or first pairs of true leaves
in each variant. Effect of light quality and GA3 pretreatment on: seed germination (A), formation
of seedlings with first pair of true leaves or with cotyledons (B), estimated with ANOVA two-factor
without replication.

Treatment
Variants 1 Germinated Seeds (%)

Seedlings with
Cotyledons or First Pair of

Leaves (%)
Variants 1 Germinated Seeds (%)

Seedlings with
Cotyledons or First Pair

of Leaves (%)

CF 0 0 0.2F10 40 25
CW 0 0 0.2W10 50 30
CI 0 0 0.2I10 25 20
CR 0 0 0.2R10 60 20
CB 0 0 0.2B10 95 40
CD 15 0 0.2D10 40 15

0.1F5 50 35 0.3F5 40 10
0.1W5 35 25 0.3W5 45 40
0.1I5 5 5 0.3I5 45 35
0.1R5 60 15 0.3R5 50 50
0.1B5 55 30 0.3B5 65 55
0.1D5 55 0 0.3D5 50 0
0.1F20 35 5 0.3F20 30 15
0.1W20 25 5 0.3W20 25 5
0.1I20 50 15 0.3I20 20 15
0.1R20 60 20 0.3R20 55 20
0.1B20 40 10 0.3B20 50 20
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Table 2. Cont.

Treatment
Variants 1 Germinated Seeds (%)

Seedlings with
Cotyledons or First Pair of

Leaves (%)
Variants 1 Germinated Seeds (%)

Seedlings with
Cotyledons or First Pair

of Leaves (%)

0.1D20 45 5 0.3D20 30 0

(A)

Source of
Variation Df MS F p-value

Rows (Lights) 5 647.3611 3.92274 0.009204

Columns(GA3) 5 1952.361 11.8305 6.1 × 10−6

Error 25 165.0278

(B)

Source of
Variation Df MS F p-value

Rows (Lights) 5 344.4444 3.090728 0.026262

Columns(GA3) 5 759.4444 6.814556 0.000391

Error 25 111.4444

1 Codes of treatment variants are according Table 1 (Material and methods).

The best seedling development was observed when seeds were pretreated with higher
concentration of the gibberellic acid for a short time (0.3% GA3 for 5 h), when most seeds
formed plants; in all other groups, seeds dying at stage root emergence predominated
(Figure 2A). Concerning light quality, the best proportion between seeds developing into
plants and seeds dying after root formation was observed in the cases of white and blue
light, but the percentage of the well-developed seedlings was twice as high under the blue
monochromatic light (Figure 2B). More detailed results are presented in Tables 3 and 4,
comparing each pair of factors’ levels using Excel t-test paired analysis. Finally, treatment
variant 0.3B5 (the combination of 0.3% GA3 for 5 h, and blue light) was the best one,
ensuring the developing of 55% of the incubated seeds into well-shaped seedlings with
large green leaves. Among the other treatment variants tested, relatively good results were
obtained in 0.2B10 (0.2% GA3 for 10 h and blue light) and 0.3W5 (0.3% GA3 for 5 h and
white light), both with 40% seeds developing into well-shaped seedlings.

Table 3. Differences between the groups of treatment variants with the same light and different levels of
GA3 pretreatment for seedlings with cotyledons/first true leaves of P. veris (Excel t-test paired analysis).

Treatment
Variants 1 Control-0% 0.1%GA3, 5 h 0.1%GA3, 20 h 0.2%GA3, 10 h 0.3%GA3, 5 h 0.3%GA3, 20 h

Control-0% 0.036161 * 0.0117248 ** 0.0010150 *** 0.0169895 ** 0.0136162 **
0.1%GA3, 5 h 0.3566104 0.1366175 0.197023 0.4260710
0.1%GA3, 20 h 0.0266925 * 0.0375396 * 0.3632174
0.2%GA3, 10 h 0.4076765 0.0221184 *
0.3%GA3, 5 h 0.0454943 *
0.3%GA3, 20 h

1 Significant differences between treatment variants: * p < 0.05; ** p < 0.01; *** p < 0.001.



Plants 2022, 11, 3018 9 of 15

Table 4. Differences between the groups of treatment variants with the same GA3 pretreatment and
different levels of light for seedlings with cotyledons/first true leaves of P. veris (Excel t-test paired analysis).

Treatment
Variants 1

F
(Control) W I R B D

F (Control) 0.6951923 0.9221064 0.5139400 0.2005223 0.0777520 #

W 0.5658929 0.5160497 0.0198680 * 0.0814588
I 0.0623524 # 0.0907096 # 0.1005517
R 0.3143726 0.0583293 #

B 0.0380039 *
D

1 Significant differences between treatment variants: * p < 0.05; #—close to a significant difference.

3.2.2. Seedlings’ Growth and Survival

Perlite was found to be an unsuitable substrate for seedlings’ adaptation to the phy-
totron conditions, as all 20 seedlings transferred to a container with perlite died. The next
79 seedlings were transferred to vermiculite, and all of them grew and strengthened after
three months (Figure 4A). Then they were potted in soil mixture, and after another three
months in the phytotron, 94.9% of them survived and formed new leaves (Figure 4B). Plants
were transferred to the greenhouse for acclimation before planting in the ex situ collection.
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3.3. Establishment of an Ex Situ Collection

All plants brought from the natural populations in 2019 were successfully acclimated
to the conditions of the field plot of the Institute of Biodiversity and Ecosystem Research
(IBER-BAS) and bloomed the next years. They produced numerous seeds that were bigger
in size than those collected from the natural populations (Figure 5).
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Plants grown from seeds and strengthened in the greenhouse were also transferred to
the field plot to expand the ex situ collection of P. veris. The success of their acclimation
differed according to the season of planting: 68.8% of 32 plants transferred in autumn 2021
survived the wintering, while the survival rate of those planted in spring 2022 (43 plants)
increased up to 93%. Most of the plants bloomed in April–May 2022 in spite of their
relatively small size (Figure 6).
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4. Discussion

The lack of germination of the seeds taken from P. veris plants growing in the two
Bulgarian natural populations is consistent with the extremely low embryo viability previ-
ously reported for seeds of the same origin: 4% and 2% for the ‘Golo Bardo’ and ‘Ilindentsi’
populations, respectively [14]. Authors stated that half to 3

4 of all seeds were empty. The
high number of empty seeds is probably related to insufficient pollen at the high altitudes
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at which Primula populations are located. It is proven that inadequate quantities or quality
of pollen can reduce plant reproductive success (seed quantity or quality), known as pollen
limitation [44]. In perennial self-incompatible plant species (such as Primula), inadequate
pollen supply is a major cause of low fertility [45]. A correlation between population size
and pollen limitation was also found. According to Ward and Johnson [46], the reduced
seed production and the fragmentation of small populations of Brunsvigia radulosa are at-
tributable to pollen limitation. Agren [47], studying the island populations of heterostylous
Lythrum salicaria, found that the degree of pollen limitation increased with the decreasing
of the population size. The same is the case with Primula veris, which is a heterostylous
species with small and fragmented populations.

Yankova-Tsvetkova et al. [14] established that the percentages of viable seeds of the
plants transferred to the ex situ collection increased significantly in only one year: up to
68% and 76%, respectively. Under the controlled conditions of the field plot (watering,
weeding, more pollinators), plants produced larger seeds, and only 2% of the seeds were
empty [14]. This explains the potential to stimulate the germination of the seeds produced
ex situ. Moreover, increasing seed mass was reported to favor the germination ability [10];
seeds of field-cultivated plants had more chance to germinate.

Similar results showing no germination potential of seeds collected from wild pop-
ulations of P. veris subsp. veris were also noticed by Grigoriadou et al. [21], who used
seeds stored in a seed bank for 8, 14, and 17 years. These authors suggested that long seed
maintenance was the most likely reason for this; however, the difficult germination was
highlighted as a characteristic for Primula seeds in other investigations as well [18–20]. In
natural populations of P. veris, which is a heterostylous perennial species, seed set and
seed size have been shown to depend on many factors such as population size, presence
and reciprocal ratio of plants with different flower morphs, pollinator availability, pres-
ence of pathogens and herbivores, and other environmental or genetic factors [7,48–50].
Jedrzejczyk et al. [51] found out that not only the origin but also the year of seed collection
significantly affected seed quality in cowslip plants derived from seeds or regenerated
in vitro. In this relationship, the small and fragmented Bulgarian populations do not favor
seed germination. Seed quality of many cowslips and primroses is affected by bacterial
and fungal infections, resulting in losses of seeds and breading material [41].

Another factor impeding germination is the strict seed dormancy of P. veris found by
Milberg [52], who pointed to cold stratification as a requirement for overcoming it. Accord-
ing to his research, seed capacity to germinate varied over the year, exhibiting a dormancy
cycle typical for many species from temperate areas, and the best germination was recorded
at 16 ◦C under a photoperiod of 12/12 h dark/light. Brys and Jacquemyn [53] noticed that
mature seeds were released from plants in summer and most of them overwintered and
germinated in April–May. In our case, despite the large increase in seed viability under
controlled cultivation conditions, from 2% to 76% [14], seeds failed to germinate without
stimulation due to their dormancy. Similarly, Milberg [52] reported that over 80% of the
ungerminated seeds were viable according to the tetrazolium test, and in many seeds, the
secondary dormancy was overcome the next winter.

In the present study, seed dormancy was successfully broken under laboratory condi-
tions in vitro and in vivo using gibberellic acid as a stimulant. The effect of gibberellins on
cowslip seed germination was reported by other authors as well [7,20,21]. Morozowska [20]
stated that the effectiveness of GA3 treatment was influenced by the germinating tempera-
ture and increased most at 10 ◦C, especially after a 7-day prechilling. Our results showed
that the addition of GA3 in the medium was more effective then seed pretreatment with this
growth regulator, but in both cases, cold stratification was required. The same conclusion
concerning the effect of GA3 was reached by Grigoriadou et al. [21], irrespective of the
photoperiod regime. The presence of kinetin in the medium seemed to be suitable for
seedlings’ development. Morozowska and Wesołowska [36] obtained the largest number of
P. veris subsp. veris seedlings on MS medium supplemented with GA3 and kinetin, which
was also observed in our study. Seeds of P. boveana also did not germinate on media free of



Plants 2022, 11, 3018 12 of 15

growth regulators, while the presence of GA3 led to germination rates ranging from 10%
to 77% [54]. Some authors [21] also added GA3 in the medium for shoot multiplication
together with BAP and IBA and chose it as the best one; however, the propagation rate was
similar to that obtained in our experiments on medium containing Kin and IBA. The same
authors successfully rooted in vitro regenerated shoots on media with different concen-
trations of IBA, but in spite of the increased root number, the root length was optimal on
the control medium, as IBA had an inhibitory effect. Apparently, the concentration of IBA
in our rooting medium was higher than the optimal one for this species, which impeded
the elongation of the root rudiments formed. Further experiments are needed to precisely
determine the optimal concentration of this plant growth regulator in order to improve the
in vitro rooting and to achieve the ex vitro adaptation of the plantlets. According to some
authors who carried out a comparative morphological analysis of in vitro regenerated and
seed-derived cowslip plants, the latest were characterized by more intensive development
rate and higher total seed production [51].

The influence of the light quality on seed germination ability was also determined
in the present study, under in vivo conditions. Fluorescent white light was chosen as the
control, as it had been found that small seeds generally germinate better in light than in
the dark because they remain on the soil surface after being released from the plants [29].
Baskin and Baskin [30], in their classification of plants in terms of their responses to light
concerning germination, defined P. veris as a positive photoblastic plant that requires light to
germinate. In the present in vivo experiment, many seeds germinated in the dark, but they
stopped their development at the stage of root emergence. The development of seedlings
was possible only when the two stimulating factors light and GA3 were applied together.
The combination of blue monochromatic light and pretreatment with 0.3% GA3 for 5 h was
found to be the most successful among all 36 combinations tested. The seed dormancy of
Alkanna tinctoria was also successfully overcome by successively stimulating seeds with
seed pretreatment with GA3 solutions and monochromatic red or blue light [55]. The
effect of monochromatic lights was tested on different species and was found to be species
dependent and to either stimulate or inhibit seed germination [56–58]. In Halophila ovalis,
the red light not only enhanced seed germination but also favored seedling survival [58],
which was in contrast with our results, as red light caused the etiolation and death of many
seedlings of P. veris.

The acclimation of all propagated plants in the present study was very successful not
only in terms of plant survival rate but also in terms of their maturation, as many plants
flowered in their first growing season, regardless of the time (autumn or spring) of their
transfer to the ex situ collection. This result was much better than the data reported by Brys
and Jacquemyn [53] claiming that P. veris seedlings need at least three years to start flowering.

5. Conclusions

The native, extremely low seed germination of Primula veris can be overcome. Under
the controlled conditions of an experimental field plot, the ability of seeds to germinate
increases. It is additionally improved by seeds’ pretreatment with gibberellic acid and
stimulation with monochromatic light. A protocol is established for the cultivation of the
species, including the conditions for seed germination, seedling strengthening, and the
gradual acclimatization of the plants outdoors. Transferring the plants to the experimental
field plot is more appropriate in the spring. The results of the present study are intended to
serve as a basis for establishing a pilot agriculture of the species.
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