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Abstract: The level of phytohormones such as abscisic acid (ABA) and auxins (Aux) changes dynami-
cally during embryogenesis. Knowledge of the transcriptional activity of the genes of their metabolic
pathways is essential for a deeper understanding of embryogenesis itself; however, it could also help
breeding programs of important plants, such as Cannabis sativa, attractive for the pharmaceutical,
textile, cosmetic, and food industries. This work aimed to find out how genes of metabolic pathways
of Aux (IAA-1, IAA-2, X15-1, X15-2) and ABA (PP2C-1) alongside one member of the LEA gene
family (CanLea34) are expressed in embryos depending on the developmental stage and the embryo
cultivation in vitro. Walking stick (WS) and mature (M) cultivated and uncultivated embryos of C.
sativa cultivars ‘KC Dora’ and ‘USO 31’ were analyzed. The RT-qPCR results indicated that for the
development of immature (VH) embryos, the genes (IAA-1, IAA-2) are likely to be fundamental. Only
an increased expression of the CanLea34 gene was characteristic of the fully maturated (M) embryos.
In addition, this feature was significantly increased by cultivation. In conclusion, the cultivation led
to the upsurge of expression of all studied genes.

Keywords: Cannabis sativa; embryogenesis; auxin; abscisic acid; LEA gene; embryo cultures; RT-qPCR;
gene expression

1. Introduction

Embryogenesis refers to the process by which a multicellular embryo develops from
a zygote. It is a period of intense growth, cell differentiation, and morphogenesis. In its
course, the basic body plan of the plant is determined, and the formation of the apical-
basal axis determines the polarity of the embryo. The result of embryogenesis is a mature
embryo, which already shows the organization of the plant body and species-specific
morphology in the radial grouping of stem cells in the tissue layers. Therefore, all cell
divisions must be specifically organized and controlled by a series of signaling molecules
and phytohormones [1,2].

The phytohormone Aux is one of the most important regulators of plant embryogenesis.
It has been proven that the influence of Aux is essential for asymmetric division, the triggering
of position-specific genetic programs, and, therefore, for cell differentiation not only within the
framework of the development of the embryo but also of the whole plant [2–5]. The relatively
short but highly versatile Aux signaling pathway (extensively reviewed in [6,7]) enables fast
switching between repression and activation of gene transcription through auxin-dependent
degradation of transcriptional repressors [4].

Another important phytohormone is abscisic acid (ABA). ABA is essential not only
in the period of late embryogenesis by inducing a state of dormancy and inhibiting ger-
mination events [8] but is also used in many other processes of plant life. ABA affects
fruit ripening and senescence, controls stomatal activity, induces senescence and leaf fall,
inhibits shoot growth, stimulates the storage of proteins in seeds, and is also involved
in plant adaptation to abiotic stresses such as drought, cold, or high salinity [9–11]. Two
independent teams made the first step toward understanding the ABA signaling pathway.
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Thus, ABA receptors were identified [12,13]. The protein phosphatase 2C (PP2C) family
serves as a coreceptor and negative regulator of ABA signaling, and protein kinases in
the SNF1-related protein kinase 2 (SnRK2) family have the function of positive regula-
tors [14–16]. ABA induces the expression of many genes, including the late embryogenesis
abundant (LEA) protein gene family. LEA proteins protect cells from adverse conditions
(dehydration, salinity, temperature), and their accumulation is typical in the late maturation
stage of seed development [17,18].

ABA and Aux metabolism is also influenced by transcription factors belonging to the
B3 DNA binding superfamily. This plant-specific B3 superfamily includes members of the
LAV, ARF, RAV, and REM families [19]. Members of the LEC2-ABI3 subgroup of the LAV
family, such as the well-studied LEC2 [20], ABI3 [21], and FUSCA3 [22] genes, are crucial
for proper seed development. These genes are essential regulators of embryo development.
LEC2 regulates the expression of genes involved in Aux [23] and storage compounds [24,25]
biosynthesis in seeds. Together with FUSCA3, LEC2 has a role in determining cell identity
during embryogenesis [26,27]. ABI3 is essential for seed storage and inducing dormancy
and water loss tolerance [28,29]. This gene could also be involved in responses to abiotic
stress conditions [29].

Gibberellins (GAs) are involved in many developmental processes during the plant
life cycle. Generally, GA is perceived as a compound that promotes plant growth and
development and as a functional antagonist to ABA [30]. GA causes axis elongation during
early embryogenesis [31] and is essential for the production of viable seeds [32], promotes
stem and leaf growth, and is also involved in flower and fruit development [33]. The
GA signaling pathway is triggered by the binding of GA to the GID1 receptor, which can
trigger the degradation of repressors of GA signaling, the DELLA proteins [34,35]. As has
been elucidated, DELLA proteins inhibit the activity of transcription factors such as the
LEC1 protein. LEC1 initiates the transcription of many genes essential for embryogenesis;
therefore, the role of GA is not negligible even in the late stages of embryo development [36].

Cytokinins (CKs) have been known to be promoting factors of cell division since
their discovery [37]. Later, it was found that they substantially influence many growth and
developmental stages. For example, CKs are involved in seed, shoot, and root development,
germination, senescence [38], nodulation [39], and circadian rhythm [40]. CKs have been
shown to interact significantly with Aux and often antagonistically [41]. For example,
during the early stages of embryogenesis, Aux counteracts CK signaling [42], and during
root meristem establishment, CKs suppress Aux signaling and transport [43]. Among
the members of the CK signaling pathway, members of the Cytokinin Response Factors
(CRFs) family might be important for embryogenesis. The expression of CRFs is not only
regulated by CKs but also by Aux and ABA [44,45]. The importance of CRFs together with
auxin-related PIN proteins has been demonstrated in these studies [46,47].

Cannabis sativa L. (hemp) is an annual and naturally dioecious plant belonging to the
family of Cannabaceae [48,49]. The separation of this genus from its sister genus Humulus
occurred in the Tibetan Plateau region 27.8 million years ago [50]. It is one of the first
domesticated plants, and people have been discovering its vast potential for use for more
than 10,000 years [51–53]. Currently, it attracts attention mainly for its content of many
biologically active substances and fibers, good cultivation properties [54,55], and its indus-
trial [56,57], ornamental [58], and pharmaceutical [59] applications. Therefore, hemp is
attractive for genetic engineering and biotechnology [60,61]. Genome sequencing was an
essential point for molecular studies of this plant [62,63]. The first transformation system
for hemp was already introduced in 2000 [64], but in the following years, it turned out
that hemp is relatively resilient to transformation [65,66]. However, in vitro cultivation
techniques are already well-known and established [67,68]. Like in vitro seed germination,
the culture of isolated embryos could be a potential alternative to the traditional procedure
of vegetative hemp propagation. The process of obtaining sterile plant material identi-
fying elite genotypes would thus be simplified and made more efficient by promoting
biotechnologies using seedling-derived tissues [69].
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This work aimed to determine the expression profiles of the genes IAA-1, IAA-2, X15-1,
X15-2, PP2C-1, and CanLea34 in embryos of two C. sativa cultivars ‘KC Dora’ and ‘USO 31’
depending on the developmental stage and embryo cultivation in vitro. This knowledge
supports a deeper understanding of plant embryogenesis in vivo and in vitro. In addition,
it could be helpful for breeding programs and hemp biotechnology.

The investigated genes are expressed differently in response to drought stress [70]. To
our knowledge, no study has yet been conducted on these genes in relation to embryo-
genesis in Cannabis. Understanding the mechanisms of this plant’s tolerance to drought
stress is essential, as drought is one of the most fundamental problems to which Cannabis
cultivation is exposed. For example, as one of the largest growers of hemp, China is facing
increasing water scarcity, reflected in the reduction of production and quality of hemp
materials [71–73].

2. Results

Changes in gene expression during embryogenesis of two Cannabis sativa cultivars,
‘KC Dora’ and ‘USO 31’, were measured by RT-qPCR. The cDNA obtained by transcription
from RNA isolated from embryos at the walking stick (Ws e) and mature (M e) stages of
development and from their embryo cultures was analyzed. The genes involved in Aux
metabolism (IAA-1, IAA-2, X15-1, and X15-2) were studied, as well as the PP2C-1 gene,
which is involved in ABA metabolism alongside the CanLea34 gene, which belongs to the
LEA gene family related to plant embryogenesis.

2.1. Establishment of Embryo Cultures

Embryos were isolated from the seeds of two Cannabis cultivars in a sterile environ-
ment, and those at the walking stick and matured stages were used to establish in vitro
embryo cultures (Figure 1). No genotype-dependent morphological difference in embryos
was observed at day 0 of cultivation. After seven days of cultivation, the success of embryo
culture establishment was evaluated. 22% of ‘USO 31’ and 14.3% of ‘KC Dora’ embryos
were aborted or severely deformed. This difference could indicate that the choice of geno-
type is essential for successful embryo cultivation. In addition, the results show that the
stage of embryo development plays an even greater role. 71.4% of cultivated WS e and
92.6% of cultivated M e were viable.

2.2. Expression Patterns in Walking Stick Embryos

Results show that only two genes, IAA-1 and IAA-2, were expressed at this stage of
development. IAA-1 was expressed 2.15-fold more (‘USO 31’) and up to 3.9-fold more (‘KC
Dora’) compared to the control. While IAA-2 was expressed 0.87-fold less in WS e (‘KC
Dora’), WS e (‘USO 31’) expressed this gene up to 2.86-fold more. Only this gene showed a
significant difference between genotypes. The product of the IAA-1 gene is involved in Aux
catabolism, while IAA-2 encodes an Aux-induced protein. The other Aux-induced protein
genes X15-1 and X15-2 were hardly expressed at this stage. Deficient expression of PP2C-1
was also detected. Therefore, it can be concluded that for embryos at the walking stick
stage, only IAA-1 and IAA-2 are transcribed among all these investigated genes (Figure 2).

2.3. Expression Patterns in Mature Embryos

The obtained expression profiles of all these studied genes were highly variable
(Figure 2). In M e of ‘USO 31’, significant expression of IAA-1, IAA-2, and X15-1 genes were
measured. Compared to WS e, IAA-1 was expressed up to 4.6-fold more in this cultivar,
IAA-2 2.1-fold more, and the most significant change was detected in X15-1, which was
up to 508-fold more. In ‘USO 31’ M e, X15-1, and PP2C-1 genes were slightly up-regulated
compared to the control. M e of the second cultivar did not significantly express any of
the genes examined, and the expression of IAA-1 was up to 5.1-fold lower and IAA-2 up
to 8.7-fold lower compared to WS e. The results suggest that these expression differences
could be due to differences in genotypes. However, we consider that although the embryos
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were morphologically identical, M e of ‘KC Dora’ was already in a fully dormant state
and thus were transcriptionally inactive. The high expression measured in M e of ‘USO
31’ indicates that the seeds used were still metabolically active and, therefore, only in the
preparation stage for dormancy.
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Plants 2022, 11, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 2. Quantification of relative expression of IAA-1, IAA-2, X15-1, X15-2, and PP2C-1 genes in 
walking stick (WS e) and matured embryos (M e) of two cultivars of Cannabis sativa ‘USO 31’ and 
‘KC Dora’. Expression data were normalized using Act as housekeeping gene and calibrated relative 
to young leaves. Significant differences in gene expression in matured embryos are represented by 
asterisks (p ≤ 0.01 “∗∗”; p ≤ 0.05 “∗”) and between genotypes by circles (p ≤ 0.01 “○○”; p ≤ 0.05 “○”). 

2.3. Expression Patterns in Mature Embryos 
The obtained expression profiles of all these studied genes were highly variable (Fig-

ure 2). In M e of ‘USO 31’, significant expression of IAA-1, IAA-2, and X15-1 genes were 
measured. Compared to WS e, IAA-1 was expressed up to 4.6-fold more in this cultivar, 
IAA-2 2.1-fold more, and the most significant change was detected in X15-1, which was 
up to 508-fold more. In ‘USO 31’ M e, X15-1, and PP2C-1 genes were slightly up-regulated 
compared to the control. M e of the second cultivar did not significantly express any of 
the genes examined, and the expression of IAA-1 was up to 5.1-fold lower and IAA-2 up 
to 8.7-fold lower compared to WS e. The results suggest that these expression differences 
could be due to differences in genotypes. However, we consider that although the em-
bryos were morphologically identical, M e of ‘KC Dora’ was already in a fully dormant 
state and thus were transcriptionally inactive. The high expression measured in M e of 
‘USO 31’ indicates that the seeds used were still metabolically active and, therefore, only 
in the preparation stage for dormancy. 

2.4. Gene Expression Affected by Cultivation 
Cultivated embryos at the walking stick (WS ec) and matured (M ec) stages were 

analyzed for changes in expression levels due to cultivation (Figure 3). For all genes ex-
amined, it was found that cultivation triggers and up-regulates their expression inde-
pendent of the developmental stage. The most significant difference was observed for the 
X15-2 and PP2C-1 genes compared to uncultivated embryos. In the WS ec, X15-2 was ex-
pressed up to 601-fold more (‘USO 31’), 95.1-fold more (‘KC Dora’) and PP2C-1 84.5-fold 
more (‘USO 31’), and 131.3-fold more (‘KC Dora’). The same comparison showed that M 
ec expressed X15-2 4. 7-fold more (‘USO 31’), 88.3-fold more (‘KC Dora’) and PP2C-1 3.4-
fold more (‘USO 31’), and 53-fold more (‘KC Dora’). These genes, together with IAA-1, 
were the most highly transcribed in embryo cultures compared to other samples. IAA-1 
expression was increased 3.9-fold (WS ec of ‘USO 31’), 1.3-fold (WS ec of ‘KC Dora’), 1.04-
fold (M ec of ‘USO 31’), and up to 7.7-fold (M ec of ‘KC Dora’) by cultivation. It can be 

Figure 2. Quantification of relative expression of IAA-1, IAA-2, X15-1, X15-2, and PP2C-1 genes
in walking stick (WS e) and matured embryos (M e) of two cultivars of Cannabis sativa ‘USO 31’
and ‘KC Dora’. Expression data were normalized using Act as housekeeping gene and calibrated
relative to young leaves. Significant differences in gene expression in matured embryos (Table S2) are
represented by asterisks (p ≤ 0.01 “∗∗”; p ≤ 0.05 “∗”) and between genotypes (Table S1) by circles
(p ≤ 0.01 “##”; p ≤ 0.05 “#”).
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2.4. Gene Expression Affected by Cultivation

Cultivated embryos at the walking stick (WS ec) and matured (M ec) stages were ana-
lyzed for changes in expression levels due to cultivation (Figure 3). For all genes examined,
it was found that cultivation triggers and up-regulates their expression independent of
the developmental stage. The most significant difference was observed for the X15-2 and
PP2C-1 genes compared to uncultivated embryos. In the WS ec, X15-2 was expressed up to
601-fold more (‘USO 31’), 95.1-fold more (‘KC Dora’) and PP2C-1 84.5-fold more (‘USO 31’),
and 131.3-fold more (‘KC Dora’). The same comparison showed that M ec expressed X15-2
4. 7-fold more (‘USO 31’), 88.3-fold more (‘KC Dora’) and PP2C-1 3.4-fold more (‘USO 31’),
and 53-fold more (‘KC Dora’). These genes, together with IAA-1, were the most highly
transcribed in embryo cultures compared to other samples. IAA-1 expression was increased
3.9-fold (WS ec of ‘USO 31’), 1.3-fold (WS ec of ‘KC Dora’), 1.04-fold (M ec of ‘USO 31’),
and up to 7.7-fold (M ec of ‘KC Dora’) by cultivation. It can be concluded that in vitro
cultivation of embryos leads to activation of both Aux and ABA signaling pathways.
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Figure 3. Quantification of relative expression of IAA-1, IAA-2, X15-1, X15-2, and PP2C-1 genes in the
culture of walking stick (WS ec) and matured embryos (M ec) of two cultivars of Cannabis sativa ‘USO
31’ and ‘KC Dora’. Expression data were normalized using Act as housekeeping gene and calibrated
relative to young leaves. Significant differences in gene expression compared to isolated embryos
(Table S2) are represented by asterisks (p ≤ 0.01 “∗∗”; p ≤ 0.05 “∗”) and between genotypes (Table S1)
by circles (p ≤ 0.01 “##”; p ≤ 0.05 “#”).

2.5. Expression Pattern of CanLea34

CanLea34 was the most expressed of all genes studied in all samples (Figure 4). The
results show that this gene is actively transcribed already during the walking stick devel-
opmental stage. However, it was confirmed that expression would be higher in mature
embryos. Of all the studied genes, transcription of this gene was the most up-regulated by
cultivation. The lowest expression was found in WS e, but even this is 135-fold (‘USO 31’)
or 155-fold (‘KC Dora’) higher than in the control variant. M e expressed this gene even
20.7-fold (‘USO 31’) and up to 30-fold (‘KC Dora’) more. However, the most significant
change in expression was observed in embryo cultures. By cultivation of WS e of ‘USO 31’
expression was increased up to 225-fold, WS e of ‘KC Dora’ 95-fold, M e of ‘USO 31’ 5-fold,
and M e of ‘KC Dora’ 6.2-fold.
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plotting of the data was used for a more explicit graphical representation.

3. Discussion

Embryo culture techniques are among the oldest and most successful in vitro procedures.
They have been used to deeply understand plant embryogenesis for vegetative propagation
and to obtain viable hybrid embryos after interspecific or intergeneric crosses, which cannot
be developed in vivo [69,74]. This method avoids the abortion of embryos after distant
hybridization, eliminates the effect of postzygotic incompatibility, and overcomes absolute
inhibition of germination. Proper embryo development in vitro is dependent on many factors.
It has been found that the success rate of embryo culture establishment is strongly affected by
the stage of embryo development; the more mature the embryo, the easier it is to cultivate [74].
The influence of genotype is also not negligible. As our results also show, even very close
cultivars can have different cultivation success rates [75], which may be influenced by distinct
expression profiles of genes essential for embryogenesis and germination.

Only IAA-1 and IAA-2 genes were slightly up-regulated in WS e. Aux accumulates
the most in the early stages of embryogenesis [3–5,76]. IAA-1, or also GH3.6, encodes the
enzyme indole-3-acetic acid-amido synthetase GH3.6. GH3 proteins are responsible for
catalyzing the ATP-dependent formation of Aux conjugates with amino acids. In this way,
Aux is reduced in the cells, and its homeostasis is restored [77]. Thus, it can be concluded
that during the walking stick phase of development, the amount of cellular Aux must be
regulated, which could indicate a higher concentration of Aux. This is also compatible
with a higher expression of the IAA-2 gene, which encodes the indole-3-acetic acid-induced
protein ARG7.
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For all genes examined, a significantly different expression profile was found between
the M e of the cultivars. In dormancy, gene expression is suppressed to a minimum [78],
which corresponds to the expression levels in M e of ‘KC Dora’. However, the M e of the
second cultivar significantly expressed all genes examined. We do not suggest that this is
due to a genotype difference. Despite being morphologically identical, the embryos used
were still metabolically active with the Aux signaling pathway triggered and thus only
at the stage of preparation for dormancy. The up-regulated expression of PP2C-1, which
product serves as a coreceptor, and negative regulator of ABA signaling [15,16], indicates
that the ABA signaling pathway has also been activated. ABA is most concentrated during
the period of cotyledon growth. Thereafter, its amount decreases, and the next peak is
during the period of pericarp development [76].

In vitro plant development is strongly influenced by the culture conditions. In par-
ticular, the composition of the culture medium, light, temperature, and humidity play an
important role [79–81]. Stressful environments can also arise when conventional sealing
using parafilm is used (used in the experiment). Restriction of gas exchange, the imbal-
ance between CO2 and O2, along with the accumulation of H2O2, causes stress to cultures,
leading to altered expression profiles and up-regulation of stress-related genes [82,83].
Cultivation-induced germination results in growth and cell differentiation but in a stressful
environment. The significant increase in gene expression that was measured in almost all
samples tells us that both Aux and ABA signaling pathways are triggered by cultivation.
This result could also be influenced by the cooperation of sucrose in the culture medium
with Aux, which triggers the expression of genes involved in Aux metabolism and causes
an increase in endogenous ABA [76,84,85].

ABA induces the expression of LEA genes which products are characteristic of the late
developmental stages of plant embryogenesis [17,18,74]. This was confirmed by a significant
increase in CanLea34 expression in M e. The significant difference between the genotypes
of M e supports that the embryos were differentially matured. The multiplied expression
confirmed that the embryos were exposed to abiotic stresses during the cultivation.

4. Materials and Methods
4.1. Cultivation of Cannabis Plants

Cannabis sativa cv. ‘USO 31′ and cv. ‘KC Dora’ plants served as this study’s experimen-
tal material source. The plants were grown in a greenhouse. At the time of 4 to 5 months
after sowing, individual seeds were collected at various stages of maturity and used for
the experiment immediately. ‘USO 31′ seeds were provided by Agritec (Šumperk, Czech
Republic), and ‘KC Dora’ seeds were provided by SEMO (Smržice, Czech Republic).

4.2. Embryo Isolation and Establishment of Embryo Cultures

A mixed sample of seeds at different stages of maturity was collected from each
Cannabis cultivar from multiple plants. For embryo isolation, the seed surface was sterilized
using 70% ethanol for 1 min, followed by 2.5% chloramine T, and then washed three
times with sterile water. The walking stick (WS) and matured embryo (M) were isolated
in an aseptic environment. Representative embryos of both stages (WS and M) were
placed on single-use plastic Petri dishes with a culture medium in threes. Culture medium
composition was as follows: full MS medium with vitamins [86], 4.42 g·dm−3; sucrose,
30 g·dm-3; plant agar, 8 g·dm−3; ascorbic acid, 0.02 g·dm−3; indole-3-butyric acid (IBA),
0.01 g·dm−3; 6-benzylaminopurine (BAP), 0.01 g·dm−3. Cultivation was carried out in a
phytotron under the following conditions 16-h light/8-h dark cycle at 22 ◦C at 40% relative
humidity. After one week of cultivation, WS and M embryos in Petri dishes usually produce
three seedlings.

4.3. RT-qPCR Analysis

Total RNA was isolated with a Spectrum Plant Total RNA Kit (Sigma-Aldrich, Prague,
Czech Republic). Isolated RNA was treated with DNase I Amplification Grade (Sigma-
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Aldrich, Prague, Czech Republic) and checked for quality and absence of genomic DNA
by agarose gel electrophoresis. The concentration was determined at A260/A280 ratio
using a NanoDrop 2000 spectrophotometer (ThermoScientific, Prague, Czech Republic).
Complementary cDNA was synthesized using a reverse transcription kit (Bioline, Prague,
Czech Republic). Primers for all investigated genes were taken from the article by van
Bakel et al. [62], except for the primer for the CanLea34 gene, which was designed using
Primer 3. For detailed information of all the primers used, see Table S3. Quantitative PCR
was performed using SensiFAST SYBR No-ROX Kit (Bioline, Prague, Czech Republic) in
96-well plates by CFX Connect Real-Time PCR Detection System (Bioline, Prague, Czech
Republic). The expression levels of different sampling cycles were normalized with Actin
(Act) gene (Table S3) as a reference gene and compared against the expression level in the
control sample—Cannabis young leaves. The specificity of the PCR products was verified
by melting analysis. Relative expression was determined using a method considering the
primer efficiencies according to Pfaffl [87].

4.4. Statistical Analyses

The obtained results were analyzed using online freeware ASTATSA. The data were
first subjected to an analysis of variance, and then the means were compared using Tukey’s
HSD test based on a one-way ANOVA [88]. Significant differences between the monitored
parameters (Tables S1 and S2) are represented in the graphs by asterisks (p ≤ 0.01 “∗∗”;
p ≤ 0.05 “∗”) and circles (p ≤ 0.01 “##”; p ≤ 0.05 “#”). Relative expression values are
presented in graphs as means ± standard deviation determined from three technical and
two biological replicates.

5. Conclusions

Embryogenesis is a complex process that requires the proper interplay of many genes.
It is known that among the phytohormones, Aux and ABA, but also GA, CK, and ethylene,
play a significant role. It has been demonstrated that the success of embryo culture estab-
lishment increases with the stage of embryo development and maturity. Cultivation is a
period of growth but also of significant stress, which was reflected by an increase in the
expression of all genes examined. Regarding the studied genes and their relative expres-
sions, we have found that for the development of immature embryos, the genes IAA-1 and
IAA-2 are likely to be fundamental, and for the fully matured embryos, only the CanLea34
gene is. The knowledge provided by this study may help to deepen our understanding
of plant embryogenesis in Cannabis. In addition, it may be useful for breeding programs
of this plant. However, further research is needed to comprehensively understand plant
embryogenesis in order to investigate the exact functions of not only these genes but also
others related to the metabolism of other phytohormones.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11212995/s1, Table S1: Evaluation of statistical significance
of differences in gene expression between genotypes. Table S2: Evaluation of statistical significance of
differences in gene expression during embryogenesis. Table S3: List of primers for all studied genes.
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