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Abstract: Influenza viruses are a major public health threat that causes repetitive outbreaks. In
recent years, genotype 4 (G4) reassortant Eurasian avian-like (EA) H1N1 (G4 EA H1N1) has garnered
attention as a potential novel pandemic strain. The necessity of developing vaccines against G4 EA
H1N1 is growing because of the increasing cases of human infection and the low cross-reactivity of
the strain with current immunity. In this study, we produced a G4 EA H1N1-derived neuraminidase
(G4NA) as a vaccine candidate in Nicotiana benthamiana. The expressed G4NA was designed to be
accumulated in the endoplasmic reticulum (ER). The M-domain of the human receptor-type tyrosine-
protein phosphatase C was incorporated into the expression cassette to enhance the translation
of G4NA. In addition, the family 3 cellulose-binding module and Brachypodium distachyon small
ubiquitin-like modifier sequences were used to enable the cost-effective purification and removal of
unnecessary domains after purification, respectively. The G4NA produced in plants displayed high
solubility and assembled as a tetramer, which is required for the efficacy of an NA-based vaccine. In a
mouse immunization model, the G4NA produced in plants could induce significant humoral immune
responses. The plant-produced G4NA also stimulated antigen-specific CD4 T cell activation. These
G4NA vaccine-induced immune responses were intensified by the administration of the antigen with
a vaccine adjuvant. These results suggest that G4NA produced in plants has great potential as a
vaccine candidate against G4 EA H1N1.

Keywords: G4 Eurasian avian-like H1N1 virus; neuraminidase; vaccine; molecular farming; immune
response

1. Introduction

Influenza A virus, including the subtype H1N1, has been a threat to public health by
causing flu endemics and pandemics throughout history. Influenza A virus is classified
into subtypes based on the type of two antigenic surface proteins, hemagglutinin (HA)
and neuraminidase (NA). Among the subtypes, A(H1N1), A(H3N2), and A(H5N1) are the
only ones that are currently circulating in humans. Current H1N1 infections in humans are
mostly related to A(H1N1)pdm09, therefore, the seasonal flu vaccines contain HA derived
from the A(H1N1)pdm09 for protection against it [1]. However, recently, genotype 4 (G4)
reassortant Eurasian avian-like (EA) H1N1 (G4 EA H1N1) has emerged as a reassortant that
requires monitoring. G4 EA H1N1 is a predominant genotype among reassortants between
the classical swine H1N1 and human A(H1N1)pdm09 [2]. One study demonstrated that G4
EA H1N1 binds to human-like Saα2,6Gal receptor, which is an important factor for human
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cell infection, and can replicate in human airway epithelial cells [3]. This is alarming, as
these reassortants show low cross-reactivity to pre-existing immunity obtained by current
influenza vaccines [3].

To develop influenza vaccines, the surface proteins of the influenza virus have been
used as dominant targets for antigens. There are two major glycoproteins on the surface
of the influenza virus: HA and NA. These proteins are essential in the viral infection
process. HA is more abundant on the surface of the influenza virus than NA and critically
contributes to virus entry by directly binding to sialic acids present on the host cell surface.
On the other hand, NA cleaves the sialic acids, enabling the release of the virus from host
cells. Currently licensed influenza vaccines are majorly formulated and optimized based
on the HA antigen [4], whereas NA is not utilized in these vaccines. However, several
studies have revealed the importance of NA as a vaccine antigen [5,6]. Importantly, anti-NA
antibodies elicited a protective effect against the influenza virus [7,8]. The NA antigen
evolves independently of HA [9,10], and NA induces heterologous immunity. For example,
cross-protective anti-NA antibodies were generated after a seasonal vaccination with a
single influenza viral strain, A/California/07/2009 (subtype A (H1N1) pdm09) [11]. Due
to these beneficial characteristics, NA has been suggested as a good antigen candidate to
improve the breadth of vaccine efficacy and is applicable to vaccine design [6].

The plant expression system has recently drawn attention to the production of phar-
maceutical and non-pharmaceutical proteins. In comparison to the mammalian or bacterial
expression systems, protein expression in plants is much safer and more cost-effective.
Although the protein yields of plant expression systems are relatively low, the process of
growing plants is highly scalable. In addition, like other eukaryotic cells, plant cells are
equipped with the mechanisms for posttranslational modifications, such as glycosylation
in the ER, which is sometimes critical for the solubility and functionality of expressed
proteins [12–15]. Moreover, several studies indicated that many proteins of different origins
were fully functional when they were produced in plants [16–20]. Several pharmaceutical
proteins such as vaccines, cytokines, and therapeutic antibodies have been successfully
produced in plants such as tobacco, barley, carrot, potato, and maize [16,21–27]. Notably,
transient expression systems using plant tissues rapidly provide large amounts of thera-
peutic proteins during epidemic or pandemic periods [28–31].

In this study, we attempted to produce G4 EA H1N1-derived neuraminidase (G4NA)
in the leaf tissues of N. benthamiana as a vaccine candidate against G4 EA H1N1. The G4NA
produced in the endoplasmic reticulum (ER) of N. benthamiana was highly soluble. In
addition, the G4NA produced in plants exhibited tetramer formation, which is considered
important for the immunogenicity of NA-based vaccines. Moreover, mice immunized with
the antigen G4NA alone displayed moderate immunogenicity, including the production of
antigen-specific antibody and T cell responses, which could be enhanced by an emulsion
vaccine adjuvant.

2. Results and Discussion
2.1. Construct Design for the Expression of MCS-G4NA in Plants

The construct MCS-G4NA was incorporated into the pCAMBIA1300 binary vector
(Figure 1). We used the signal sequence of binding immunoglobulin protein (BiP) for the
cotranslational translocation of MCS-G4NA into the ER. A C-terminal HDEL sequence
is an ER retention signal required for the accumulation of expressed MCS-G4NA in the
ER. The M domain, which was derived from the human receptor-type tyrosine-protein
phosphatase C, was incorporated because it increases the translational level of ER-localized
proteins [32]. For the affinity purification of MCS-G4NA, we incorporated the domain
CBM3, which effectively binds to MCC beads and provides cost-effective purification of
various proteins from plants [17–20,33]. After purification with MCC beads, the domains
upstream of G4NA were removed by His-bdSENP1 purified from E. coli BL21 (DE3) pLysS
(Figure 1).
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Figure 1. Schematic representation of MCS-G4NA construct. BiP, the signal sequence of BiP; M, 
the extracellular domain (amino acid residues 231–290) of human protein tyrosine phosphatase re-
ceptor type C; CBM3, the cellulose-binding module 3 of Clostridium thermocellum; bdSUMO, the 
SUMO domain of Brachypodium distachyon; and HDEL, ER retention signal. 

2.2. The MCS-G4NA Expressed in N. benthamiana Displays High Solubility and Stability 
The construct MCS-G4NA was transformed into the leaves of N. benthamiana by sy-

ringe infiltration (Figure 2). At 3, 5, and 7 days post infiltration (dpi), the total protein 
extracts were prepared from transformed leaves and subjected to centrifugation at 19,400× 
g for 15 min at 4 °C. Then total, soluble, and pellet fractions were analyzed by anti-HA 
antibody (Figure 2). The MCS-G4NA whose predicted molecular weight is approximately 
83 kilodaltons (kDa) was mainly detected in the soluble fraction (Figure 2). Moreover, the 
MCS-G4NA proteins were intact without proteolytic degradation. The protein bands 
above 83 kDa were considered aggregated or modified forms and were not further pur-
sued in this study. These results indicate that the MCS-G4NA produced in N. benthamiana 
is soluble and stable. 

Figure 1. Schematic representation of MCS-G4NA construct. BiP, the signal sequence of BiP; M, the
extracellular domain (amino acid residues 231–290) of human protein tyrosine phosphatase receptor
type C; CBM3, the cellulose-binding module 3 of Clostridium thermocellum; bdSUMO, the SUMO
domain of Brachypodium distachyon; and HDEL, ER retention signal.

2.2. The MCS-G4NA Expressed in N. benthamiana Displays High Solubility and Stability

The construct MCS-G4NA was transformed into the leaves of N. benthamiana by syringe
infiltration (Figure 2). At 3, 5, and 7 days post infiltration (dpi), the total protein extracts
were prepared from transformed leaves and subjected to centrifugation at 19,400× g
for 15 min at 4 ◦C. Then total, soluble, and pellet fractions were analyzed by anti-HA
antibody (Figure 2). The MCS-G4NA whose predicted molecular weight is approximately
83 kilodaltons (kDa) was mainly detected in the soluble fraction (Figure 2). Moreover, the
MCS-G4NA proteins were intact without proteolytic degradation. The protein bands above
83 kDa were considered aggregated or modified forms and were not further pursued in
this study. These results indicate that the MCS-G4NA produced in N. benthamiana is soluble
and stable.

2.3. Purification of G4NA from the Leaves of N. benthamiana

Next, we purified MCS-G3NA using MCC beads, which effectively bind to CBM3
(Figure 3) [17,18,33]. The protein samples in the soluble fraction in Figure 2 were incubated
with MCC beads, followed by Western blotting with the anti-HA antibody. Expectedly, most
of the expressed MCS-G4NA was immobilized with MCC beads, as MCS-G4NA is almost
exclusively present in the soluble fraction (Figure 2) and MCS-G4NA was hardly detected
in the unbound (UB) fraction (Figure 3). After purification, MCS-G4NA immobilized
with MCC beads was treated with His-bdSENP1, which detects the bdSUMO domain and
cleaves the di-glycine motif located at the C-terminus of the bdSUMO domain [33]. As
shown in Figure 4, the CBM3 and bdSUMO domains upstream of G4NA were removed by
His-bdSENP1. G4NA, which is used for vaccination, was released into the soluble fraction
(Figure 4). After the on-bound cleavage reaction, His-bdSENP1 was removed using Ni-NTA
beads (Figure 4). The protein yield of G4NA was estimated to be ~10 mg/kg fresh weight
of N. benthamiana leaves. In this study, we took advantage of the syringe infiltration method.
In the future, for an upscaled production of G4NA in N. benthamiana leaves, alternative
methods need to be used for transformation, such as the vacuum infiltration method, which
is more efficient than syringe infiltration and can quickly transform many plants [34], and
the viral transfection of target genes [35,36].

2.4. G4NA Produced in N. benthamiana Is Present as a Tetramer

Previously, it has been suggested that the tetrameric form of NA enhances the pro-
tective immunity against A/PR8 (H1N1) infection in mice [37,38]. In this study, during
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the purification of G4NA, we used protein extraction buffer containing a reducing agent
dithiothreitol (DTT) as described in Materials and Methods, which might affect tetramer
formation of G4NA. To investigate whether G4NA produced in plants exhibits tetramer
formation, we performed BN-PAGE using G4NA that was purified in the absence or pres-
ence of DTT (Figure 5). The expected size of G4NA monomer is approximately 48 kDa. As
shown in Figure 5, the purified G4NA was mainly detected as about 200 kDa form, which
corresponds to the size of G4NA tetramer, even if it was purified in the presence of DTT
(Figure 5). This result indicates that G4NA produced in plants exhibits tetramer formation,
which is required for the high efficacy of NA-based vaccines.
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Figure 2. Expression of MCS-G4NA in N. benthamiana leaves. The leaf tissues of N. benthamiana
were transformed with Agrobacterium tumefaciens cells harboring MCS-G4NA. A. tumefaciens cells
harboring P38 were co-infiltrated. The transformed leaves were harvested three, five, and seven
days post-infiltration (dpi), followed by total protein extract preparation. Total protein extracts were
subjected to centrifugation at 19,400× g for 10 min. Subsequently, the fractions soluble (S) from the
supernatant and pellet (P) were collected separately for Western blot analysis using the anti-HA
antibody. T, total fraction; S, soluble fraction; and P, pellet fraction. After Western blotting, the
membrane was stained with Coomassie Brilliant Blue (CBB).
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Figure 3. Purification of MSC-G4NA from the N. benthamiana leaf extracts. Total (T) protein
extracts were centrifuged and the soluble protein fraction from the supernatant was incubated with
MCC beads to purify MCS-G4NA. After centrifugation, the supernatant fraction was collected as the
unbound (UB) fraction. Subsequently, the MCC beads were washed four times with a wash buffer
(50 mM Tris-HCl and 150 mM NaCl; pH 7.5) (W1–W3). Finally, MCS-G4NA was eluted by boiling
with a protein sample buffer. T, total protein extracts; UB, unbound fraction; and B, MCC bead-bound
fraction. After Western blotting, the membrane was stained with Coomassie Brilliant Blue (CBB).

2.5. G4NA Produced in Plants Induces an Antigen-Specific Antibody Response

To evaluate the antigen-specific antibody response induced by plant-produced G4NA,
we measured the G4NA-specific total IgGs in mice immunized with G4NA alone or with
G4NA and Addavax (AV), which is an MF59-like oil-in-water-emulsion adjuvant, at day 21
(D21, 3 weeks post-priming) and day 7 post-boost (BD7) (Figure 6A). As a result, vac-
cination with G4NA alone could trigger a modest G4NA-specific IgG response at BD7
(36.28 (6.097–139.8) ng/mL) compared to that of Mock group (2.894 (2.084–6.877) ng/mL),
but not detectable at D21 (Mock, 4.090 (1.993–4.306); G4NA, 4.121 (3.688–6.149) ng/mL)
(Figure 6A). This indicates that G4NA alone can elicit an antibody response after the
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boost immunization. To examine if a vaccine adjuvant can enhance the G4NA-specific
IgG response, AV was supplemented to the G4NA antigen inoculum. AV substantially
potentiated the G4NA-specific antibody production both at D21 and BD7 (G4NA+AV: D21,
901.1 (431.6–5031) ng/mL; BD7, 194,082 (181,013–298,962) ng/mL) (Figure 6A). The boost
vaccination at D21 increased IgG production by 8.8-fold in the G4NA alone group and
215-fold in the G4NA+AV group as compared with the medians. Here, we tested 2020/21
Vaxigrip Tetra, a licensed inactivated seasonal influenza vaccine containing the represen-
tative antigen, hemagglutinin, as a control influenza vaccine. As expected, the Vaxigrip
Tetra-immunized mice did not show any NA-specific antibody response, although the
HA-specific antibody was effectively generated. This is understandable because Vaxigrip
Tetra is formulated based on the content of HA antigen (15 µg HA of each strain per dose),
similar to other universal influenza vaccine formulations [39].
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Figure 4. bdSENP1-mediated removal of M, CBM3, and bdSUMO domains. After purification of
MCS-G4NA with MCC beads, the N-terminal upstream domains, which include CBM3 and bdSUMO,
were removed by His-bdSENP1 protease, which was expressed in E. coli BL21 (DE3) pLysS. After
the reaction, the supernatant was collected and passed through a Ni2+-NTA affinity column to
remove His:bdSENP1. After Western blotting, the membrane was stained with Coomassie Brilliant
Blue (CBB).
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Figure 5. Tetramer formation of G4NA produced in N. benthamiana. After purification of G4NA
in the absence (−) or presence (+) of DTT from the leaves of N. benthamiana, the purified G4NA was
subject to BN-PAGE, followed by Western blotting with anti-HA antibody.

Germinal center (GC) formation and helper T cell response in the secondary lymphoid
organ are crucial for strong induction of a T-dependent antibody response [40]. During
the germinal center reaction, antigen-specific B cells undergo massive expansion, affinity
maturation, and antibody class switching, which requires critical help from follicular helper
T (TFH) cells. There was a trend of incremental total cellularity in the BD7 draining lymph
nodes of all vaccinated groups, though only G4NA+AV showed statistical significance
(Figure 6B). Consistent with the G4NA-specific antibody data, the G4NA-vaccinated group
of mice displayed slightly increased frequencies and numbers of GC B cells and follicular
helper T cells (TFH cells) as compared to the Mock group, suggesting that the G4NA
antigen is a potentially good candidate that may require a vaccine adjuvant for more
potent immunogenicity (Figure 6C,D). Indeed, in the G4NA+AV group, frequencies and
cell numbers of both GC B cells and TFH cells were significantly more enhanced in the dLNs
than in the Mock or G4NA groups (Figure 6C,D). In contrast to the NA-specific antibody
response, a vaccine-triggered increase of GC B cells and TFH cells could be detected in
Vaxigrip Tetra-immunized mice. Based on these results, we suggest that G4NA induces a
G4NA-specific antibody response and germinal center reaction, which can be enhanced
when administered with an emulsion adjuvant, AV.

2.6. G4NA Elicits NA-Specific CD4 T Cell Responses

We sought to examine if T cell response was triggered by G4NA immunization, in
addition to the aforementioned TFH cell response. The flow cytometry data of dLN cells
from the immunized mice at BD7 indicates the increase of activated CD4 T cell responses
after the secondary immunization in vivo (Figure 7A). The frequencies and numbers of
activated CD4 (CD44hiCD62Llo) T cells were significantly increased in the G4NA+AV group
compared to the Mock and non-adjuvanted vaccine groups. Contrastingly, there was no
significant increase of activated CD8 (CD44hiCD62Llo) T cells either in G4NA or G4NA+AV
(Figure 7A). The expansion of CD4 T cells after vaccination is important since the CD4 T
cell responses are closely related to the vaccine-elicited antibody production and regulation
of most immune responses [41,42]. Previous studies have reported significant HA-specific
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but inefficient NA-specific CD4 T cell responses after influenza vaccination [43]. However,
recombinant G4NA in this study could induce significant CD4 T cell responses, implying
that the antigen is capable of targeting CD4 T cells. On the other hand, CD8 T cell response,
which was absent in the G4NA-vaccinated groups, is a means for the direct elimination
of infected cells and is not effectively induced by conventional influenza vaccination [44].
These results imply that the in vivo administration of G4NA induces CD4 T cell responses,
which is essential for the overall immunogenicity of the influenza vaccine.
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Figure 6. G4NA induces antibody responses through the formation of germinal centers in lymph
nodes after prime-boost vaccination with G4NA or G4NA plus AV or Vaxigrip Tetra. (A) Antigen-
specific IgG level (ng/mL) at D21 and BD7. (B-D) Frequency (%) and cell number determined by
flow cytometry of draining lymph node cells at day seven post-boost. (B) Absolute cell numbers of
inguinal lymph nodes. (C) Frequency and cell number of GC B cells (GL7+CD95+ B cells). FACS plots
were priorly gated on the total B cell (CD19+CD3-) population. (D) Frequency and cell number of
TFH cells (PD-1+CXCR5+ T cells). Flow cytometry plots were pre-gated on total T cell (CD19+CD3−)
population. * p < 0.05, ** p < 0.01, *** p < 0.001. Data are representative of two independent experiments
and are described as median, 25th, and 75th percentiles and a range.
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Figure 7. G4NA promotes CD4 T cell responses. (A) Frequencies (%) and cell numbers of activated
CD4 T cells and activated CD8 T cells at day seven post-boost after vaccination with G4NA alone
or with G4NA plus AV. (B) Frequencies (%) of TNF+/IL-2+/IFN-γ+ CD4 T cells in total CD4 T cells
and total cell numbers (#) of each population. * p < 0.05, ** p < 0.01. Data are displayed as box plots
showing median, 25th and 75th, percentiles, and the range.
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To understand the aspect of antigen-specific T cell responses induced by the G4NA
antigen, we performed ex vivo re-stimulation of T cells from dLNs with G4NA protein
(Figure 7B). In response to the G4NA antigenic re-stimulation, CD4 T cells from the G4NA
alone group induced slightly increased TNF expression. Strikingly, the G4NA+AV group
showed a significant elevation in the percentages of IL-2-, TNF-, and IFN-γ-producing
CD4 T cells. For the CD8 T cells, there was no significant changes in the percentage of IL-
2/TNF/IFN-γ-producing cells after G4NA re-stimulation (Supplementary Figure S1). This
is expected, as protein subunit antigens are not usually strong enough antigens to induce T
cell responses in the absence of an immuno-stimulator. We could detect decent amounts of
cytokine-producing CD4 T cells in response to G4NA antigen with an emulsion adjuvant,
implying that G4NA harbors epitopes for CD4 T cells and potent B cell epitopes. Moreover,
it is difficult to mount a potent CD8 T cell response with protein antigens unless the vaccine
is formulated with special adjuvants that can induce an effective CD8 T cell response.

3. Materials and Methods
3.1. Plant Materials and Growth Conditions

N. benthamiana plants (NCBI:txid4100) were grown in a greenhouse at 23–24 ◦C and
40–65% relative humidity with a 16-h light/8-h dark cycle. The leaves of 6–7-week-old
plants were used for agro-infiltration.

3.2. Plasmid DNA Construction

The G4NA sequence (NCBI, MN416747) was obtained using gene synthesis (Bioneer
corp., Daejeon, Korea). The NaeI restriction site and a GGA sequence that codes for Gly
were added at the 5′ end, and the sequences which code for the HA tag, HDEL ER retention
signal, TAA stop codon, and XhoI restriction site were added at the 3′ end. In this study, to
increase the solubility of G4NA, the sequence encompassing the N-terminal hydrophobic
transmembrane domain (amino acids 1-34 in G4NA primary structure) was deleted. To
generate the construct BiP-M-CBM3-bdSUMO-G4NA-HDEL (MCS-G4NA), the synthesized
G4NA sequence was digested with NaeI and Xho1 restriction endonucleases and inserted
into the pUC-based vector digested with the same restriction endonucleases. The pUC-
based vector used in this study contained the sequences that code for the BiP signal
sequence, M-domain of the human receptor-type tyrosine-protein phosphatase C, family 3
cellulose-binding module (CBM3), bdSUMO, and HSP transcriptional terminator [45]. The
resulting plasmid was digested with XbaI and EcoRI, and the digested fragment, which
contains the sequences corresponding to the BiP-M-CBM3-bdSUMO-G4-NA-HDEL-(stop
codon)-HSP terminator, was ligated into the pCambia 1300 plant expression vector digested
with the same restriction endonucleases [17,46].

3.3. Agro-Infiltration of MCS-G4NA into the N. benthamiana Leaves

The construct MCS-G4NA was transformed into Agrobacterium tumefaciens (EHA105).
A. tumefaciens, which is transformed with an MCS-G4NA construct, was introduced into
N. benthamiana leaves via syringe infiltration as described previously [18,33]. In every
agro-infiltration experiment, A. tumefaciens harboring p38, which is derived from Turnip
crinkle virus and encodes a suppressor of host gene-silencing, was co-infiltrated.

3.4. Purification of MCS-G4NA from the N. benthamiana Leaves

A total of 20 g (fresh weight) of leaves, harvested at 3, 5, and 7 days after agro-
infiltration, were frozen and ground in liquid nitrogen. Total protein extracts were prepared
using 60 mL of protein extraction buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM DTT,
1 % [v/v] Triton X-100, and 1 X EDTA-free protease inhibitor cocktail (Roche, Switzerland).
After incubation at 4 ◦C for 15 min, the total proteins were filtered through Miracloth
(Merck Millipore, Burlington, MA, USA).

Subsequently, 100 µL of protein extracts were collected as the total (T) fraction. The
remaining extracts were centrifuged at 19,400× g for 15 min at 4 ◦C, and 100 µL of the
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supernatant fraction was collected as the soluble (S) fraction. The pellets were resuspended
in 60 mL of protein extraction buffer, and 100 µL of the sample was collected as the pellet
(P) fraction. The soluble (S) fraction after centrifugation was used for the purification
of MCS-G4NA with microcrystalline cellulose (MCC) beads (Sigma-Aldrich, St. Louis,
MO, USA; CAS Number 9004-34-6) as described previously [18,33]. After purification of
MCS-G4NA with MCC beads, the N-terminal upstream domains, which include CBM3 and
bdSUMO, were removed by His-bdSENP1 protease, which was expressed in E. coli BL21
(DE3) pLysS [33]. Briefly, the MCS-G4NA immobilized on MCC beads was incubated with
10 µg of His-bdSENP1 in 10 mL reaction buffer (25 mM Tris-HCl buffer, pH 7.5, 0.1% NP-40,
250 mM NaCl and 1 mM DTT) for 6 h at 4 ◦C. The purified G4NA protein was concentrated
using Amicon Ultra-0.5 Centrifugal Filter Unit (Cat# UFC501024, Merck KGaA, Darmstadt,
Germany) and subjected to dialysis with phosphate-buffered saline (PBS). The concentration
of G4NA was measured using bicinchoninic acid assay kit (Abbkine, cat no: KTD 3001,
Wuhan, China).

3.5. Blue Native-Polyacrylamide Gel Electrophoresis (BN-PAGE)

BN-PAGE was performed for separation of total soluble leaf extracts under nondena-
turing conditions using the NativePAGE Novex gel system (Invitrogen, MA, USA) with pre-
cast 4 to 16% acrylamide Bis-Tris gels (Invitrogen). After BN-PAGE, the gel was transferred
onto a polyvinylidene fluoride membrane, followed by western blotting with anti-HA
antibody (1:1000 dilution) (Roche, Catalog number: 11867423001, Basel, Switzerland).

3.6. Western Blot Analysis

The protein samples were separated by SDS-PAGE using 10 % acrylamide gel and
transferred onto a polyvinylidene fluoride membrane. The membrane was incubated with
1 × TBS (Tris-buffered saline with 0.1 % (v/v) Tween 20) containing 6% (w/v) skim milk
for 30 min. Then, the membrane was incubated with an anti-HA antibody (1:1000 dilution)
at 4 ◦C overnight. After washing with 1 × TBS-T three times, the membrane was incu-
bated with an anti-rabbit secondary antibody conjugated with horseradish peroxidase
(1:5000 dilution) (Cell signaling Technology, cat no: 7074S) at 4 ◦C for 4 h. After wash-
ing with 1 × TBS-T three times, the membrane was immersed in ECL reagents (Thermo
Fisher Scientific Inc., Waltham, MA, USA), and the chemiluminescence images were cap-
tured using the ChemiDocTM XRS+ imaging system (Bio-Rad Laboratories, Inc., Hercules,
CA, USA).

3.7. Mice and Immunization

Six-week-old female Balb/c mice were purchased from Orient Bio Inc., Seongnam,
Korea. Mice were immunized subcutaneously at the base of the tail with G4NA (10 µg
per mouse) alone, G4NA plus Addavax™ (AV, 50 µL per mouse) (Invivogen), or Vaxi-
grip Tetra® (80 µL per mouse) (Sanofi, Paris, France). Five mice per group were used in
two independent experiments. Non-immunized mice were used as negative controls, and
mice immunized with Vaxigrip Tetra® (Sanofi) were used as positive controls. On day
21 post-immunization, mice were immunized with the same dose. We collected blood
samples by submandibular (facial) bleeding on day 21 after the first immunization, and via
cardiac puncture after euthanasia on day 7 post-boosting. Mice were maintained under
specific pathogen-free conditions. Terminal anesthesia was conducted via carbon dioxide
inhalation. The animal study was reviewed and approved by the Institutional Animal Care
and Use Committee (IACUC) of Institut Pasteur, Korea (IACUC approval no. IPK-20012-1).

3.8. Antibody ELISA

Serum samples collected on day 21 after the first immunization and day 7 post-
boosting were used for antibody ELISA. For serum separation, we clotted the blood samples
for 1 h at 4 ◦C and centrifuged at 10,000× g at 4 ◦C for 10 min on the day of collection.
Corning-EIA/RIA high-binding 96-well plates were coated with 50 µL of 2 µg/mL G4NA
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or 2 µg/mL goat anti-mouse immunoglobulin G (IgG) (Southern Biotech, Birmingham, AL,
USA) by incubation at 4 ◦C overnight. Plates were washed twice with PBS with 0.5% Tween-
20 and blocked with 200 µL of 1% blotting grade blocker (Bio-rad). Mouse serum samples
were serially diluted (1:100 to 1:6400, 4-fold serial dilution) in blocking solution. The diluted
samples were transferred to each well (50 µL/well) and incubated on the blocked plates at
room temperature for two hours. Mouse IgG (50 µL/well) (Southern Biotech, Birmingham,
AL, USA) was used as a standard after a 2-fold serial dilution from 100 to 1.56 ng/mL. The
plates were washed twice and incubated with horseradish peroxidase (HRP)-conjugated
secondary antibodies (anti-mouse IgG, 50 µL/well, 1:5000 dilution in blocking solution)
(Southern Biotech, Birmingham, AL, USA) in the dark at room temperature for 1.5 h.
After wash, HRP activity was developed using Tetramethylbenzidine (TMB) solution
(100 µL/well, OptEIA reagent set, BD Biosciences, Franklin Lakes, NJ, USA) and stop
solution (50 µL/well, 0.5 M hydrochloride). Optical density at 450 nm was detected using
a spectorophotometer (Victor III, PerkinElmer, MA, USA) with correction at 595 nm.

3.9. Flow Cytometry

Draining lymph nodes (dLNs) were harvested from immunized mice in tissue har-
vest buffer (RPMI 1640 (Welgene) with 1% fetal bovine serum (FBS) and 1% of 1M N-
2-hydroxyethylpiperazine-N-2-ethane sulfonic acid, HEPES). Cells from the dLN were
stained with fluorochrome-labeled antibodies. The following antibodies were obtained
from BioLegend: CD3 (17A2), CD44 (IM7), CD62L (MEL-14), IFN-γ (XMG1.2), IL-2 (JES6-
5H4), TNF (MP6-XT22), CD19 (6D5), and GL7 (GL7). The following antibodies were
purchased from BD Biosciences, NJ, USA: CD4 (RM4-5), CD8 (53-6.7), CD279 (PD-1; J43),
CD185 (CXCR5; 2G8), and CD95 (Jo2). Zombie Aqua™ (BioLegend) was used to detect
live/dead status. Fc block (BD Biosciences) was added during the cell staining. For intracel-
lular staining, a Cytofix/Cytoperm solution kit (BD Biosciences) was used for the fixation
and permeabilization of cells and antibody dilutions.

3.10. Ex Vivo T Cell re-Stimulation

dLN cells harvested from immunized mice were aliquoted 1 × 106 cells/well in
96-well round-bottom cell culture plate (SPL Life Sciences, Pocheon-si, Korea). The cells
were then stimulated with 1 µg/mL G4NA in complete RPMI (RPMI 1640 supplemented
with 10% FBS and 1% of 1M HEPES) at 37 ◦C in a humidified 5% CO2 incubator for 16 h. A
cell activation cocktail (phorbol 12-myristate-13-acetate and ionomycin, BioLegend) was
used as a positive control. After the incubation, GolgiPlug (brefeldin A, BD Biosciences)
and GolgiStop (Monensin, BD Biosciences) were added and incubated for four hours. Cells
were then stained for flow cytometry analysis.

3.11. Statistical Analysis

Data are displayed as box plots of quantiles (median and 25th and 75th percentiles)
and whiskers indicating a range. Statistical significance was determined by Kruskal–Wallis
test with multiple comparisons by Dunn’s multiple comparisons test (ns, not significant;
* p < 0.05; ** p < 0.01; *** p < 0.001). For analysis of cell re-stimulation data (Figure 7B),
we compared the differences between the two groups by the Mann–Whitney U test
(ns, not significant; * p < 0.05; ** p < 0.01). All statistical analyses were performed using
Prism software version 9 (Graphpad Software, Inc., San Diego, CA, USA).

4. Conclusions

In this study, we provide compelling evidence that G4NA expressed in N. benthamiana
leaves has great potential as a vaccine antigen for G4 EA H1N1. G4NA produced in plants
was not only highly soluble and stable, but also assembled as a tetramer, which is critical
for the efficacy of NA-based influenza vaccines. Moreover, it could effectively induce
antigen-specific antibody responses, which is a critical feature for the protective immunity
of vaccines. In the future, it will be necessary to further validate the G4NA vaccine in
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animal models with a live G4 EA H1N1 virus to investigate whether G4NA antigen has
protective efficacy in vivo.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants11212984/s1, Figure S1: G4NA does not promote significant
CD8 T cell responses. Frequencies (%) of TNF+/IL-2+/IFN-γ+ CD4 T cells in total CD8 T cells and
total cell numbers of each population. Data are displayed as box plots showing the median, 25th, and
75th percentiles, and the range.
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