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Abstract: This work aimed to study the plant conditioning effect and mode of action of a plant-
based biostimulant used in organic farming. This new generation plant biostimulant, named
ELICE16INDURES®, is rich in plant bio-active ingredients containing eleven supercritical botanical
extracts encapsulated in nano-scale liposomes. The dose–response (10 to 240 g ha−1) relationship was
tested in a field population of autumn barley (Hordeum vulgare) test crop, and underlying molecular
mechanisms were studied. Applying nanotechnology, cell-identical nanoparticles may help the better
uptake and delivery of active ingredients increasing resilience, vitality, and crop yield. The amount
of harvested crops showed a significant increase of 27.5% and 39.9% interconnected to higher normal-
ized difference vegetation index (NDVI) of 20% and 25% after the treatment of low and high dosages
(20 and 240 g ha−1), respectively. Illumina NextSeq 550 sequencing, gene expression profiling, and
KEGG-pathway analysis of outstanding dosages indicated the upregulation of pathogenesis-related
(PR) and other genes—associated with induced resistance—which showed dose dependency as well.

Keywords: ELICE16INDURES; biostimulant; gene expression; Hordeum vulgare; plant conditioner;
Illumina RNA-seq

1. Introduction

The use of non-chemical biostimulants is the ecologically safest solution for increasing
crop vitality and production. Today, sustainable agricultural production and the preserva-
tion of biodiversity in agricultural areas receive a lot of attention worldwide; therefore, the
development of alternative crop protection aims to avoid the use of chemicals such as syn-
thetic fungicides, insecticides, or herbicides [1]. The “metabolic enhancers” are biologically
active, plant signaling molecules that are in focus on several company products [2,3]. These
products are called biostimulants, whose main active agents are vitamins or phytochemicals
such as phytohormones, amino acids, and/or their derivatives [4].

These agents may help in agricultural important cultures to enhance yield through the
reinforcement of biochemical responses against biotic and abiotic stresses. The molecular
effects of biostimulants were first studied in Arabidopsis thaliana (A. thaliana, mouse-ear
cress). Toscano et al. and Xu et al. reported on 127 genes with significantly higher activity
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in plants treated by several marketed biostimulant products [5,6]. Selivanova et al. (2015)
reported an increased yield in cucumber plants after the treatment of some biostimulant
products due to the metabolic enhancement of plants [7]. Klokić et al. (2020) investigated
the effect of biostimulants on tomato yield and found that 10 different biostimulants
affected the total phenol and flavonoid contents of fruit, leading to higher antioxidant
capacity [8]. Certain biostimulants are protective against a broad range of plant pathogens
by activating plant immunity [9,10]. Usually, their effectiveness is due to potentiate plant
defense mechanisms instead of direct pathogen targets. These reinforced defense responses
may become permanent, called priming or the primed state. Substances that may trigger the
priming in plants may be called imprimatin compounds [11]. From an economic aspect, this
kind of induced resistance should be one of the optimal strategies for the development of
biostimulants. The impact of priming active elicitors on defense signaling has been proven
in crops; therefore, their potential application in field practice scientifically supported the
opening of new possibilities in sustainable plant protection [12].

In the Research Institute for Medicinal Plants and Herbs Ltd. Budakalász, Hungary,
a plant-extract-based biostimulant product, ELICE16INDURES®, was developed and li-
censed containing high amounts of allelochemicals such as flavonoids, steroids, terpenoids,
saponins, alkaloids and phenolic compounds which can stimulate, e.g., plant development,
nutrient assimilation, photosynthesis or pathogen resistance. In this study, we report on this
agent as a potential new defense-priming material. Its technological development aimed
to reach a 150–200 nm size multilamellar liposome formulation of eleven CO2-extracted
medicinal plants as a novelty in this field.

To reach the best absorption of bioactive compounds, a state-of-the-art process is
used, namely, nanoparticles in the range of 100–500 nm in size [13,14]. Abdel-Aziz et al.
and Dutta report on the positive impact of nanomaterials in a foliar application and seed
priming [15,16]. Despite nano-liposome technology being a less studied area in botany,
several studies investigated the use of liposomes. Karny et al. reported on the application
of liposomes to supplement plant growth and overcome acute nutrient deficiency [17].
The main advantage of liposome formulation is the use of less active compounds to reach
maximal bioavailability. In this study, we report firstly on a plant conditioner with nano-
size liposome formulation that showed priming activity tested in the field and laboratory
as well.

The presence of priming was described in different types of induced resistance suggest-
ing its crucial role in many defense mechanisms [18]. The most widely studied mechanisms
are systemic acquired resistance (SAR) and induced systemic resistance (ISR) which are
phenotypically similar but show alterations in hormonal control and associated gene expres-
sion [19]. Among others, the salicylic acid-dependent SAR displays a high accumulation
of pathogenesis-related (PR) gene products, whereas ISR affects genes in ethylene and
jasmonic acid responses. Natural inducers may stimulate induced resistance leading to a
stronger phenotypic appearance of plants however in most cases the underlying accurate
genetic mechanisms remain in question and may overlap. It is known that plant defense
response begins with stress-related plant hormones, e.g., salicylic acid, jasmonic acid, and
ethylene [20], that may be used also as inducers [21]. Hormonal inducers depending on
the concentration may have a dual role in the activation of plant defense responses, e.g.,
relatively low doses of exogenous salicylic acid may induce a direct response of defense
genes that behave classical SAR genes and parsley defense genes; higher doses may induce
another set of defense genes [22]. Hormonal inducers are also associated with the induction
of general phenylpropanoid pathway-responsive genes to reinforce lignin biosynthesis
against pathogen attack [23]. In this study, we focused on the monitoring of genes taking
part in different transcriptomic events during priming mechanisms that may lie behind the
resistance development in plants characteristic to ELICE16INDURES.

PR genes are raised by diverse abiotic and biotic stresses in primed plants [18,24].
Inducible defense-related PR proteins were first identified in tobacco infected with the
Tobacco mosaic virus [25], and were later described in various plant species previously in-
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fected by viruses, bacteria, and fungi [26]. PR proteins have been classified into 17 families
based on biological activity, localization, molecular weight, and isoelectric point [26–28].
Among them, the PR1 family is used as a marker of enhanced plant disease resistance;
although its biochemical activity and mode of action remain unknown, it is the only PR that
does not contain functional annotations [29]. The properties of the other PR families are
well known, including β-1,3-glucanases (PR2), chitinases (PR3-4), thaumatin-like proteins
(PR5), peroxidases (PR9), ribosome-inactivating proteins (PR10), thionins (PR13), nonspe-
cific lipid transfer proteins (PR14), oxalate oxidase (PR15), and oxalate-oxidase-like proteins
(PR16) [26,30]. The resistance mechanism against various economically important fungal
pathogens was investigated in barley plants. The expression patterns of PR genes were
examined in the early stages of infection in susceptible and resistant genotypes using the
quantitative PCR method. The data showed that in the resistant genotypes, PR transcripts
accumulated higher and earlier than in the susceptible genotypes; the most prominent
differences were observed in PR1 and PR5 genes, which were strongly activated [31]. Re-
combinant chitinase protein (PR3-4) from seeds of H. vulgare significantly inhibited the
growth of the hyphae of three phytopathogenic fungi (Alternaria alternate, Rhizoctonia solani
and Fusarium oxysporum) in in vitro qualitative antifungal assays [32]. Furthermore, an
increase in the abundance of peroxidases and PR-3 and PR-5 was observed after infection
of barley ears with macroconidia suspension of Fusarium graminearum [33]. The activity
of chitinase (PR3-4), β-1,3-glucanase (PR2), and peroxidases significantly raised in barley
after Drechslera teres (Pyrenophora teres) infection [34] and Bipolaris sorokiniana infection [35].
The effect of cadmium on protein expression was investigated by proteomic analysis in
leaf apoplast proteins of barley seedlings. PR1 proteins, certain 1-3-glucanases (PR2),
chitinases (PR3), members of the chitin-binding PR4 family, Thaumatin-like proteins (PR5)
and PR17 proteins were identified, indicating that this abiotic stress-activated a general
plant defense response using PRs [36]. Peroxidases are attended in lignification, regula-
tion of cell wall elongation, wound healing, and resistance to pathogens in plants [37].
Caruso et al. (2001) [38] reported that heme peroxidase purified from wheat kernels reduced
the elongation of the germ tube of Fusarium culmorum, Trichoderma viride and Botrytis cinerea.

The phenylpropanoid biosynthetic pathway contributes to several aspects of plant
responses toward biotic and abiotic stimuli that might be part of priming mechanisms [39].
The increased synthesis of polyphenols under abiotic stress conditions helps plants to
cope with different environmental conditions [40]. Among the key phenolic biosynthesis
enzymes are phenylalanine ammonia-lyase (PAL), cinnamyl-alcohol dehydrogenase (CAD),
and 4-coumarate-CoA ligase (4CL). PAL catalyzes the first step in the biosynthesis of
phenylpropanoids and the PAL-related gene (HvPAL) was highly regulated among the
genes showing higher expression under metal stress [41], under wounding stress [42],
and under fungal infection [43] in barley. The CAD enzyme that can be involved in the
maintenance of lignin synthesis increases in activity during several pathogen responses so
that the lignin synthesis may participate in plant resistance against pathogens [44]. The
induced expression of genes related to secondary metabolism (glutathione-S-transferase
(GST), PAL and CAD) was demonstrated under salt and drought stress conditions in wild
barley [45]. UV-B treatment and water deficit enhanced the activity of 4CL in barley leaves
and this enhancement was positively correlated with the accumulation of flavonols and
anthocyanins [46].

In the present study, our goals were: to (i) develop 100–150 nm MLV liposomes as
a new formulation of 11 supercritical botanical extracts and their use as a biostimulant
(named ELICE16INDURES); (ii) investigate the plant conditioning effect of this liposo-
mal agent on the field population of autumn barley; (iii) for practical use, we aimed
to determine dose–response by testing six concentrations and measuring yield parame-
ters and photosynthetic activity; (iv) to understand underlying resistance mechanisms,
genome-wide transcriptional profiling was in focus using the same barley test crops under
controlled plant growth conditions; (v) in the phytotron experiment doses showing higher
conditioning effects in the field were aimed to test and compare with each other to gain



Plants 2022, 11, 2969 4 of 22

information on the comprehensive mechanism of action of this agent. Results obtained as
these goals are considered new results for sustainable plant protection involving the field
of new-generation biostimulant development.

2. Results
2.1. Liposome Formation of ELICE16INDURES in the Range of 100–200 nm

The 11 active agents of ELICE16INDURES were entrapped into small multilamellar
vesicles (MLV) of 100–150 nm. These liposomes were prepared by using active trapping
techniques. Transmission electron microscopy (TEM) was used to characterize the sizes
and structures of liposomes in the range of 10–1000 nm. Figure 1 shows TEM records of
liposomes of ELICE16INDURES plant conditioner.
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Figure 1. TEM records of the structure of ELICE16INDURES liposomes. TEM recordings showed a
multilamellar liposome structure in the range of 100–200 nm.

2.2. Field Experiments
2.2.1. Increase of Crop Yield in ELICE16INDURES Treated Plots

The amount of the harvested crop was corrected to 8% moisture content showing an
increase following the ELICE16INDURES treatment. The yield increase was 27.5% and
39.9% after the dosage of (low) 20 g ha−1 and (high) 240 g ha−1, respectively. These values
were significant (F-test, P10%). The measured yield values of four parcels and the variance
table can be seen in Tables S3–S5. Numerically, both the low and high investigated dosages
positively affected the crop yield calculated to kg plots−1 and T ha−1 (Figure 2).

2.2.2. Higher NDVI in ELICE16INDURES Treated Plots

The dose–response relationship was analyzed by determining the photosynthetic
activity by calculating NDVI [47] from the near-infra-red drone records (Figure 3). NDVI
gives an idea of the changes in vegetation activity and vegetation ratio of a crop population
in the field. [48]. Applying NDVI the heterogeneity within the field can be assessed and
draw attention to the occurrence of problems or changes such as wildlife damage, inland
water, nutrient deficiency, prolonged germination, and plant disease [49]. The development
of vegetation as a consequence of different varieties, hybrids, or different crop production
technologies can be followed and compared by monitoring NDVI alterations [50]. Admit-
tedly, these are not exact values, but they can give a clue to the condition of the plants. In
this study, we used NDVI spectral analysis to gain information on the plant conditioning
effect of ELICE16INDURES like photosynthetic properties as indicators of the physiological
state of the investigated barley population [51]. The higher NDVI value suggested a larger
area with enhanced photosynthetic activity in leaves that were detected at parcels 4 and 8
(Figure 3b). This state suggested healthier leaf surfaces or better assimilation of nutrients,
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water, or light. We hypothesized that these plants showing higher NDVI values have
overcome pathogen-induced tissue damage.
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Figure 2. Changes of crop yield after treatments of 10–240 g ha−1dosage of ELICE16INDURES. The
commercially available plant conditioner, Fitokondi (F) was used as a positive control (4 L ha−1).
(a) Determination of moisture calculating mean values of four parallel parcels (%), moisture values
were not significant according to the F-probe. (b) Determination of crop yield at 8% moisture content,
calculating the mean values of four parallel parcels (T ha−1). According to the F-test, these values
were significant at the P10%. (c) Determination of mean values of crop measured in four parallel
parcels in kg plots −1; to better understand, the yield enhancement is represented in percent increase
in the diagram. According to the F-test, these values were significant at the P10%. A significant
increase in yield was detected in the two investigated dosages of 20 and 240 g ha−1.
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Figure 3. The agro-drone record was captured with a near-infrared camera during the experimental
parcels. (a) Placement of parcels are: (1) control without treatment; (2) positive control treated with
Fitokondi; (3) 10 g ha−1; (4) 20 g ha−1; (5) 30 g ha−1; (6) 60 g ha−1; (7) 120 g ha−1; (8) 240 g ha−1

ELICE16INDURES (GPS coordinates: 47 deg37′58.30′′ N, 18 deg15′54.36′′ E). (b) Average NDVI
values of plots calculated from near-infrared channels of Agro-drone. The highest NDVI values were
shown after the low and high (20 and 240 g ha−1) dosages of ELICE16INDURES treatment.

2.3. RNA-seq Analysis of ELICE16INDURES Treated Plants in Phytotron

The optimal effect of biostimulant material is highly dependent on the dosage response
of plants. Therefore, 16-day-old barely plants were sprayed with low and high dosages (20
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and 240 g ha−1) of ELICE16INDURES to gain information about the dose dependence. The
mode of action was investigated by applying Illumina NextSeq550 RNA-Seq after two days
of treatments. NGS libraries were prepared of control, low- and high-dosage-treated plants.
Combined assembly of these libraries was performed de novo and pairwise differential
expression was studied with KEGG pathway analysis.

2.3.1. De Novo Sequencing and Transcriptome Assembly

De novo assembly of the 3 × 30 M combined read sets (cleaned reads) has resulted
in 16, 492 total transcripts and 13, 513 total genes. The percentage of GC was 51.71. The
resulting reference transcriptome was analyzed at the gene level and deposited into the
Mendeley database. Statistics of transcripts are detailed in Table 1. Transcript abundancies
were analyzed creating CountTable where the total mapped reads were presented for each
transcript gene. The CountTable was deposited in the Mendeley database. The distribution
of counts of transcripts is presented in Figure 4a. Based on the CountTable data shared
(present in all samples), and individual transcripts were determined in the three samples.
Numerical data are visualized with a Venn diagram, as shown in Figure 4b.

Table 1. Contig length distribution of reference transcripts assembled of combined read sets of control,
high and low dosage treated samples in the phytotron.

Contig Length Stats Based on All
Transcripts

Stats Based on the Longest
Isoform Per Gene

N10 3271 3204

N20 2501 2466

N30 2074 2054

N40 1783 1765

N50 1538 1524

Median 1023 997

Average 1232.5 1209.74
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Figure 4. Numerical data of transcripts and their abundancies between the three samples. (a) Dis-
tribution of read counts of transcripts at the gene level. (b) Venn diagram: number of transcripts
present in the investigated samples and unigenes. Marks: control (red: HV_control), treated samples
with a high and low dosage of ELICE16INDURES (green: HV_high and blue: HV_low).

2.3.2. Functional Analysis and Classification of Unigenes

The transcripts at the gene level (unigenes) derived from the de novo assembled
transcriptome assembly was subjected to additional validation and annotation. BLASTx
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search of homology against the National Center for Biotechnology Information (NCBI)
non-redundant (nr) Viridiplantae database was functionally annotated resulting in 99.3% of
aligned sequences. Blast hits (13,505), Gene Ontology (GO) mapping (11,263), and GO slim
are indicated in Figure 5. GO slims were also determined of the full GO having a broad
overview of the ontology content without the detail of the specific fine details.
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Figure 5. Characterization of H. vulgare de novo reference transcriptome. Transcripts at the gene
level were annotated based on NCBI non-redundant (nr) Viridiplantae database search (downloaded
in 2022.03). To annotate genes with GO slim terms, annotations and search all ancestors of the
terms up to the root of the ontology tree were determined. The ancestor’s terms which are part of
the slim subset were selected. (a) The number of annotated transcripts. (b) Percent distribution of
annotation hits.

2.3.3. Pairwise Differential Expression

Pairwise differential expression analysis was performed using the CountTable data.
Two experimental set up were analyzed: differentially expressed genes (DEGs) between
(i) low treatment vs. control and (ii) high treatment vs. control with the following outputs:
The number of total features was 13,513. (i) DEGs were (Probability > 0.9) 158, up-regulated
(M > 0): 156 and down-regulated (M < 0): 12. (ii) DEGs were (Probability > 0.9): 92, up-
regulated (M > 0): 86, down-regulated (M < 0): 6. Principal Component Analysis (PCA)
of DEGs in the three samples was performed and plotted in Figure 6. To compare the
distribution of differentially enriched GO-terms across the three investigated samples of H.
vulgare, GO-term enrichment analysis using Fisher’s exact test was performed. Enriched bar
charts of GO names of upregulated genes are detailed in Figure 7. According to these results
contigs with GO names of response to stress, response to biotic stimuli, and response to
stimulus were further analyzed and discussed. Common and individual contigs expressed
in the three samples were filtered and grouped. These groups and information of GO
names, contig numbers, enzyme names, and functions are detailed in Table 2.
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and 26% of the variation, respectively, and separating the samples according to ELICE16INDURES
treatment. The color of the data points indicates the treatments (red: control, blue: high dosage, and
green: low dosage).
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Table 2. Up-regulated genes of GO categories Response to stress, Response to biotic stimuli, and Response
to stimulus based on Fisher’s exact test. Shared (present in both treated samples) and individual
up-regulated genes of high and low dosage treatment of ELICE16INDURES are presented.

Contig ID Enzyme Description GO Names

Shared

TRINITY_DN10333_c0_g1
TRINITY_DN370_c0_g1 NDR1/HIN1-like protein 10

P:response to stress; P:response to external
stimulus; P:response to biotic stimulus; C:plasma

membrane

TRINITY_DN1083_c0_g1
TRINITY_DN23_c1_g1

peroxidase 1-like
root peroxidase

P:response to stress; P:catabolic process;
P:cellular process; P:response to chemical;

F:catalytic activity; F:binding; C:extracellular
region
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Table 2. Cont.

Contig ID Enzyme Description GO Names

TRINITY_DN10948_c0_g1 putative protease inhibitor P:response to stress; P:protein metabolic process;
F:enzyme regulator activity

TRINITY_DN10986_c0_g1 asparagine synthetase
(glutamine-hydrolyzing)

P:response to stress; P:cell communication;
P:biosynthetic process; P:response to external
stimulus; P:response to chemical; F:nucleotide

binding; F:catalytic activity

TRINITY_DN2054_c0_g1 Subtilisin-chymotrypsin
inhibitor-2B

P:response to stress; P:protein metabolic process;
F:enzyme regulator activity

TRINITY_DN28_c0_g1
TRINITY_DN914_c0_g1

glucan endo-1,3-beta-glucosidase
GIII-like (PR2)

P:carbohydrate metabolic process; P:response to
stress; F:hydrolase activity; C:plasma membrane

TRINITY_DN3218_c0_g1 protein TIFY 11b-like (TF)
P:response to stress; P:signal transduction;

P:response to endogenous stimulus; P:response
to chemical; C:nucleus

TRINITY_DN326_c0_g1
TRINITY_DN5974_c0_g1

WRKY transcription factor (TF)
WRKY transcription factor WRKY24-like

P:response to stress; P:signal transduction;
P:response to external stimulus; P:response to
biotic stimulus; P:response to abiotic stimulus;

P:response to endogenous stimulus; P:response
to chemical; F:DNA binding; F:chromatin

binding; F:DNA-binding transcription factor
activity; C:nucleus

TRINITY_DN505_c0_g1
TRINITY_DN505_c0_g2 pathogenesis-related protein 1 (PR1) P:response to stress; P:response to biotic

stimulus; C:extracellular region

TRINITY_DN505_c0_g3 pathogenesis-related protein PRB1-2-like P:response to stress; P:response to biotic
stimulus; C:extracellular region

TRINITY_DN7081_c0_g1
TRINITY_DN7081_c0_g2

nematode resistance protein-like
HSPRO1

P:response to stress; P:catabolic process;
P:cellular process; F:binding

High dosage treatment of ELICE16INDURES

TRINITY_DN1035_c0_g1
TRINITY_DN623_c0_g1
TRINITY_DN1_c1_g1

TRINITY_DN2970_c0_g1
TRINITY_DN3188_c1_g1

peroxidase 1-like
peroxidase 2-like
peroxidase 5-like
peroxidase 50-like

P:response to stress; P:catabolic process;
P:cellular process; P:response to chemical;

F:catalytic activity; F:binding; C:extracellular
region

TRINITY_DN11193_c0_g1 auxin-responsive protein SAUR36-like
P:transport; P:signal transduction; P:response to
endogenous stimulus; P:growth; P:response to

chemical; C:cytoplasm

TRINITY_DN11681_c0_g1 pathogenesis-related protein PR-4-like
(PR4) Acting on ester bonds

P:response to stress; P:response to external
stimulus; P:response to biotic stimulus;

F:nuclease activity

TRINITY_DN12031_c0_g1
TRINITY_DN2721_c0_g1

alpha-amylase/trypsin
inhibitor-like P:response to stress

TRINITY_DN12087_c0_g1 putative lipid-transfer protein
P:response to stress; P:response to external

stimulus; P:response to biotic stimulus; F:lipid
binding

TRINITY_DN1303_c0_g1 protein SRC2 homolog P:response to stress; C:membrane
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Table 2. Cont.

Contig ID Enzyme Description GO Names

TRINITY_DN1308_c0_g5 pathogenesis-related protein
(PR5) P:response to stress; P:response to biotic stimulus

TRINITY_DN1552_c0_g1 subtilisin-chymotrypsin inhibitor-2A-like P:response to stress; P:protein metabolic process;
F:enzyme regulator activity

TRINITY_DN1626_c0_g2 barwin-like (PR4) P:response to stress; P:response to external
stimulus; P:response to biotic stimulus

TRINITY_DN21_c0_g1

putative wall-associated receptor
kinase-like 16

Transferring phosphorus-containing
groups

P:signal transduction; P:protein modification
process; F:nucleotide binding; F:kinase activity;

F:carbohydrate binding; C:membrane

TRINITY_DN4772_c0_g1 MLO-like protein 1 P:response to stress; P:response to biotic
stimulus; F:protein binding; C:membrane

TRINITY_DN875_c0_g2 predicted protein P:response to stress; C:nucleus

TRINITY_DN9594_c0_g1 pathogenesis-related protein 1-like (PR1) P:response to stress; P:response to biotic
stimulus; C:extracellular region

Low dosage treatment of ELICE16INDURES

TRINITY_DN7081_c0_g2 nematode resistance protein-like
HSPRO1

P:response to stress; P:catabolic process;
P:cellular process; F:binding

TRINITY_DN914_c0_g1 glucan endo-1,3-beta-glucosidase
GIII-like (PR2)

P:carbohydrate metabolic process; P:response to
stress; F:hydrolase activity; C:plasma membrane

TRINITY_DN9142_c0_g3 ethylene-responsive transcription factor
2-like

P:signal transduction; P:response to endogenous
stimulus; P:response to chemical; F:DNA

binding; F:DNA-binding transcription factor
activity; C:nucleus

TRINITY_DN2054_c0_g1 Subtilisin-chymotrypsin inhibitor-2B P:response to stress; P:protein metabolic process;
F:enzyme regulator activity

2.3.4. Pathway Analysis

Pathway of DEGs of pairwise analysis was performed using Kyoto Encyclopedia of
Genes and Genomes (KEGG) database. The summary of pathways is detailed in Table 3.
The previous data suggested a high pathogen and biotic stress response as a result of
high and low dosage of ELICE16INDURES; therefore, the phenylpropanoid biosynthetic
pathway-containing the largest number of DEGs among the sequences aligned to the
pathway-are designed and reported in this study (Figure 8). The 73 contigs were aligned to
the phenylpropanoid pathway among which 9 showed differentiated expression, (8 up and
1 down-regulation). According to functional identification of these contigs oxidoreductases,
CAD, PAL, 4CL, long-chain-fatty-acid-CoA ligase (LACS), beta-glucosidase, and glucan
endo-1,3-beta-D-glucosidase were functionally identified. Phenylpropanoid biosynthesis
KEGG pathway showed the most characteristic to both treatments. Therefore, genes of this
pathway were selected for further analysis.
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Table 3. KEGG pathways of mapped genes with differential expression in pairwise analysis.

Pathways Nr of KEGGs Nr of Sequences Nr of DEGs

High Dosage Treatment of ELICE16INDURES vs. Control

Amino sugar and nucleotide sugar metabolism ko00520 85 1

Alanine, aspartate and glutamate metabolism ko00250 41 1

Carbon fixation in photosynthetic organisms ko00710 54 1

Citrate cycle (TCA cycle) ko00020 44 1

Fatty acid biosynthesis ko00061 26 1

Fatty acid degradation ko00071 30 1

Glycolysis/Gluconeogenesis ko00010 94 1

Other glycan degradation ko00511 33 2

Purine metabolism ko00230 450 1

Pyruvate metabolism ko00620 76 1

Thiamine metabolism ko00730 402 1

Ubiquinone and other terpenoid-quinone biosynthesis ko00130 59 1

Low dosage treatment of ELICE16INDURES vs. control

Cutin, suberine and wax biosynthesis ko00073 25 1

Drug metabolism-cytochrome P450 ko00982 53 1

Drug metabolism-other enzymes ko00983 105 1

Glutathione metabolism ko00480 58 1

Metabolism of xenobiotics by cytochrome P450 ko00980 48 1

Other glycan degradation ko00511 33 1

Shared

Phenylpropanoid biosynthesis ko00940 73 9

Alanine, aspartate and glutamate metabolism ko00250 41 1

Cyanoamino acid metabolism ko00460 35 3

Fructose and mannose metabolism ko00051 54 1

Starch and sucrose metabolism ko00500 142 5Plants 2022, 11, x FOR PEER REVIEW 12 of 23 
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Figure 8. (a) Phenylpropanoid and (b) starch and sucrose biosynthetic pathways with DEGs. In this
KEGG pathway analysis, 73 and 142 contigs were aligned; among them, 9 and 5 showed differentiated
expressions that are functionally identified, respectively. Colored enzyme codes mean mapped contigs
to the pathways that were found in samples treated by ELICE16INDURES (low and high dosage). (c)
Heat map highlights the up- and downregulated genes found in these pathways circled with red and
green in KEGG-maps. Abbreviations of phenylpropanoid pathway: phenylalanine ammonia-lyase
(PAL), phenylalanine/tyrosine ammonia-lyase (PTAL), trans-cinnamate 4-monooxygenase (CYP),
4-coumarate–CoA ligase (4CL), cinnamoyl-CoA reductase (CCR), cinnamyl-alcohol dehydrogenase
(CAD), beta-glucosidase (β-gluc.), sinapate 1-glucosyltransferase (glu.tr.) and peroxidase (perox.)
Abbreviations of starch and sucrose metabolism: beta-fructofuranosidase (β -fruc.), alpha-glucosidase
(α-glu.), sucrose alpha-glucosidase, hexokinase (he.k.), fructokinase (fru.k.), glucokinase (glu.k.),
glucose-6-phosphate isomerase (glu.i.), glucose phosphomutase (glu.pm.), glycogen phosphorylase
(gly.p.), ADP-sugar diphosphatase (sug.d.), glucose pyrophosphorylase (glu.p.), starch synthase
(sta.s.), cellulose synthase (cel.s.), 3 beta-glucan synthase (glu.s.), cellulose (cel.), beta-glucosidase
(β-glu.), glucan endo-1,3-beta-D-glucosidase (glu.g.), dextransucrase (dex.), sucrose synthase (suc.s.),
sucrose-phosphate phosphatase (suc.p.), trehalose phosphate synthase (tre.s.), trehalose-phosphatase
(tre.p.), nucleotide diphosphatase (nuc.d.), UDP-glycogen synthase (gly.s.), alpha-amylase (α-am.),
beta-amylase (β-am.) and isoamylase (i.am.).
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3. Discussion

In recent decades, the innovation of environmentally friendly natural plant bios-
timulants has been proposed to enhance the sustainability of agricultural production
systems [52]. The development of products with biologically active agents focuses on
improving yield and abiotic stress tolerance therefore, in this study, the effects of the newly
developed liposomal formulation of SC-CO2 botanical extracts (ELICE16INDURES) were
examined. This formulation technology was successfully applied in our previous research,
suggesting the easier uptake of the active ingredients [53].

In this work the beneficial effect of the newly developed liposome-formulated plant
biostimulant product, ELICE16INDURES was investigated and approached from two
aspects. Firstly, agricultural parameters involving photosynthetic activity and yield mea-
surements were analyzed in field conditions by applying drone technology and standard
agronomical measurements for yield calculation. Interestingly two extremal treatments
(low and high, 20 and 240 g ha−1) showed the strongest effect. Secondly, using the low
and high concentrations, the genetic background of the physiological state of plants was
investigated by applying genome-wide transcriptional profiling. Based on the knowledge
of genetic and phenological alterations, the possible priming effect of this agent was also
hypothesized and analysed deeper.

Using NDVI spectral analysis, the photosynthetic traits and plant vitality may be
detected and plant responses to biotic and abiotic stresses may be assumed by the phe-
nological appearance. We found the highest NDVI values in the parcels treated by 20
and 240 g ha−1 dosages of ELICE16INDURES. This state suggested fewer patients and/or
better assimilation of nutrients, water, or light. The higher NDVI values indicated healthier
leaf surfaces detected in these parcels that were based on a better response to pathogens.
This pathogen response was proved by the higher expression of PR genes in phytotron
experiments. The positive physiological alteration of barley cultures was manifested also
in practical aspects in the yield increase, where the dose-dependency was also experienced,
and found that 20 and 240 g ha−1 to be the most effective for yield growth.

Barley plants treated with plant biostimulant ELICE16INDURES of different doses
were shown overexpressed defense response-related genes detected by the whole genome
transcriptome analysis. Using pairwise differential expression analysis between treated and
untreated samples, overexpressed PR genes were detected, which usually activate biotic
and abiotic stress-response reactions [30,54]. Among these PRs, the PR1 and PRB1-2 genes
were shown an increased expression level, which encodes proteins whose exact mode of
action is unknown, but has already been described as having antifungal properties [31]
and as an adequate plant response to cadmium stress [36] in barley. The non-race-specific
disease-resistance (NDR1/HIN1) protein was also activated in the samples, which was
previously described in the A. thaliana plants after bacterial infection when it increased
together with PR1 as a signal recognition of the plant response to pathogen infection [55].
Moreover, the PR2, PR3, PR4, and PR5 genes showed a significantly increased expression
level that phenomena were detected in barley after various fungal infections [31–34] and
abiotic stress [36]. The increased activity of different peroxidases in the plants can be
involved in the resistance to pathogens and in antioxidation [34,37,38]. Certain peroxidases
belong to PR9 family which were observed with significant changes in expression levels
after Fusarium graminearum infection in barley [56]. Similarly, the raised level of peroxidases
(peroxidas1, 2, 5, and 50) was detected in our samples. Transcription factors (TFs) were
included among DEG Top50 genes, the member of TIFY and WRKY families. TIFYs play
an essential role in cross-talk between jasmonic acid (JA) and phytohormones signaling
pathways [57]. The specific TIFY11-like protein involved in the response to wounding
and JA-mediated immune response [58] indicated a strong upregulation after two days
of ELICE16INDURES treatment in field conditions. The WRKY proteins are involved in
defense response to abiotic and biotic stresses modulating gene expression levels [59].
HvWRKY24 belonging to group III. [60] was upregulated under salt stress [61], as was
detected in barley samples after ELICE16INDURES treatments.
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Transcripts that showed a significant difference in the DEG analysis were further
analyzed with the KEGG database; as a result, the phenylpropanoid biosynthetic pathway
and starch and the sucrose metabolism pathway displayed a higher activity after both
treatments. Phenolic compounds belonging to secondary metabolites are produced under
optimal and suboptimal conditions in plants. Phenolic biosynthesis can participate in
stress response under abiotic stress conditions [40], as was observed in our samples. After
ELICE16INDURES treatments, the activity of key enzymes induced, as PAL, CAD, and
4CL genes were upregulated. These phenomena are well-described in barely under stress
conditions [41–43,45,46]. In higher plants, the major storage carbohydrate is starch which
is essential for sustaining metabolism, growth, and development when photosynthesis is
not active [62]. Among enzymes of starch metabolism, the starch phosphorylase (alpha-
glucan phosphorylase) was shown a higher activation in barley samples that plays a key
role in the mobilization of stored polysaccharides catalyzing polysaccharides into α- d
-glucose-1-phosphate [63]. Moreover, overexpressed glucan endo-1,3-beta-glucosidase
genes were observed after treatments, which have been implicated in diverse physiological
and developmental processes and defense against biotic and abiotic stress [64–66]. All of
the induced genes were described in connection with the defense-priming [24,67] indicating
the priming property of ELICE16INDURES.

Transcriptomic analysis of the dose–response relationship showed different roles
in induced resistance triggered by ELICE16INDURES low and high concentration, even
though similar phenotypical appearances were observed in both treatments. Similar
phenomena were described in plant hormonal treatments, salicylic acid, and other hormone
analogs as dual roles in SAR inducers. These exogenous treatments activated plant defense
responses and induced resistance however low and high doses influenced ISR (with genes
involved in jasmonate and ethylene response) and SAR (with the accumulation of PRs),
respectively [18,22,68,69]. Similar gene activation was observed in our results, suggesting
that low dosage (20 g ha−1) may activate the elicitors of defensive genes (e.g., ethylene-
responsive genes and leading to primed plants); however, high dosage (240 g ha−1) may
directly induce PR genes. (This theory is summarized in Figure 9). Furthermore, the high
concentration of ELICE16INDURES suggested a higher exogenous phytohormonal (derived
from plant extracts) interaction with cells influencing intracellular hormonal amount. This
may result in elicited defense responses, including the activation few PR genes observed
in high-dosage samples. Similar phenomena were described reporting on a low and high
concentration of salicylic acids affecting elicitors and SA-depending genes like PAL and
4CL [22]. The potential role of ELICE16INDURES dosages in ISR and SAR mechanisms
is planned to be analyzed in time course experiments in controlled phytotron and in vitro
conditions applying different phytopathogenic infections. According to this study, the
priming activity of ELICE16INDURES has been proven, we also plan to investigate the plant
taxonomical dependency of dose–response. Taxonomical dependency of a priming active
material (β-aminobutyric acid) was reported by our previous work comparing autumn
barley and A. thailana showing altered transcriptomic responses to the drug [70]. The
results of this study may be involved in the practical use of ELICE16INDURES and guide
the farmers to apply this product for symptomatic, preventive, or long-term treatment.

Transcriptomic analysis of dose–response showed different roles in induced resis-
tance triggered by ELICE16INDURES low and high concentration, even though similar
phenotypical appearances were observed in both treatments. Similar phenomena were
described in plant hormonal treatments, salicylic acid, and other hormone analogs as a
dual role in SAR inducers. These exogenous treatments activated plant defense responses
and induced resistance however low and high doses influenced ISR (with genes involved
in jasmonate and ethylene response) and SAR (with the accumulation of PRs), respec-
tively [18,22,68,69]. Similar gene activation was observed in our results, suggesting that low
dosage (20 g ha−1) may activate the elicitors of defensive genes (e.g., ethylene-responsive
transcription factors and lead to primed plants) however high dosage (240 g ha−1) di-
rectly induce PR genes (This theory is summarized in Figure 9). Furthermore, the high
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concentration of ELICE16INDURES suggested a higher exogenous phytohormonal (found
in plant extracts) interaction with cells influencing intracellular hormonal amount. This
may result in elicited defense responses, including the activation few PR genes observed
in high-dosage samples. Similar phenomena were described reporting on a low and high
concentration of salicylic acids affecting elicitors and SA-dependent genes like PAL and
4CL [22]. The potential role of ELICE16INDURES dosages in ISR and SAR mechanisms is
planned to analyze deeper in time course experiments in controlled phytotron and in vitro
conditions applying different phytopathogenic infections. According to this study, the
priming activity of ELICE16INDURES has been proven, we also plan to investigate the
plant taxonomical dependency of doses. Taxonomical dependency of a priming active
material (β-aminobutyric acid) was reported by our previous work comparing autumn
barley and A. thailana showing altered transcriptomic responses to the drug [70]. The
results of this study may be involved in the practical use of ELICE16INDURES and guide
the farmers to apply this product for symptomatic, preventive and/or long-term treatment.
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To summarize our results and findings, (i) a 100–150 nm size MLV liposome-formulated
botanical extracts-containing biostimulant, ELICE16INDURES, was developed and used in
field practice; (ii) the plant conditioning effect of this agent was proved in four repetitions
block system of autumn barley test crop; (iii) for practical use, dose–response of plants
was determined showing two effective (extremal) dosages, 20 and 240 g ha−1, where the
yield and the photosynthetic activity increased by 39.9% and 27.5%; (iv) we proved that
these concentrations stimulate plant defense responses increasing the expressions of PR
and phytohormone-signalling pathway genes and transcription factors; (v) comparing
the expressed genes and transcriptomic events between the two extremal dosages, we
found that this biostimulant possesses priming effect on the investigated test crop and may
enhance ISR and SAR mechanisms depending on low and high concentrations.

4. Materials and Methods
4.1. Preparation of ELICE16INDURES Plant Conditioner

High-pressure extracts with supercritical carbon dioxide, SC-CO2 extraction as a
solvent of eleven botanical extracts were purchased by FLAVEX Naturextrakte GmbH,
Germany. Extracts used to prepare the product ELICE16INDURES are detailed in Table
S6. Extracts of medicinal plants were established in a common set of states and encapsu-
lated in plant-lecithin-based liposomes. These active agents were entrapped into MLV of
150–200 nm by using active trapping techniques [71]. The nanoparticle size distribution
was measured by TEM recording.
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4.2. Cultivation of Plants and Treatment

Fresh leaves were collected on day two after treatments from 16-day-old autumn
barley, variety ‘SU Ellen’, plants (diploid). Plants were cultivated in phytotron and arable
fields as detailed below.

The field experiment was performed during the vegetation period of 2020–2021 in the
experimental field of Plant-Art Research Ltd., Hungary, where the autumn barley variety
‘SU Ellen’ was used as a testing crop. Plants in field experiments were sprayed by TTAM4E
drone using a range of low to high (10 to 240 g ha−1) doses of ELICE16INDURES. We
used a commercially available positive control plant conditioner, Fitokondi® (4 L ha−1).
Applied doses and plot allocations were: 1, control without treatment; 2, positive control
treated with Fitokondi; 3, 10 g ha−1; 4, 20 g ha−1; 5, 30 g ha−1; 6, 60 g ha−1; 7, 120 g ha−1;
8, 240 g ha−1 ELICE16INDURES. The placement of parcels is shown in Figure 3. Test
culture and site characteristics are presented in Table S1. Description of ELICE16INDURES
application conditions and technique are detailed in Table S2. Yield measurements per plot
were performed by instrumental measurement of hectolitre weight using XGrain (Infracont,
Pomáz, Hungary). The experimental design of the field experiment is summarized in
Figure 10a.
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cultivation, plant phenophases, treatments, harvest, and sample collection of autumn barley in the
field (a) and phytotron (b) experiments. Green boxes indicate which measurements were performed
in the experiments.

Exogenous treatment of ELICE16INDURES was performed in phytotron experiments.
Plant growth chamber type was MLR352HPA −115V NEMA 5–20, 220 V/60 Hz–Panasonic.
Treatment conditions were as follows: temperature during the first day and night was
25 ◦C. The temperature during the 2–16 days and nights was 25 ◦C and 15 ◦C, respec-
tively. Duration of the day was 12 h, 04–4 p.m. Treatments were as follows: low dosage,
0.1 mL/1000 mL water, and high dosage, 1 mL/1000 mL water, corresponding to 20 and
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240 g ha−1 spraying at the field. The experimental design of the phytotron experiment is
summarized in Figure 10b.

4.3. Determination of NDVI by Remote Sensing

To monitor NDVI in the field population we used a DJI-phantom 4 Pro agro drone
equipped with a near-infrared camera. The recording was carried out on the twelfth day
after the first treatment (17 May 2021). Single aerial pictures were combined afterward
with AgiSoft Photoscan Professional software using high-quality dense cloud processing
and mesh construction settings (Figure 3). For NDVI calculation after identifying the plots
based on combined aerial photographs, sample areas were cut out using self-developed
software. Sample collection for NGS gene expression profiling was performed on the NDVI
recording day.

4.4. RNA Extraction

Approximately 30 mg of plant tissue was placed in a 1.5 mL Eppendorf LoBind tube
containing glass beads 1.7–2.1 mm diameter (Carl Roth, Karlsruhe, Germany) and 100 µL
of TRI-Reagent (Zymo Research, Irvine, US). The Eppendorf tube was firmly attached to a
SILAMAT S5 vibrator (Ivoclar Vivadent, Schaan, Liechtenstein) to disrupt and homogenize
the tissue for 2 × 15 s. Total RNA was extracted using Direct-zol™ RNA MiniPrep System
(Zymo Research, Irvine, CA, USA) according to the manufacturer’s protocol. The RNA
Integrity Numbers and RNA concentration were determined by RNA ScreenTape system
with 2200 Tapestation (Agilent Technologies, Santa Clara, CA, USA) and RNA HS Assay Kit
with Qubit 3.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA), respectively.

4.5. Preparation of RNA-seq Libraries

For genome-wide gene expression profiling, three RNA-seq libraries such as control
plants and treated with the low and high dosages of ELICE16INDURES were prepared
from phytotron cultivated samples. Pooled samples were taken from four individuals. For
poly-A based mRNA enrichment and cDNA synthesis, the Illumina TruSeq™ RNA sample
preparation kit (Low-Throughput protocol) was used according to the manufacturer’s
instructions. The RNA sequencing was performed using Illumina NextSeq550 system.
The samples were run using multiple indexing adapters. For library amplification, an
adapter-selective PCR reaction was performed. The size and purity of the samples were
checked by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). The
DNA libraries were multiplexed, normalizing them to 10 nM.

4.6. Bioinformatics Analysis–Read Processing

Libraries were sequenced with a final output single-end, 30 M× 80 bases long. Quality
control (QC), trimming, and filtering of fastq files was performed in preprocessing step.
The QC analysis was performed with FastQC software [72]. The Phred-like quality scores
(Q scores) were set to >30. Poor quality reads, adapters at the ends of reads, and limited
skewing at the ends of reads were eliminated by using Trimmomatic [73]. Contamination
sequences and Ns were filtered out with a self-developed application GenoUtils as de-
scribed earlier [74] reads containing Ns more than 30% were eliminated; reads with lower
N’ ratio were trimmed with a final length > 65. Reads passed of preprocessing were further
assembled and analyzed.

4.7. De Novo Assembly of Combined Read Sets

Reference transcript datasets were first created from the phytotron and field libraries
using Trinity assembler with 23K-mer [75]. For de novo assembly and mapping, we used
a server with 512 GB (Gigabytes) of RAM, 64 cores (CPUs), and Ubuntu as the operating
system. To assess the read composition of the assembly, input RNA-Seq reads were
aligned to the transcriptome assembly using Bowtie2 [76]. Reads mapped to the assembled
transcript were captured. For gene expression profiling collapsing of splicing isoforms
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was performed with omixbox.biobam (OmicsBox, https://www.biobam.com/omicsbox,
accessed on 1 September 2021) and SuperTranscripts (gene-level assembly) were used
for gene expression investigations. Reference transcript datasets were deposited in the
Mendeley database under the accession DOI:10.17632/mfg64trszy.1.

4.8. Functional Annotation

AnnotationTable including functional annotation of the entire de novo transcriptome
(based on gene level) was performed with GO analyses using OmicsBox.BioBam (v2.0) as
detailed by Decsi et al. 2022 [77]. In this step, the Blastx-fast with a permissive expectation
value of 1 was used. GO IDs, GO names, GO slim, Enzyme codes, and Enzyme names
were determined and written into the AnnotationTable. AnnotationTable was deposited in
Mendeley data under the accession DOI:10.17632/mfg64trszy.1.

4.9. Gene Level Quantification

To estimate gene expression from RNA-sequencing, CountTable was created. To count
how many reads map to each feature of interest (genes) each sample reads were aligned
to the reference de novo assembled transcripts at the gene level. CountTable creation was
performed with omixbox.biobam using the HTseq package [78]. Based on the data from
CountTable, further analyses were performed, such as differential expression and gene
set enrichment analysis. CountTable was deposited in Mendeley data under the accession
DOI:10.17632/mfg64trszy.1.

4.10. Pairwise Differential Expression Analysis and KEGG Pathway Analysis

Numerical analysis of DEGs in a pairwise comparison of two different experimen-
tal conditions—gene expression analysis—was carried out using omixbox.biobam. The
used application is based on the NoiSeq program that implements quantitative statistical
methods to evaluate the significance of individual genes between two experimental condi-
tions [79]. RPKM (Reads Per Kilobase per Million mapped reads) normalization method
was performed.

4.11. Enrichment Analysis

The gene set enrichment analysis was performed according to the GSEA compu-
tational method defining sets of genes as statistically significant and showing differ-
ences between two biological states consistently [80]. The GSEATable was performed
by using OmicsBox.BioBam (v2.0) and deposited in Mendeley data under the accession
DOI:10.17632/mfg64trszy.1

4.12. Accession Numbers

Raw reads of this project used for phytotron and field experiments are deposited in the
NCBI SRA database under the accessions: Bioproject, PRJNA721578, https://www.ncbi.
nlm.nih.gov/bioproject/PRJNA721578; accessed on 1 September 2022, RNA sequencing
of phytotron experiments, SRX10603947-SRX10603949; Sequencing of field experiments,
SRX10598683, SRX10598684. Super transcripts. fasta, CountTable, AnnotationTable, and
GSEATable are deposited to the Mendeley Data under the Doi: 10.17632/mfg64trszy.1, the
direct link to these datasets: https://data.mendeley.com/datasets/mfg64trszy accessed on
1 October 2022.

5. Conclusions

In conclusion, the application of different dosages of the plant biostimulant ELICE16
INDURES was tested in the field population of autumn barley. In this study, we report firstly
on the practical use of 100–150 nm liposome-formulated plant-extract-based biostimulant
material. The plant conditioning effect of this agent was observed at relatively low and high
dosages (20 and 240 g ha−1) that were phenotypically manifested by increased yield and
NDVI. Based on field experiments, the two outstanding dosages were selected for RNA-Seq

https://www.biobam.com/omicsbox
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA721578
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA721578
https://data.mendeley.com/datasets/mfg64trszy
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experiments that were performed in a controlled condition of phytotron. The pairwise
transcriptional profiling indicated many pathogenesis-, resistance- and defense-priming-
related genes involved in the top 50 expressed. Based on these genes, the dose–response
analysis suggested that the investigated conditioner concentrations have a different role in
induced resistance affecting ISR, SAR, and priming mechanisms. KEGG pathway analysis
highlighted that the most affected pathways (DEGs) were the phenylpropanoid and starch
and sucrose pathways. Most of their genes may be associated with defense pathways,
which was proved by pairwise expression analysis. Results reinforced the hypothetical
priming activity of ELICE16INDURES; however, a comprehensive analysis of pathogenic
infection should be performed to prove this. Additionally, a taxonomical dependency of
selected concentrations is hypothesized therefore further investigations are planned to
supplement the results of this study. The results on dose-dependency may help agronomists
to optimal use of ELICE16INDURES. The obtained transcriptomic data contribute to the
development of new-generation biostimulants used in organic farming.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11212969/s1, Test culture and site characteristics are pre-
sented in Table S1. Description of ELICE16INDURES application conditions and technique are
detailed in Table S2. The measured yield values of four parcels and the variance table can be seen in
Table S3–S5. The composition of ELICE16INDURES is detailed in Table S6.
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