
Citation: Kanda, P.S.; Xia, K.;

Kyslytysna, A.; Owoola, E.O. Tomato

Leaf Disease Recognition on Leaf

Images Based on Fine-Tuned

Residual Neural Networks. Plants

2022, 11, 2935. https://doi.org/

10.3390/plants11212935

Academic Editor: Vagner A.

Benedito

Received: 15 August 2022

Accepted: 28 September 2022

Published: 31 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Article

Tomato Leaf Disease Recognition on Leaf Images Based on
Fine-Tuned Residual Neural Networks
Paul Shekonya Kanda , Kewen Xia * , Anastasiia Kyslytysna and Eunice Oluwabunmi Owoola

School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
* Correspondence: kwxia@hebut.edu.cn

Abstract: Humans depend heavily on agriculture, which is the main source of prosperity. The various
plant diseases that farmers must contend with have constituted a lot of challenges in crop production.
The main issues that should be taken into account for maximizing productivity are the recognition
and prevention of plant diseases. Early diagnosis of plant disease is essential for maximizing the level
of agricultural yield as well as saving costs and reducing crop loss. In addition, the computerization
of the whole process makes it simple for implementation. In this paper, an intelligent method based
on deep learning is presented to recognize nine common tomato diseases. To this end, a residual
neural network algorithm is presented to recognize tomato diseases. This research is carried out on
four levels of diversity including depth size, discriminative learning rates, training and validation
data split ratios, and batch sizes. For the experimental analysis, five network depths are used to
measure the accuracy of the network. Based on the experimental results, the proposed method
achieved the highest F1 score of 99.5%, which outperformed most previous competing methods
in tomato leaf disease recognition. Further testing of our method on the Flavia leaf image dataset
resulted in a 99.23% F1 score. However, the method had a drawback that some of the false predictions
were of tomato early light and tomato late blight, which are two classes of fine-grained distinction.

Keywords: deep learning; plant leaf images; disease recognition; tomato leaf

1. Introduction

We rely on edible plants in the same way that we rely on oxygen. There is no food
without crops, and there is no life without food. It is no coincidence that the invention
of agriculture coincided with the rise of human civilization [1]. The tomato (Solanum
lycopersicum L.), family Solanaceae, originated in the Andean region of South America
has, according to the Food and Agriculture Organization Statistics (FAOSTAT), in the past
fifty years become one of the most important and extensively grown horticultural crops in
the Mediterranean region and throughout the world. Currently, it is the world’s second
most cultivated vegetable crop after the potato, with approximately 181 million tonnes
from 5 Mha [2]. With 0.2 Mha, it is the highest-yielding vegetable in Southern Europe,
and the major producers in the Mediterranean basin are Turkey, Egypt, Italy, Spain, and
Morocco [2,3].

The tomato is susceptible to a variety of plant diseases caused by pathogens such as
fungal, bacterial, phytoplasma, virus, and viroid pathogens due to its genetic properties
as shown in Table 1. Not only is its genetic inheritance critical to managing the numerous
tomato pathogens, but so are current climate changes, recently revised phytopathological
control measures, and seed industry globalization [4]. One of the common diseases affecting
tomato yield, the Septoria leaf spot, is caused by a fungal pathogen. Septoria has emerged
as a major emerging pathogen as a result of climatic change and widespread variability.
The pathogen’s disease severity ranges between 35 and 65 percent in both cultivated and
non-cultivated crops, posing a serious threat in the future [5]. The pathogen’s complex
adaptability combined with its cosmopolitan nature makes it more vigorous by targeting

Plants 2022, 11, 2935. https://doi.org/10.3390/plants11212935 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants11212935
https://doi.org/10.3390/plants11212935
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0002-5955-4134
https://orcid.org/0000-0003-3968-481X
https://orcid.org/0000-0003-2796-5366
https://doi.org/10.3390/plants11212935
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants11212935?type=check_update&version=1

Plants 2022, 11, 2935 2 of 33

new susceptible hosts and coupling this with increased viability within its infection cycle [5].
Table 1 lists some tomato plant pathogens present in the Mediterranean basin [4].

Table 1. List of tomato plant pathogens present in the Mediterranean basin.

Pathogen Group Pathogen Name Reference

Fungi

Alternaria solani, Botrytis cinerea, Cladosporium fulvum, Colletotrichum coccodes,
Fusarium oxysporum, Fusarium clavum, Leveillula taurica, Oidium lycopersici,

Pseudoidium neolycopersici, Pyrenochaeta lycopersici, Rhizoctonia solani, Septoria
lycopersici, Sclerotinia sclerotiorum, Sclerotium rolfsii, Stemphylium spp.,

Verticillium dahliae

[4,6]

Oomycetes Phytophthora infestans, Phytophthora nicotianae, Phytophtora cryptogea, Pythium
debaryanum, Pythium sylvaticum [7]

Bacteria

Clavibacter michiganensis subsp. michiganensis, Erwinia carotovora subsp.
carotovora, Pseudomonas corrugata, Pseudomonas mediterranea, Pseudomonas

syringae pv. tomato, Ralstonia solanacearum, Xanthomonas axonopodis pv.
vesicatoria

[7]

Phytoplasma Candidatus Phytoplasma solani [8]

Viruses

Alfalfa mosaic virus, Chickpea chlorotic dwarf virus, Cucumber mosaic virus,
Eggplant mottled dwarf virus, Parietaria mottle virus, Pelargonium zonate

spot virus, Pepino mosaic virus, Potato virus Y, Southern tomato virus,
Tobacco mosaic virus, Tomato brown rugose fruit virus, Tomato chlorosis
virus, Tomato infectious chlorosis virus, Tomato leaf curl New Delhi virus,

Tomato mosaic virus, Tomato spotted wilt virus, Tomato torrado virus, Tomato
yellow leaf curl virus, Tomato yellow leaf curl Sardinia virus

[4,9]

Viroids Potato spindle tuber viroid, Tomato apical stunt viroid [8]

The cultivated tomato has a low genetic diversity due to its intensive selection and
severe genetic bottlenecks that arose during evolution and domestication [10–12]. For these
reasons, the tomato is more prone to a high disease incidence, and during the cultivation
and post-harvest period, it can be affected by more than 200 diseases caused by different
pathogens throughout the world [13,14]. In this paper, we propose a method for effective
recognition of diseases affecting the tomato, that are mainly reflected on the leaves. We
propose a residual neural network algorithm for this, which is the state-of-the-art, most
recent deep learning image recognition algorithm. The efficient recognition of such can
inform the farmers of the presence of such diseases on their crops and allow them to
carry out control measures currently authorized in the EU that allow growers to achieve a
successful and eco-sustainable disease management of this vegetable crop, fundamental
for the Mediterranean diet.

One of the most important research areas in precision agriculture is disease identi-
fication using images of plant leaves [15]. Artificial intelligence, image processing, and
graphical processing unit advancements have the potential to broaden and improve the
practice of precise plant protection and growth. Most plant diseases produce a variety of
visible symptoms; thus, learning models should be able to adequately observe and identify
the distinctive symptoms of any disease [16].

Tomato leaf disease identification falls under the purview of computational agricul-
ture [17,18]. Traditional methods for identifying tomato leaf disease at an early stage
frequently use global features (such as color, texture, and shape) to describe the characteris-
tics of disease spots in crop leaf disease images. The methods used served to separate the
diseased and normal parts of the tomato leaf, and the area ratio of the two parts was used
as the criterion for identification [19].

Recent advancements in deep learning provide obvious benefits in feature extraction
and recognition, such as the convolutional neural network (CNN), which automatically trains
the network to extract data features by introducing local connections and weight sharing in

Plants 2022, 11, 2935 3 of 33

the training process. Additionally, significant progress has been made in the identification of
diseases in plants such as apples, bananas, cucumbers, and tomatoes [20,21].

However, the recognition effect varies due to the structural differences of the various
recognition models that make up the state-of-the-art model. Additionally, there exists the
challenge of choosing suitable hyperparameters for training networks on these leaf datasets
while leveraging the richly learned weights that some state-of-the-art models have gotten
while learning from very large datasets. Additionally, different layers need to learn at
different learning rates, for an optimal learning experience.

As a result, the primary aim of this research is to achieve high recognition accuracy
for tomato leaf diseases; to achieve this, a residual neural network will be utilized, and the
following will be studied and modified for the proposed network:

1. A double form of data augmentation, using image transformations and the implemen-
tation of CutMix as a secondary form of data augmentation for model generalization.

2. The effect of the train/test data split size ratio of our dataset on the network model for
disease recognition on tomato leaf images. Train/test data split ratios of sizes 40/60,
50/50, 60/40, 70/30, and 80/20 were adopted and studied.

3. The effect of varying batch sizes in training our network to correctly recognize tomato
leaf diseases. According to the capacity of the GPU available, batch sizes of 40, 50, 60,
70, 80, 90, and 100 were adopted.

4. The role of network depth in the effective recognition of tomato leaf disease. Residual
networks with varying depths of 18, 34, 50, 101, and 152 layers were studied.

5. The effect of tuning the learning rate while training the network and identification of a
threshold to obtain suitable learning rates to effectively train the network to recognize
tomato leaf diseases. The implementation of a discriminative learning rate for efficient
training of residual models.

2. Related Work

Durmus et al. [22] used AlexNet [23] and SqueezeNet [24] models to classify and
recognize 10 different types of tomato diseases in the PlantVillage dataset. The experiment
discovered that while AlexNet’s classification accuracy is slightly higher than SqueezeNet’s,
the size of the model and the time required are doubled.

Aravind et al. [25] used AlexNet and VGG16 [26] in conjunction with transfer learning
to identify seven types of tomato diseases; the experiment revealed that the accuracies
were 97.29 and 97.49 percent, respectively. Although transfer learning can accelerate
model convergence and improve recognition performance, it is constrained by the original
network structure.

Karthik et al. [27] proposed an attention-based deep residual network for detecting
the type of tomato leaf infection. The PlantVillage dataset was used in the experiment,
with 95,999 images used as training models and 24,001 images used for validation. The
diseases included in the dataset were the tomato early blight, late blight, and leaf mold.
The experimental results demonstrated that the proposed attention-based residual network
can use CNN learning features at different processing levels and achieve 98 percent overall
accuracy on the validation set in five-fold cross-validation.

Anand et al. [28] proposed an image processing and machine learning-based technique
for diagnosing brinjal leaf disease. They used a K-means clustering technique to segment
brinjal leaf diseases with some remarkable performance. In 2018, Zhang et al. [29] proposed
a K-means clustering and PHOG algorithms-based fusion of super-pixel clustering-based
leaf segmentation. Their technique performed admirably in the segmentation and recogni-
tion of plant leaf diseases. By extracting features based on color and texture and feeding
them to a multiclass SVM classifier, Rani et al. [30] also proposed a K-means clustering-
based leaf disease and classification technique. On average, they recorded a classification
accuracy of 95%. In the same year, Kumari et al. [31] proposed an image processing-based
leaf spot recognition system, with the four stages of image acquisition, image segmentation,
feature extraction, and classification. To compute the disease features, they also utilized

Plants 2022, 11, 2935 4 of 33

the K-means algorithm. They achieved an accuracy of 90% and 80% for bacterial leaf spot
and cotton leaf disease target spot, respectively. Liu et al. [32] proposed a leaf disease
identification model based on generative adversarial networks. This model employed
DenseNet and instance normalization to recognize actual and false disease images, as well
as the feature extraction capability on grape leaf lesions. Finally, the approach applied a
deep regret gradient penalty to stabilize the training process. The findings revealed that the
GAN-based data augmentation strategy may effectively overcome the overfitting problem
in disease identification while simultaneously improving accuracy. A leaf disease detection
approach based on the AlexNet architecture was proposed by Lv et al. [33] in 2020. First,
they created a maize leaf feature enhancement framework, which improved the capability
of feature extraction combined with dilated convolution and multiscale convolution in a
complex environment. After that, a DMS-Robust AlexNet architecture network was created,
which improved the capability of feature extraction combined with dilated convolution
and multiscale convolution in a complex environment. The disease features on tomato
leaves, such as spot blight, late blight, and yellow leaf curl disease, were extracted using a
deep learning method by Jiang et al. [34]. After continuous iterative learning, the proposed
technique correctly predicted the disease category for each disease, with accuracy increases
of 0.6 percent and 2.3 percent in the training and test sets, respectively. Waheed et al. [35]
proposed an optimized DenseNet-based maize leaf recognition model with few parameters
to boost job efficiency. The results of the experiments demonstrated that this technology
is effective at detecting corn leaf disease. Huang et al. [36] proposed an end-to-end plant
disease diagnostic model-based deep neural network, which can reliably classify plant
types and plant diseases. Their model consists of two components: the leaf segmentation
part that separates the leaves in the original image from the background; and the plant
disease classifier, which is based on a two-headed network that classifies plant diseases
using features extracted by multiple common pre-trained models. Experimental results
show that this method can achieve a plant classification accuracy of 0.9807 and a disease
recognition accuracy of 0.8745. In 2020, [37] proposed a combination of ABCK-BWTR
and B-ARNet models for the identification of tomato leaf disease, consisting of a channel
attention module in a ResNet50 [38], using the dual channel filter to extract the primary
leaf features.

Sethy et al. [39] used different deep learning models for extracting rich features and
applied an SVM classifier to classify them. They achieved their highest performance
accuracy with a combination of a ResNet50 model with an SVM classifier. Oyewola
et al. [40] in their work proposed using plain CNNs(PCNN) and deep residual network
(DRNN) in identifying five different cassava plant diseases; their results showed that PCNN
was outperformed by DRNN by a margin of +9.25%. Zeng et al. [41], on the other hand,
proposed a self-attention convolutional neural network (SACNN) to identify several crop
diseases. To examine the robustness of their model, the authors introduced noise at different
levels in the test images. Diseases prone to affect rice and maize leaves were identified
by Chen et al. [42] using an INC-VGGN method. They replaced the last convolutional
layer of a VGG19 model with two inception layers and a global average pooling layer.
Maize, apple, and grape crop diseases were identified by Yang et al. [43] using a shallow
CNN (SCNN) embedded with SVM and RF classifiers. A transfer-learning approach was
adopted by Ramacharan et al. [44] to identify three diseases and two pest-damage types
that plague cassava plants. The authors further extended their work by implementing a
smartphone-based CNN model for the identification of cassava plant diseases and recorded
an 80.6% accuracy [45]. Adedoja et al. [46] proposed a deep CNN architecture based on
NASNet to identify diseases on some plant leaves with an accuracy of 93.82%. However,
there is still a need for improvement in the accuracy of plant disease recognition.

In 2022, an attention-based method was proposed by Devi et al. [47] where they
used the Salp Swarm algorithm in the classification of tomato leaf diseases. Their method
achieved an accuracy of 97.56% in predicting five types of tomato leaf diseases from leaf
images taken from the plant village dataset. Apart from the computational complexity of

Plants 2022, 11, 2935 5 of 33

the method, it is also limited in performance score. A method that utilized a lightweight
attention-based CNN [48] to classify tomato leaf diseases achieved a model accuracy of
99.34% but with a slightly higher time complexity than conventional methods. Also in 2022,
Zhao et al. [49] developed a method that utilized a spatial attention mechanism with CNN
for real-time leaf disease detection. However, this method achieved a 95.20% accuracy
and did not generalize well. With the aim of improving performance and generalizability,
our method was researched. We also tested the proposed method on another plant leaf
benchmark dataset that is different from our target dataset.

3. Evaluation Metrics, Results, and Discussion

This section presents the metrics used in evaluating the results of this research, the
detailed results, and relevant discussion.

3.1. Evaluation Metrics

The accuracy, precision, recall, and f1-score of the proposed method were all evaluated.
The proposed plant recognition system’s accuracy has been calculated using the following
expression, which incorporates numerical details such as true positive (TP) (the number
of correctly identified leaf images), false positive (FP) (the number of incorrectly detected
leaves), true negative (TN) (the number of correctly detected leaf images), and false negative
(FN) (it is a parameter for representation of the number of leaf images that are correctly
recognized).

• Accuracy: Accuracy is the number of right predictions that are made by the model
with respect to the total number of predictions that were made. It is mathematically
represented by Equation (1).

Accuracy = TP+TN
TP+TN+FP+FN (1)

• Precision: Precision is defined as the number of true positive results (TP) divided by
the number of positive results (TP + FP) that are predicted by the model. The range of
the precision is between 0 and 1 and is calculated using Equation (2). It is used to find
the proportion of positive identifications that is true.

• Recall: The recall is the number of true positives (TP) divided by the number of all
relevant sample data (TP + FN). Equation (3) represents the mode of calculation of the
recall. It is used to determine the proportion of actual positives that were correctly
identified. These concepts are represented mathematically by Equations (2) and (3),
respectively:

Precision = TP
TP+FP (2)

Recall = TP
TP+FN (3)

• F1 Score: Being one of the widely used metrics for the performance evaluation of
machine learning algorithms, the F1 score is the harmonic mean of precision and
recall. The range of the F1 score is between 0 and 1, and it is calculated as shown by
Equation (4). It reflects the number of instances that are correctly classified by the
learning model.

F1 = 2×P×R
P+R (4)

3.2. Results and Discussion
3.2.1. Results on Varied Network Depth

Given five different network depths adopted in this research, 18, 34, 50, 101, and
152 layers, respectively, this section reports the results and discusses the findings on the
relationship between the network depth and the performance of the proposed network.
The results of the F1 score based on the different depths of the proposed residual neural
network are displayed in Figure 1, while Figures 2–5 show the performance via confusion
matrices of the various network depths.

Plants 2022, 11, 2935 6 of 33

Figure 1 displays the plot of epoch over F1 score for a network of the five varying
depths (18, 34, 50, 101, and 152) on the maximum batch size used in this research, having
a value of 100. The results show that a train-validation split ratio of 80/20 recorded the
highest performance in the F1 score. After 29 epochs, the result shows how the performance
score reached a peak of 98% and a minimum of 94% based on different train-validation
data split ratios as indicated on the plot image.

Plants 2022, 11, x FOR PEER REVIEW 6 of 35

recall. The range of the F1 score is between 0 and 1, and it is calculated as shown by

Equation (4). It reflects the number of instances that are correctly classified by the

learning model.

F1 =
2 × P × R

P + R
 (4)

3.2. Results and Discussion

3.2.1. Results on Varied Network Depth

Given five different network depths adopted in this research, 18, 34, 50, 101, and 152

layers, respectively, this section reports the results and discusses the findings on the rela-

tionship between the network depth and the performance of the proposed network. The

results of the F1 score based on the different depths of the proposed residual neural net-

work are displayed in Figure 1, while Figures 2–5 show the performance via confusion

matrices of the various network depths.

Figure 1 displays the plot of epoch over F1 score for a network of the five varying

depths (18, 34, 50, 101, and 152) on the maximum batch size used in this research, having

a value of 100. The results show that a train-validation split ratio of 80/20 recorded the

highest performance in the F1 score. After 29 epochs, the result shows how the perfor-

mance score reached a peak of 98% and a minimum of 94% based on different train-vali-

dation data split ratios as indicated on the plot image.

(a) (b)

(c) (d)

Plants 2022, 11, x FOR PEER REVIEW 7 of 35

(e) (f)

Figure 1. Showing the results on different train/test split ratios on various models used in our re-

search: (a) showing epoch over F1 score for ResNet-18; (b) showing epoch over F1 score for ResNet-

34; (c) showing epoch over F1 score for ResNet-50; (d) showing epoch over F1 score for ResNet-101;

(e) showing epoch over F1 score for ResNet-152; (f) showing epoch over F1 score for ResNet-152 on

a batch size of 80, this is where the best F1 score of our research is located.

It was observed that the network depth affected the network performance, though

not at a very high value. However, the network depth of 152, being the highest depth used

in this research, had the highest performance score of 99.51% as shown in Figure 1e above.

Figure 2. Confusion matrix for network depth = 34.

Figure 1. Showing the results on different train/test split ratios on various models used in our
research: (a) showing epoch over F1 score for ResNet-18; (b) showing epoch over F1 score for ResNet-
34; (c) showing epoch over F1 score for ResNet-50; (d) showing epoch over F1 score for ResNet-101;
(e) showing epoch over F1 score for ResNet-152; (f) showing epoch over F1 score for ResNet-152 on a
batch size of 80, this is where the best F1 score of our research is located.

Plants 2022, 11, 2935 7 of 33

Plants 2022, 11, x FOR PEER REVIEW 7 of 35

(e) (f)

Figure 1. Showing the results on different train/test split ratios on various models used in our re-

search: (a) showing epoch over F1 score for ResNet-18; (b) showing epoch over F1 score for ResNet-

34; (c) showing epoch over F1 score for ResNet-50; (d) showing epoch over F1 score for ResNet-101;

(e) showing epoch over F1 score for ResNet-152; (f) showing epoch over F1 score for ResNet-152 on

a batch size of 80, this is where the best F1 score of our research is located.

It was observed that the network depth affected the network performance, though

not at a very high value. However, the network depth of 152, being the highest depth used

in this research, had the highest performance score of 99.51% as shown in Figure 1e above.

Figure 2. Confusion matrix for network depth = 34. Figure 2. Confusion matrix for network depth = 34.

Plants 2022, 11, x FOR PEER REVIEW 8 of 35

Figure 3. Confusion matrix for network depth = 50.

Figure 4. Confusion matrix for network depth = 101.

Figure 3. Confusion matrix for network depth = 50.

Plants 2022, 11, 2935 8 of 33

Plants 2022, 11, x FOR PEER REVIEW 8 of 35

Figure 3. Confusion matrix for network depth = 50.

Figure 4. Confusion matrix for network depth = 101. Figure 4. Confusion matrix for network depth = 101.

Plants 2022, 11, x FOR PEER REVIEW 9 of 35

Figure 5. Confusion matrix for network depth = 152.

3.2.2. Results on Varied Train-Validation Data Split Ratios

Different train-validation data split ratios were tested on this proposed network,

ranging from 40/60, 50/50, 60/40/ 70/30, and 80/10 for training and validation data, respec-

tively. This section displays and discusses the results obtained.

Table 2 shows the relationship between batch size and performance on the network

on different train-validation data split ratios.

Table 2. Performance on various split ratios.

Batch Size
Performance (%)

40/60 50/50 60/40 70/30 80/20

100 0.977447 0.984816 0.988378 0.992139 0.993655

90 0.97957 0.987927 0.993078 0.99241 0.99521

80 0.981349 0.987848 0.990103 0.992641 0.995611

70 0.984734 0.986958 0.988716 0.994496 0.994071

60 0.984338 0.987595 0.994316 0.993444 0.995579

50 0.987115 0.9893 0.993566 0.994769 0.994317

40 0.985295 0.990085 0.993045 0.994083 0.995048

The results of the F1 score for different train-validation data split ratios on the pro-

posed residual neural network are displayed in Figures 6 and 7 below.

Figure 5. Confusion matrix for network depth = 152.

Plants 2022, 11, 2935 9 of 33

It was observed that the network depth affected the network performance, though not
at a very high value. However, the network depth of 152, being the highest depth used in
this research, had the highest performance score of 99.51% as shown in Figure 1e above.

3.2.2. Results on Varied Train-Validation Data Split Ratios

Different train-validation data split ratios were tested on this proposed network,
ranging from 40/60, 50/50, 60/40/ 70/30, and 80/10 for training and validation data,
respectively. This section displays and discusses the results obtained.

Table 2 shows the relationship between batch size and performance on the network on
different train-validation data split ratios.

Table 2. Performance on various split ratios.

Batch Size
Performance (%)

40/60 50/50 60/40 70/30 80/20

100 0.977447 0.984816 0.988378 0.992139 0.993655
90 0.97957 0.987927 0.993078 0.99241 0.99521
80 0.981349 0.987848 0.990103 0.992641 0.995611
70 0.984734 0.986958 0.988716 0.994496 0.994071
60 0.984338 0.987595 0.994316 0.993444 0.995579
50 0.987115 0.9893 0.993566 0.994769 0.994317
40 0.985295 0.990085 0.993045 0.994083 0.995048

The results of the F1 score for different train-validation data split ratios on the proposed
residual neural network are displayed in Figures 6 and 7 below.

The results in Figures 6 and 7 show the relationship between the train-validation data
split ratio and the F1 score of the networks. These results suggest that the split ratio had a
great impact on the performance of the network. Figure 7 shows a clear distinction in the
performance value as the train samples are increased.

Plants 2022, 11, x FOR PEER REVIEW 10 of 35

Figure 6. Split ratio against F1 score.

Figure 7. Batch size against F1 score for various validation split ratios.

The results in Figures 6 and 7 show the relationship between the train-validation data

split ratio and the F1 score of the networks. These results suggest that the split ratio had a

great impact on the performance of the network. Figure 7 shows a clear distinction in the

performance value as the train samples are increased.

For a batch size of 100 images, being the highest batch size value adopted for this

research, train set values of 40, 50, 60, 70, and 80% of the entire dataset resulted in a per-

formance of 0.9775, 0.9848, 0.9884, 0.9921, and 0.9937, respectively, out of a total value of

1, for a network depth of 152. The results on other network depths also show a similar

pattern in performance with such data split ratios. This suggests that a split ratio of 80/20

is a good choice for plant leaf image recognition.

0.965

0.97

0.975

0.98

0.985

0.99

20 25 30 35 40 45 50 55 60 65

F
1
 s

co
re

split ratio of data used for testing

Data split ratio against F1 score for various batch sizes

hundred ninety eighty seventy sixty fifty forty

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

100 90 80 70 60 50 40

F
1
 s

co
re

batch size

Batch-size against F1 score for various test data split ratios

sixty fifty forty thirty twenty

Figure 6. Split ratio against F1 score.

Plants 2022, 11, 2935 10 of 33

Plants 2022, 11, x FOR PEER REVIEW 10 of 35

Figure 6. Split ratio against F1 score.

Figure 7. Batch size against F1 score for various validation split ratios.

The results in Figures 6 and 7 show the relationship between the train-validation data

split ratio and the F1 score of the networks. These results suggest that the split ratio had a

great impact on the performance of the network. Figure 7 shows a clear distinction in the

performance value as the train samples are increased.

For a batch size of 100 images, being the highest batch size value adopted for this

research, train set values of 40, 50, 60, 70, and 80% of the entire dataset resulted in a per-

formance of 0.9775, 0.9848, 0.9884, 0.9921, and 0.9937, respectively, out of a total value of

1, for a network depth of 152. The results on other network depths also show a similar

pattern in performance with such data split ratios. This suggests that a split ratio of 80/20

is a good choice for plant leaf image recognition.

0.965

0.97

0.975

0.98

0.985

0.99

20 25 30 35 40 45 50 55 60 65

F
1

 s
co

re

split ratio of data used for testing

Data split ratio against F1 score for various batch sizes

hundred ninety eighty seventy sixty fifty forty

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

100 90 80 70 60 50 40

F
1

 s
co

re

batch size

Batch-size against F1 score for various test data split ratios

sixty fifty forty thirty twenty

Figure 7. Batch size against F1 score for various validation split ratios.

For a batch size of 100 images, being the highest batch size value adopted for this
research, train set values of 40, 50, 60, 70, and 80% of the entire dataset resulted in a
performance of 0.9775, 0.9848, 0.9884, 0.9921, and 0.9937, respectively, out of a total value
of 1, for a network depth of 152. The results on other network depths also show a similar
pattern in performance with such data split ratios. This suggests that a split ratio of 80/20
is a good choice for plant leaf image recognition.

3.2.3. Results on Different Batch Sizes

The effect of different batch sizes on the various models was studied and the results
are described here. The results of the F1 score for different train-validation data split ratios
on the proposed residual neural network are displayed in Figure 8 below. It displays the
plot of the epoch over the F1 score for a batch size of 100, 90, 80, 70, 60, 60, and 50 images,
respectively.

The results of the different batch sizes above do not show much difference in the
overall performance of the F1 score at the end of the number of training epochs; however,
the time taken was greatly influenced as is displayed in the next section.

Plants 2022, 11, x FOR PEER REVIEW 11 of 35

3.2.3. Results on Different Batch Sizes

The effect of different batch sizes on the various models was studied and the results

are described here. The results of the F1 score for different train-validation data split ratios

on the proposed residual neural network are displayed in Figure 8 below. It displays the

plot of the epoch over the F1 score for a batch size of 100, 90, 80, 70, 60, 60, and 50 images,

respectively.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Showing the results on different train/test split ratios on various models used in our re-

search: (a) showing epoch over F1 score for ResNet-18; (b) showing epoch over F1 score for ResNet-

34; (c) showing epoch over F1 score for ResNet-50; (d) showing epoch over F1 score for ResNet-101;

Figure 8. Cont.

Plants 2022, 11, 2935 11 of 33

Plants 2022, 11, x FOR PEER REVIEW 11 of 35

3.2.3. Results on Different Batch Sizes

The effect of different batch sizes on the various models was studied and the results

are described here. The results of the F1 score for different train-validation data split ratios

on the proposed residual neural network are displayed in Figure 8 below. It displays the

plot of the epoch over the F1 score for a batch size of 100, 90, 80, 70, 60, 60, and 50 images,

respectively.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Showing the results on different train/test split ratios on various models used in our re-

search: (a) showing epoch over F1 score for ResNet-18; (b) showing epoch over F1 score for ResNet-

34; (c) showing epoch over F1 score for ResNet-50; (d) showing epoch over F1 score for ResNet-101;

Figure 8. Showing the results on different train/test split ratios on various models used in our
research: (a) showing epoch over F1 score for ResNet-18; (b) showing epoch over F1 score for ResNet-
34; (c) showing epoch over F1 score for ResNet-50; (d) showing epoch over F1 score for ResNet-101;
(e) showing epoch over F1 score for ResNet-152; (f) showing epoch over F1 score for ResNet-152 on a
batch size of 80, this is where the best F1score of our research is located.

3.2.4. Results on Computing Time

The results of time on the proposed residual neural network for plant leaf recognition
are displayed in Figure 9, and Table 3 shows the time taken on various train-validation
split ratios and batch sizes.

Table 3. Time taken.

Batch Size
Time (s)

40/60 50/50 60/40 70/30 80/20

100 162 196 221 234 249
90 179 188 218 237 253
80 169 193 222 235 247
70 176 188 211 232 240
60 172 193 217 236 259
50 188 208 221 242 275
40 200 204 226 248 281

Plants 2022, 11, 2935 12 of 33

Plants 2022, 11, x FOR PEER REVIEW 12 of 35

(e) showing epoch over F1 score for ResNet-152; (f) showing epoch over F1 score for ResNet-152 on

a batch size of 80, this is where the best F1score of our research is located.

The results of the different batch sizes above do not show much difference in the

overall performance of the F1 score at the end of the number of training epochs; however,

the time taken was greatly influenced as is displayed in the next section.

3.2.4. Results on Computing Time

The results of time on the proposed residual neural network for plant leaf recognition

are displayed in Figure 9, and Table 3 shows the time taken on various train-validation

split ratios and batch sizes.

Table 3. Time taken.

Batch Size
Time (s)

40/60 50/50 60/40 70/30 80/20

100 162 196 221 234 249

90 179 188 218 237 253

80 169 193 222 235 247

70 176 188 211 232 240

60 172 193 217 236 259

50 188 208 221 242 275

40 200 204 226 248 281

(a) (b)

Figure 9. Epoch over time for depth of (a) 18, and (b) 152.

From Figure 9 above, the fastest of the networks was that of a depth of 18 layers, with

a train-validation data split ratio of 40/60. Having more data for validation than for train-

ing made the network training and testing procedure faster, albeit our goal was not just

for speed but also improved performance. Hence, the result of performance with the fast-

est time was not the optimized result we have. The split ratio of 80/20 was rather that with

the highest performance in training and testing, as recorded in Table 2.

Figure 10 shows the plot of the test split ratio and layer depth over time. This displays

a more elaborate view of the relationship between time and other parameters such as split

ratio and network depth.

Figure 9. Epoch over time for depth of (a) 18, and (b) 152.

From Figure 9 above, the fastest of the networks was that of a depth of 18 layers, with a
train-validation data split ratio of 40/60. Having more data for validation than for training
made the network training and testing procedure faster, albeit our goal was not just for
speed but also improved performance. Hence, the result of performance with the fastest
time was not the optimized result we have. The split ratio of 80/20 was rather that with
the highest performance in training and testing, as recorded in Table 2.

Figure 10 shows the plot of the test split ratio and layer depth over time. This displays
a more elaborate view of the relationship between time and other parameters such as split
ratio and network depth.

Plants 2022, 11, x FOR PEER REVIEW 13 of 35

Figure 10. A plot of validation split ratio and layer depth over time.

The F1 score, being a more robust metric for recognition, combined both the recall

and precision levels of the network. Here, we show how the network tried to maintain a

considerably consistent F1 score for most of the training process with a +0.15 and −0.25

interval. The learning rate on this dataset had been seen to do well from 10−5 to 10−3. The

best position to train a model has been estimated to fall along that axis. Afterward, as can

be seen in the plot, as the learning rate increased, the model loss increased. Table 4 com-

pares the performance of the proposed network on the PlantVillage dataset on various

training and validation data split ratios. Figure 11 shows the areas of mistake recorded by

the model in this research: (a) the plot loss for a network depth of 152; (b) the images the

model predicted wrongly for a network depth of 152, detailing the predicted, ground

truth, loss, and probability values.

(a) (b)

18-layers

50-layers

152-layers

0

50

100

150

200

250

sixty fifty forty thirty twenty N
et

w
o
rk

 d
ep

thT
im

e
(s

ec
)

Test split ratio

Plot of test split ratio and layer depth over time

18-layers 34-layers 50-layers 101-layers 152-layers

Figure 10. A plot of validation split ratio and layer depth over time.

The F1 score, being a more robust metric for recognition, combined both the recall
and precision levels of the network. Here, we show how the network tried to maintain a
considerably consistent F1 score for most of the training process with a +0.15 and −0.25
interval. The learning rate on this dataset had been seen to do well from 10−5 to 10−3. The

Plants 2022, 11, 2935 13 of 33

best position to train a model has been estimated to fall along that axis. Afterward, as
can be seen in the plot, as the learning rate increased, the model loss increased. Table 4
compares the performance of the proposed network on the PlantVillage dataset on various
training and validation data split ratios. Figure 11 shows the areas of mistake recorded by
the model in this research: (a) the plot loss for a network depth of 152; (b) the images the
model predicted wrongly for a network depth of 152, detailing the predicted, ground truth,
loss, and probability values.

Table 4. Results for various train-validation split ratios.

Train
Split (%)

Validation
Split (%)

Train
Loss

Valid
Loss Accuracy Recall Precision F1 Score

90 10 0.052291 0.07908 0.976046 0.972897 0.972338 0.97166
80 20 0.049548 0.071533 0.976597 0.973958 0.973845 0.97321
70 30 0.045366 0.081245 0.97109 0.967464 0.966935 0.966463
60 40 0.042245 0.070298 0.975771 0.972307 0.97289 0.971938
50 50 0.033666 0.049622 0.984857 0.981165 0.982264 0.981518
40 60 0.002324 0.014366 0.996421 0.995781 0.995451 0.995611

Plants 2022, 11, x FOR PEER REVIEW 13 of 35

Figure 10. A plot of validation split ratio and layer depth over time.

The F1 score, being a more robust metric for recognition, combined both the recall

and precision levels of the network. Here, we show how the network tried to maintain a

considerably consistent F1 score for most of the training process with a +0.15 and −0.25

interval. The learning rate on this dataset had been seen to do well from 10−5 to 10−3. The

best position to train a model has been estimated to fall along that axis. Afterward, as can

be seen in the plot, as the learning rate increased, the model loss increased. Table 4 com-

pares the performance of the proposed network on the PlantVillage dataset on various

training and validation data split ratios. Figure 11 shows the areas of mistake recorded by

the model in this research: (a) the plot loss for a network depth of 152; (b) the images the

model predicted wrongly for a network depth of 152, detailing the predicted, ground

truth, loss, and probability values.

(a) (b)

18-layers

50-layers

152-layers

0

50

100

150

200

250

sixty fifty forty thirty twenty N
et

w
o
rk

 d
ep

thT
im

e
(s

ec
)

Test split ratio

Plot of test split ratio and layer depth over time

18-layers 34-layers 50-layers 101-layers 152-layers

Figure 11. Showing the mistakes recorded by the model in our research: (a) showing the plot loss
for ResNet-152; (b) showing the images the model predicted wrongly for ResNet-152, showing the
predicted, ground truth, loss, and probability values.

The network, though having an outstanding performance, was not 100% perfect. From
Figure 11 above, classes that were wrongly recognized are displayed. The first image shows
how the model predicted a late blight leaf as an early blight class. Table 4 shows the result
of the network on various train-validation split ratios. The early blight and late blight
diseased leaves had a very striking resemblance and as such, most of the wrong predictions
recorded by our method happened to fall in between the two leaf classes. Additionally,
some of the spots that could be found on leaves were so close that they could constitute a
challenge in perfect distinction, giving rise to an imperfect recognition, even to the human
eye. However, more research on fine-grained distinct images is needed to get to that point.

Figure 12 below shows the plot of loss against epoch for the network of depth 152 layers
on a train-validation split ratio of 40/60.

Plants 2022, 11, 2935 14 of 33

Plants 2022, 11, x FOR PEER REVIEW 14 of 35

Figure 11. Showing the mistakes recorded by the model in our research: (a) showing the plot loss

for ResNet-152; (b) showing the images the model predicted wrongly for ResNet-152, showing the

predicted, ground truth, loss, and probability values.

The network, though having an outstanding performance, was not 100% perfect.

From Figure 11 above, classes that were wrongly recognized are displayed. The first im-

age shows how the model predicted a late blight leaf as an early blight class. Table 4 shows

the result of the network on various train-validation split ratios. The early blight and late

blight diseased leaves had a very striking resemblance and as such, most of the wrong

predictions recorded by our method happened to fall in between the two leaf classes. Ad-

ditionally, some of the spots that could be found on leaves were so close that they could

constitute a challenge in perfect distinction, giving rise to an imperfect recognition, even

to the human eye. However, more research on fine-grained distinct images is needed to

get to that point.

Table 4. Results for various train-validation split ratios.

Train

Split (%)

Validation

Split (%)

Train

Loss

Valid

Loss
Accuracy Recall Precision F1 Score

90 10 0.052291 0.07908 0.976046 0.972897 0.972338 0.97166

80 20 0.049548 0.071533 0.976597 0.973958 0.973845 0.97321

70 30 0.045366 0.081245 0.97109 0.967464 0.966935 0.966463

60 40 0.042245 0.070298 0.975771 0.972307 0.97289 0.971938

50 50 0.033666 0.049622 0.984857 0.981165 0.982264 0.981518

40 60 0.002324 0.014366 0.996421 0.995781 0.995451 0.995611

Figure 12 below shows the plot of loss against epoch for the network of depth 152

layers on a train-validation split ratio of 40/60.

(a) (b)

0

0.05

0.1

0.15

0.2

0 5 10 15 20 25 30

lo
ss

epoch

Model losses on ResNet-152

train_loss valid_loss error_rate

0

0.05

0.1

0.15

0.2

0 5 10 15 20 25 30

lo
ss

epoch

Model losses on ResNet-101

train_loss valid_loss error_rate

Plants 2022, 11, x FOR PEER REVIEW 15 of 35

(c) (d)

(e)

Figure 12. Showing the model losses and error rates for: (a) 152, (b) 101, (c) 50, (d) 34, and (e) 18

layers respectively.

Tables 5–9 detail the performance of the proposed network on the PlantVillage da-

taset with various model depths of the residual neural network architecture on six differ-

ent training and validation data split ratios. Table 5 compares the performance of our

model on various model depths of the same architecture on a validation data split ratio of

60.

Table 5. Network depth on validation split = 60.

Network Depth Error Rate F1 Score Time (s)

18 0.037812 0.953628 35

34 0.028084 0.964552 53

50 0.025881 0.96916 83

101 0.01808 0.977994 126

152 0.018906 0.977447 160

Table 6 compares the performance of our model on various model depths of the same

architecture on a validation data split ratio of 50.

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30

lo
ss

epoch

Model losses on ResNet-50

train_loss valid_loss error_rate

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30

lo
ss

epoch

Model losses on ResNet-34

train_loss valid_loss error_rate

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30

lo
ss

epoch

Model losses on ResNet-18

train_loss valid_loss error_rate

Figure 12. Showing the model losses and error rates for: (a) 152, (b) 101, (c) 50, (d) 34, and (e) 18 layers
respectively.

Plants 2022, 11, 2935 15 of 33

Tables 5–9 detail the performance of the proposed network on the PlantVillage dataset
with various model depths of the residual neural network architecture on six different
training and validation data split ratios. Table 5 compares the performance of our model
on various model depths of the same architecture on a validation data split ratio of 60.

Table 5. Network depth on validation split = 60.

Network Depth Error Rate F1 Score Time (s)

18 0.037812 0.953628 35
34 0.028084 0.964552 53
50 0.025881 0.96916 83

101 0.01808 0.977994 126
152 0.018906 0.977447 160

Table 6 compares the performance of our model on various model depths of the same
architecture on a validation data split ratio of 50.

Table 6. Network depth on validation split = 50.

Network Depth Error Rate F1 Score Time (s)

18 0.027423 0.967306 40
34 0.024559 0.968959 59
50 0.018612 0.978017 91

101 0.015419 0.981207 139
152 0.013216 0.984816 187

Table 7 compares the performance of our model on various model depths of the same
architecture on a validation data split ratio of 40.

Table 7. Network depth on validation split = 40.

Network Depth Error Rate F1 Score Time (s)

18 0.021338 0.974903 41
34 0.015694 0.979904 63
50 0.015556 0.98172 97

101 0.010187 0.988444 152
152 0.009637 0.988378 217

Table 8 compares the performance of our model on various model depths of the same
architecture on a validation data split ratio of 30.

Table 8. Network depth on validation split = 30.

Network Depth Error Rate F1 Score Time (s)

18 0.016153 0.978283 43
34 0.011013 0.985728 69
50 0.011197 0.986037 105

101 0.009728 0.987897 160
152 0.006608 0.992139 228

Table 9 compares the performance of our model on various model depths of the same
architecture on a validation data split ratio of 20.

Plants 2022, 11, 2935 16 of 33

Table 9. Network depth on validation split = 20.

Network Depth Error Rate F1 Score Time (s)

18 0.015419 0.981407 47
34 0.011564 0.986212 73
50 0.009086 0.988667 112

101 0.006883 0.991295 179
152 0.005507 0.993655 243

3.2.5. Benchmark against Other Models

A summary of the related work carried out on the Flavia plant leaf image datasets and
our result comparison is shown in Table 10.

Table 10. Comparison of the proposed technique with the existing prevalent approaches on the Flavia
dataset.

Technique Year Objective # Images Methods Accuracy (%)

Keivani et al. [50] 2020 Flavia dataset 1907 Decision Tree 98.58
Li et al. [51] 2021 Flavia dataset 1907 DenseNet201 98.69

Kanda et al. [52] 2021 Flavia dataset 1907 DL + Logistic Regression 99.0
Thanikkal et al. [53] 2022 Flavia dataset 1907 DL 99.0

Twum et al. [54] 2022 Flavia dataset 1907 Log Gabor Filters 97.0
Gajjar et al. [55] 2022 Flavia dataset 1907 Extreme learning machines 99.10
Goyal et al. [56] 2022 Flavia dataset 1907 Hierarchical cluster 96.24

Ganguly et al. [57] 2022 Flavia dataset 1907 ResNet + Bonferroni mean operator 98.7
Proposed Network 2022 Flavia dataset 1907 ResNet + Discriminative Learning 99.23

A summary of the related work on plant disease identification based on leaf images
and the result comparison of some of them is shown in Table 11. As can be seen from both
Table 11 and Figure 13, our model outperformed the previous models, surpassing that of Li
et al. [58], which was the closest in performance, with a +0.75% performance gain. Whereby
some authors used the accuracy metric to measure their performance, we recorded a much
higher accuracy but chose to benchmark against our F1 score value, which is regarded as a
much better form of performance measure for classification problems, since it combines
both the precision and recall of the model in question.

Table 11. Comparison of the proposed technique with the existing prevalent approaches on the
tomato leaf dataset.

Technique Year Objective # Images Methods Accuracy (%)

Too et al. [59] 2019 Plant leaf disease 54,306 VGG16 81.83
Gensheng et al. [60] 2019 Tea leaf disease 4980 VGG16 90

Wang et al. [61] 2017 Plant leaf disease 54,306 VGG16 90.4
Agarwal et al. [62] 2020 Tomato leaf disease 18,160 VGG16 93.5

Wang et al. [61] 2017 Plant leaf disease 54,306 Inception-V3 80
Gandhi et al. [63] 2018 Plant leaf disease 56,000 Inception-V3 88.6

Agarwal et al. [62] 2020 Tomato leaf disease 18,160 Inception-V3 77.5
Elhassouny &

Smarandache [64] 2019 Tomato leaf disease 7176 MobileNet 88.4

Gandhi et al. [63] 2018 Plant leaf disease 56,000 Mobilenet 92
Agarwal et al. [62] 2020 Tomato leaf disease 18,160 Mobilenet 82.6
Darwish et al. [65] 2019 Maize leaf disease 15,408 VGG19 98.2

Karthik et al. [27] 2020 Tomato leaf disease 5452
(4 classes) ResNet + DenseNet 98

Mishra et al. [66] 2020 Corn leaf disease 3703 CNN 98.4
Lamba et al. [67] 2021 Tomato leaf disease 16,012 CNN 98.2

Agarwal et al. [62] 2020 Tomato leaf disease 18,160 CNN 98.4

Plants 2022, 11, 2935 17 of 33

Table 11. Cont.

Technique Year Objective # Images Methods Accuracy (%)

Zhao et al. [68] 2021 Tomato leaf disease 18,160
(10 classes) ResNet50 + SeNet 96.81

Li et al. [58] 2022 Tomato leaf disease 4240 FWDGAN + B-ARNet 98.75
Paymode et al. [69] 2022 Tomato leaf disease VGG16 95.71

Devi et al. [47] 2022 Tomato leaf disease 9281 DensNet + Attention
mechanism 97.56

Bhujel et al. [48] 2022 Tomato leaf disease 19,510 Lightweight Attention-Based
CNN 99.34

Zaho et al. [49] 2022 Tomato leaf disease 18,160 Spatial attention with CNN 95.20

Islam et al. [70] 2022 Tomato leaf disease 15,989 cGAN + CNN + Logistic
Regression 100

Tarek et al. [71] 2022 Tomato leaf disease 16,004 MobileNetV3 99.81
Tej et al. [72] 2022 Pepper and Tomato leaf diseases 488 CNN 98.85

Özbılge et al. [73] 2022 Tomato leaf disease 18,160 Compact CNN 98.49

Mukherjee et al. [74] 2022 Tomato leaf disease 10,839
(7 classes) Gray Wolf + MobileNetV2 98

Proposed Technique 2022 Tomato leaf disease 18,160 ResNet + Discriminative
Learning 99.51

Figure 13 below shows the chart of a comparison of our proposed technique and other
techniques. A detailed summary of the technique, dataset and year of publication is just
as displayed in Table 11 above. More discussion on the image is given in the Discussion
section of this article.

Plants 2022, 11, x FOR PEER REVIEW 18 of 35

Islam et al. [70] 2022 Tomato leaf disease 15,989
cGAN + CNN + Logistic

Regression
100

Tarek et al. [71] 2022 Tomato leaf disease 16,004 MobileNetV3 99.81

Tej et al. [72] 2022
Pepper and Tomato

leaf diseases
488 CNN 98.85

Özbılge et al. [73] 2022 Tomato leaf disease 18,160 Compact CNN 98.49

Mukherjee et al. [74] 2022 Tomato leaf disease
10,839

(7 classes)
Gray Wolf + MobileNetV2 98

Proposed Technique 2022 Tomato leaf disease 18,160
ResNet + Discriminative

Learning
99.51

Figure 13 below shows the chart of a comparison of our proposed technique and

other techniques. A detailed summary of the technique, dataset and year of publication is

just as displayed in Table 11 above. More discussion on the image is given in the Discus-

sion section of this article.

Figure 13. Benchmark against other models [27,47–49,58–74].

0

10

20

30

40

50

60

70

80

90

100

Too et al. 2019
Gensheng et al. 2019

Wang et al. 2017

Agarwal et al. 2020

Wang et al. 2017

Gandhi et al. 2018

Agarwal et al. 2020

Elhassouny & Smarandache 2019

Gandhi et al. 2018

Agarwal et al. 2020

Darwish et al. 2019

Karthik et al. 2020

Mishra et al. 2020
Lamba et al. 2021Agarwal et al. 2020

Zhao et al. 2021

Li et al. 2022

Paymode et al. 2022

Devi et al. 2022

Bhujel et al. 2022

Zaho et al. 2022

Islam et al. 2022

Tarek et al. 2022

Tej et al. 2022

Özbılge et al. 2022

Mukherjee et al. 2022
Proposed Technique 2022

BENCHMARK AGAINST OTHER MODELS

Figure 13. Benchmark against other models [27,47–49,58–74].

Plants 2022, 11, 2935 18 of 33

4. Materials and Methods
4.1. Data Acquisition and Pre-Processing
4.1.1. Datasets

1. The Flavia leaf dataset

The Flavia leaf dataset (download link: http://flavia.sourceforge.net/ (accessed
on 13 November 2021)), introduced by Wu et al. [75], contains 1907 leaf images of size
(1600 × 1200 pixels) obtained from 32 plant species on a white background, containing
about 50–77 images per class. Figure 14 shows random sample images from the Flavia
dataset used for this research work.

Plants 2022, 11, x FOR PEER REVIEW 19 of 35

4. Materials and Methods

4.1. Data Acquisition and Pre-Processing

4.1.1. Datasets

1. The Flavia leaf dataset

The Flavia leaf dataset (download link: http://flavia.sourceforge.net/ (accessed on 13

November 2021)), introduced by Wu et al. [75], contains 1907 leaf images of size (1600 ×

1200 pixels) obtained from 32 plant species on a white background, containing about 50–

77 images per class. Figure 14 shows random sample images from the Flavia dataset used

for this research work.

Figure 14. Samples from the Flavia leaf dataset.

2. The tomato leaf dataset

The tomato leaf dataset that was used in this research consists of images of diseased

and healthy tomato plant leaves that were obtained from the publicly available PlantVil-

lage [1] dataset, which is an open-access public resource for agriculture-related content.

The entire dataset contains 54,306 images of plant leaves, which have a spread of 38 class

labels assigned to them. However, the experiments in this research were narrowed down

to only images of tomato plant leaves, which include nine types of tomato leaf diseases,

and some healthy tomato leaves, making a total of 10 different categories for our research

out of the entire 38 which are obtainable in the entire PlantVillage database. Our crop-

specific data contained 18,160 images of tomato plant leaves, and each class is defined

either with the corresponding name of the disease affecting the leaves in it or categorized

as part of the healthy class. Figure 15 shows sample images from the PlantVillage dataset

used for this research work.

Figure 14. Samples from the Flavia leaf dataset.

2. The tomato leaf dataset

The tomato leaf dataset that was used in this research consists of images of diseased
and healthy tomato plant leaves that were obtained from the publicly available PlantVil-
lage [1] dataset, which is an open-access public resource for agriculture-related content.
The entire dataset contains 54,306 images of plant leaves, which have a spread of 38 class
labels assigned to them. However, the experiments in this research were narrowed down to
only images of tomato plant leaves, which include nine types of tomato leaf diseases, and
some healthy tomato leaves, making a total of 10 different categories for our research out of
the entire 38 which are obtainable in the entire PlantVillage database. Our crop-specific
data contained 18,160 images of tomato plant leaves, and each class is defined either with
the corresponding name of the disease affecting the leaves in it or categorized as part of the
healthy class. Figure 15 shows sample images from the PlantVillage dataset used for this
research work.

http://flavia.sourceforge.net/

Plants 2022, 11, 2935 19 of 33Plants 2022, 11, x FOR PEER REVIEW 20 of 35

Figure 15. Samples from the tomato leaf dataset.

From Figure 15, the various diseases can be categorized either as fungi, bacteria,

mold, viruses, or mites. Four of the diseases, namely, early blight, late blight, leaf spot,

and target spots are caused by fungi; the bacterial spot is caused by bacteria, the leaf mold

is the cause of a mold disease, while both the tomato yellow leaf curl and the tomato mo-

saic are viral infections, and the spider mite is a mite disease. A brief description of each

of these diseases is given below:

• Early blight is a fungal infection, and symptoms start as oval-shaped lesions with a

yellow chlorotic region across the lesion; concentric leaf lesions may be seen on in-

fected leaves.

• Late blight, being another fungal infection, affects all aerial parts of the tomato plant;

initial symptoms of the disease appear as water-soaked green to black areas on leaves

which rapidly change to brown lesions; fluffy white fungal growth may appear on

infected areas and leaf undersides during wet weather.

• The leaf spot is another fungal infection. Infected plants exhibit bronzing or purpling

of the upper sides of young leaves and develop necrotic spots; leaf spots may resem-

ble those caused by bacterial spots, but a bacterial ooze test will be negative; leaves

may cup downwards, and shoot tips may begin to die back.

• Septoria leaf spot is yet another fungal disease. Symptoms may occur at any stage of

tomato development and begin as small, water-soaked spots or circular grayish-

white spots on the underside of older leaves; spots have a grayish center and a dark

margin, and they may coalesce.

• Leaf mold is still another fungal infection. The older leaves exhibit pale greenish to

yellow spots (without distinguishable margins) on the upper surface, whereas, the

lower portion of these spots exhibits green to brown velvety fungal growth. As the

Figure 15. Samples from the tomato leaf dataset.

From Figure 15, the various diseases can be categorized either as fungi, bacteria, mold,
viruses, or mites. Four of the diseases, namely, early blight, late blight, leaf spot, and target
spots are caused by fungi; the bacterial spot is caused by bacteria, the leaf mold is the
cause of a mold disease, while both the tomato yellow leaf curl and the tomato mosaic are
viral infections, and the spider mite is a mite disease. A brief description of each of these
diseases is given below:

• Early blight is a fungal infection, and symptoms start as oval-shaped lesions with
a yellow chlorotic region across the lesion; concentric leaf lesions may be seen on
infected leaves.

• Late blight, being another fungal infection, affects all aerial parts of the tomato plant;
initial symptoms of the disease appear as water-soaked green to black areas on leaves
which rapidly change to brown lesions; fluffy white fungal growth may appear on
infected areas and leaf undersides during wet weather.

• The leaf spot is another fungal infection. Infected plants exhibit bronzing or purpling
of the upper sides of young leaves and develop necrotic spots; leaf spots may resemble
those caused by bacterial spots, but a bacterial ooze test will be negative; leaves may
cup downwards, and shoot tips may begin to die back.

• Septoria leaf spot is yet another fungal disease. Symptoms may occur at any stage of
tomato development and begin as small, water-soaked spots or circular grayish-white
spots on the underside of older leaves; spots have a grayish center and a dark margin,
and they may coalesce.

• Leaf mold is still another fungal infection. The older leaves exhibit pale greenish to
yellow spots (without distinguishable margins) on the upper surface, whereas, the
lower portion of these spots exhibits green to brown velvety fungal growth. As the

Plants 2022, 11, 2935 20 of 33

disease progresses, the spots may coalesce and appear brown. The infected leaves
wither and die but stay attached to the plant.

• Bacterial spots are bacterial diseases, and lesions start as small water-soaked spots;
lesions become more numerous and coalesce to form necrotic areas on the leaves giving
them a blighted appearance; leaves drop from the plant, and severe defoliation can
occur leaving the fruit susceptible to sunscald; mature spots have a greasy appearance
and may appear transparent when held up to a light source; centers of lesions dry up
and fall out of the leaf; blighted leaves often remain attached to the plant and give it a
blighted appearance.

• Spider mites (two-spotted spider mites). Leaves stippled with yellow; leaves may appear
bronzed; webbing covering leaves; mites may be visible as tiny moving dots on the webs
or underside of leaves, best viewed using a hand lens; usually not spotted until there are
visible symptoms on the plant; leaves turn yellow and may drop from the plant.

• Target spot is also caused by a fungus. The fungus infects all parts of the plant. Infected
leaves show small, pinpoint, water-soaked spots initially. As the disease progresses,
the spots enlarge to become necrotic lesions with conspicuous concentric circles, dark
margins, and light brown centers. Whereas the fruits exhibit brown, slightly sunken
flecks in the beginning, later the lesions develop a large, pitted appearance.

• Tomato mosaic virus is a viral infection. Symptoms can occur at any growth stage and
any part of the plant can be affected; infected leaves generally exhibit a dark green
mottling or mosaic; some strains of the virus can cause yellow mottling on the leaves;
young leaves may be stunted or distorted; severely infected leaves may have raised
green areas; dark necrotic streaks may appear on the petioles’ leaves.

• Tomato yellow leaf curl disease is another viral infection. The infected leaves become
reduced in size, curl upward, appear crumpled, and show yellowing of veins and
leaf margins.

4.1.2. Data Pre-Processing

1. Data Augmentation 1—Image Transformations

Pre-processing steps are applied to cleanse and organize data before being fed into the
model. By introducing a few distorted images into the training dataset, image transforma-
tions are used to increase the number of images in the dataset and reduce the chances of the
model overfitting. The augmented images for the training data are created using standard
image augmentation techniques such as flipping, Gamma correction, noise injection, PCA
color augmentation, rotation, and scaling transformations. The images are each further
resized to 128 before being fed to the training model.

2. Data Augmentation 2—CutMix

Let x ∈ RW×H×C and y denote both the training image and the corresponding label
of our tomato leaf image, respectively. The goal of the CutMix augmentator is to generate
a new training sample (x̃, ỹ) through the combination of two training samples, (xA, yA)
and (xB, yB). The newly generated sample (x̃, ỹ) is then used in training the model with its
original loss function.

We define the combining operation as

x̃ = M ò xA + (1−M) ò xB
ỹ = λyA + (1− λ)yB,

(5)

where M ∈ {0, 1}W×H denotes a binary mask indicating where to drop out and fill in from
two images, 1 is a binary mask filled with ones and is an element-wise multiplication, and
the combination ratio λ between two data points is sampled from the beta distribution
Beta(α, α).

CutMix replaces an image region with a patch from another training image and
generates locally natural images. CutMix is simple and incurs a negligible computational
overhead as with existing data augmentation techniques; we can efficiently utilize it to train

Plants 2022, 11, 2935 21 of 33

any network architecture. To sample the binary mask M, the bounding box coordinates
B = (rx, ry,rw, rh) are first sampled indicating the cropping regions on xA and xB. The
region B in xA is removed and filled in with the patch cropped from B of xB. The box
coordinates are uniformly sampled according to:

rx v Unif (0, W), rw = W
√

1− λ,
ry v Unif (0, H), rh = H

√
1− λ,

(6)

making the cropped area ratio:
rw rh
W H

= 1− λ (7)

With the cropping region, the binary mask M ∈ {0, 1}W×H is decided by filling with 0
within the bounding box B, otherwise 1. In each training iteration, a CutMix-ed sample
(x̃, ỹ) is generated by combining two randomly selected training samples in a mini-batch
according to Equation (5). Figure 16 shows a visualization of the CutMix operation on the
Flavia dataset. The mixture of patch images on different class images can be seen.

Plants 2022, 11, x FOR PEER REVIEW 22 of 35

CutMix replaces an image region with a patch from another training image and gen-

erates locally natural images. CutMix is simple and incurs a negligible computational

overhead as with existing data augmentation techniques; we can efficiently utilize it to

train any network architecture. To sample the binary mask M, the bounding box coordi-

nates 𝐁 = (𝑟𝑥 , 𝑟𝑦,𝑟𝑤 , 𝑟ℎ) are first sampled indicating the cropping regions on 𝑥𝐴 and 𝑥𝐵.

The region B in 𝑥𝐴 is removed and filled in with the patch cropped from B of 𝑥𝐵. The box

coordinates are uniformly sampled according to:

𝑟𝑥 ∽ Unif (0, 𝑊), 𝑟𝑤 = 𝑊√1 − 𝜆,

𝑟𝑦 ∽ Unif (0, 𝐻), 𝑟ℎ = 𝐻√1 − 𝜆,
(6)

making the cropped area ratio:

𝑟𝑤 𝑟ℎ

𝑊 𝐻
 = 1 − 𝜆 (7)

With the cropping region, the binary mask M ∈ {0, 1}W×H is decided by filling with 0

within the bounding box B, otherwise 1. In each training iteration, a CutMix-ed sample
(�̃�, �̃�) is generated by combining two randomly selected training samples in a mini-batch

according to Equation (5). Figure 16 shows a visualization of the CutMix operation on the

Flavia dataset. The mixture of patch images on different class images can be seen.

Figure 16. CutMix results from the Flavia dataset.

4.2. Our Proposed Method

4.2.1. Convolutional Neural Networks

A typical convolutional neural network architecture will contain some basic building

blocks, some of which are referred to as layers. These make up the building block for our

proposed network approach and are described in the following subsection.

1. Convolutional Layer

Figure 16. CutMix results from the Flavia dataset.

4.2. Our Proposed Method
4.2.1. Convolutional Neural Networks

A typical convolutional neural network architecture will contain some basic building
blocks, some of which are referred to as layers. These make up the building block for our
proposed network approach and are described in the following subsection.

1. Convolutional Layer

In this layer, convolutional operations are performed on the input to learn useful
features. To this effect, a convolutional kernel slides along the input image with a certain
stride and outputs convolution plus a bias generally known as a feature map. The input
to this layer could be either an RGB image or the output feature of a preceding layer for
a multilayer network. A convolutional kernel means that given an input image when it
is processed, the weighted average of pixels in a small area of the input image becomes

Plants 2022, 11, 2935 22 of 33

each corresponding pixel in the output image, and the weight is defined by a function,
and hence, they share weights to reduce parameters in the network. This process can be
expressed mathematically as:

Xl
j = f

(
∑

i∈Mj

Yl−1
i Kl

ij + bl
j

)
(8)

where Yl−1
i is the output of the i-th feature map in the l − 1 layer, and Xl

j is the input of the

jth feature map in the l layer. Kij and bl
j are the convolutional kernel and bias in the l layer.

f (.) is the activation function. Higher-level unique features can be identified through a
series of increased convolution layers; hence, the need to go deeper.

2. Pooling Layer

After the convolution operation, there is a need to reduce the dimensions of the image
for further processing. This process is known as down sampling or simply a pooling
operation. This process can be expressed mathematically as:

Xl
j = f

(
βl

j · downs

(
Xl−1

j

)
+ dl

j

)
(9)

where Xl
j represents the jth feature map in the l layer. βl

j and dl
j are the multiplicative factor

and bias, respectively.·downs represents an under-sampling function. Under-sampling can
be done in many forms, some of which are average pooling, maximal pooling (max pool),
minimal pooling operation, and so on. In our work, we employed max pooling.

3. Fully Connected Layer

Each neuron in the fully connected layer is connected to all neurons in the feature map
of the previous layer, and the output can be expressed as:

hW,b(x) = f
(
WT + b

)
(10)

where hW,b(x) is the output, and W represents the corresponding weights of the network.
The inputs to the fully connected layer are mainly features extracted from the preceding
layer. Each feature in the former layer represents different semantic information that is
unique and important for the next layer.

4.2.2. Transfer Learning Approach

The goal of transfer learning is to improve the target learners’ performance on tar-
get domains by transferring useful knowledge [76,77] from disparate but related source
domains to the target at a lower computational cost. The reliance on a large number of
target domain data for constructing target learners can thus be reduced. It has emerged as
a popular and promising area of machine learning due to its wide range of application pos-
sibilities, especially in solving real-world problems [78–81] in a cheaper and more reliable
method. The sphere of use of transfer learning is not few, coupled with its record of high
results [82,83].

An approach in transfer learning is that the last few layers of the pre-trained network
are replaced with new layers, such as a fully connected layer and a softmax classification
layer, with the number of classes set to be equivalent to that of the new target dataset,
which in our research is 10 for the number of tomato leaf classes. In our research, all the
networks used were pre-trained on the imagenet dataset before they were re-trained to
learn the features of the tomato leaf image dataset in order to correctly recognize them
based on their different classes.

However, the challenge of maximizing its use with regard to modifying the learning
rate to suit the target data still exists. It is discovered that one learning rate being used
across all the layers of a model in transfer learning is not a good practice for transfer

Plants 2022, 11, 2935 23 of 33

learning [84]. In each model, we unfreeze the layer and add a stack of one activation layer,
one batch-normalization layer, and one dropout layer. All models are tested with the same
dropout values, different learning rates, and varying batch sizes.

4.2.3. Overall Architecture of the Proposed Method

The proposed research network architecture consists of five networks designed simi-
larly but with a different number of layers. Each layer consists of both an identity and a con-
volutional block. The identity block is the standard block used in ResNets and corresponds
to the case where the input activation and output activation have the same dimensions.
Figure 17 shows the entire workflow for the tomato leaf disease recognition system.

Plants 2022, 11, x FOR PEER REVIEW 24 of 35

An approach in transfer learning is that the last few layers of the pre-trained network

are replaced with new layers, such as a fully connected layer and a softmax classification

layer, with the number of classes set to be equivalent to that of the new target dataset,

which in our research is 10 for the number of tomato leaf classes. In our research, all the

networks used were pre-trained on the imagenet dataset before they were re-trained to

learn the features of the tomato leaf image dataset in order to correctly recognize them

based on their different classes.

However, the challenge of maximizing its use with regard to modifying the learning

rate to suit the target data still exists. It is discovered that one learning rate being used

across all the layers of a model in transfer learning is not a good practice for transfer learn-

ing [84]. In each model, we unfreeze the layer and add a stack of one activation layer, one

batch-normalization layer, and one dropout layer. All models are tested with the same

dropout values, different learning rates, and varying batch sizes.

4.2.3. Overall Architecture of the Proposed Method

The proposed research network architecture consists of five networks designed sim-

ilarly but with a different number of layers. Each layer consists of both an identity and a

convolutional block. The identity block is the standard block used in ResNets and corre-

sponds to the case where the input activation and output activation have the same dimen-

sions. Figure 17 shows the entire workflow for the tomato leaf disease recognition system.

Figure 17. Workflow for the tomato leaf disease recognition system.

The identity block is as shown in Figure 18, in which two hidden layers are skipped

to avoid the vanishing gradient problem. The purpose of this block is to match input and

output dimensions. The purpose of the identity block is to resize the input to a different

dimension. Figure 18 shows the residual identity mapping for the residual neural network

which is the basic building block for the network used in this research, while Figure 19

shows a simplified block diagram for the arrangement of the various blocks for the resid-

ual neural network [60] network used in this research.

Figure 17. Workflow for the tomato leaf disease recognition system.

The identity block is as shown in Figure 18, in which two hidden layers are skipped
to avoid the vanishing gradient problem. The purpose of this block is to match input and
output dimensions. The purpose of the identity block is to resize the input to a different
dimension. Figure 18 shows the residual identity mapping for the residual neural network
which is the basic building block for the network used in this research, while Figure 19
shows a simplified block diagram for the arrangement of the various blocks for the residual
neural network [60] network used in this research.

Plants 2022, 11, x FOR PEER REVIEW 25 of 35

Figure 18. Showing the residual identity mapping for a residual neural network.

Figure 19. Simplified block diagram for the residual neural network.

Training deep learning architectures, whether it is a new model from scratch or via

transfer learning is not without its difficulties. Learning algorithms based on artificial neu-

ral networks, and particularly deep learning for computer vision, may appear to include

a plethora of bells and whistles, popularly known as hyperparameters [85]. To success-

fully train and debug them, more hyperparameters should be adjustable, and this has

made it possible for one to obtain more interesting results. Making sure we have the right

learning rate is one of the most important things we can do when training a model. If our

learning rate is too low, training our model may take many, many epochs. For this re-

search, all our five networks were pre-trained with the ImageNet dataset and then fine-

tuned in the manner described below for re-training on our tomato leaf images.

We implement discriminative learning rates [86] in the process of training our model

on plant leaf images. Discriminative fine-tuning is a fine-tuning strategy introduced by

universal language model fine-tuning (ULMFiT) [86] for the implementation of natural

language processing (NLP). Instead of the same learning rate being used across all the

layers of our model, this allows us to tune each layer with a different learning rate that is

efficient and suits it better than any other learning rate. Since the deepest layers of pre-

trained models may not require so high a learning rate as the final ones will require, we

will use different learning rates for them as described by [84,87].

To preserve the quality of those pre-trained weights even after unfreezing them,

some of the added parameters are tuned for a few epochs, and naturally, we would not

expect the best learning rate for those pre-trained parameters to be as high as the best

learning rate for the randomly added parameters. Keep in mind that the pre-trained

weights were trained on millions of images over hundreds of epochs, so they have learned

Figure 18. Showing the residual identity mapping for a residual neural network.

Plants 2022, 11, 2935 24 of 33

Plants 2022, 11, x FOR PEER REVIEW 25 of 35

Figure 18. Showing the residual identity mapping for a residual neural network.

Figure 19. Simplified block diagram for the residual neural network.

Training deep learning architectures, whether it is a new model from scratch or via

transfer learning is not without its difficulties. Learning algorithms based on artificial neu-

ral networks, and particularly deep learning for computer vision, may appear to include

a plethora of bells and whistles, popularly known as hyperparameters [85]. To success-

fully train and debug them, more hyperparameters should be adjustable, and this has

made it possible for one to obtain more interesting results. Making sure we have the right

learning rate is one of the most important things we can do when training a model. If our

learning rate is too low, training our model may take many, many epochs. For this re-

search, all our five networks were pre-trained with the ImageNet dataset and then fine-

tuned in the manner described below for re-training on our tomato leaf images.

We implement discriminative learning rates [86] in the process of training our model

on plant leaf images. Discriminative fine-tuning is a fine-tuning strategy introduced by

universal language model fine-tuning (ULMFiT) [86] for the implementation of natural

language processing (NLP). Instead of the same learning rate being used across all the

layers of our model, this allows us to tune each layer with a different learning rate that is

efficient and suits it better than any other learning rate. Since the deepest layers of pre-

trained models may not require so high a learning rate as the final ones will require, we

will use different learning rates for them as described by [84,87].

To preserve the quality of those pre-trained weights even after unfreezing them,

some of the added parameters are tuned for a few epochs, and naturally, we would not

expect the best learning rate for those pre-trained parameters to be as high as the best

learning rate for the randomly added parameters. Keep in mind that the pre-trained

weights were trained on millions of images over hundreds of epochs, so they have learned

Figure 19. Simplified block diagram for the residual neural network.

Training deep learning architectures, whether it is a new model from scratch or via
transfer learning is not without its difficulties. Learning algorithms based on artificial neural
networks, and particularly deep learning for computer vision, may appear to include a
plethora of bells and whistles, popularly known as hyperparameters [85]. To successfully
train and debug them, more hyperparameters should be adjustable, and this has made it
possible for one to obtain more interesting results. Making sure we have the right learning
rate is one of the most important things we can do when training a model. If our learning
rate is too low, training our model may take many, many epochs. For this research, all
our five networks were pre-trained with the ImageNet dataset and then fine-tuned in the
manner described below for re-training on our tomato leaf images.

We implement discriminative learning rates [86] in the process of training our model
on plant leaf images. Discriminative fine-tuning is a fine-tuning strategy introduced by
universal language model fine-tuning (ULMFiT) [86] for the implementation of natural
language processing (NLP). Instead of the same learning rate being used across all the
layers of our model, this allows us to tune each layer with a different learning rate that
is efficient and suits it better than any other learning rate. Since the deepest layers of
pre-trained models may not require so high a learning rate as the final ones will require,
we will use different learning rates for them as described by [84,87].

To preserve the quality of those pre-trained weights even after unfreezing them, some
of the added parameters are tuned for a few epochs, and naturally, we would not expect
the best learning rate for those pre-trained parameters to be as high as the best learning
rate for the randomly added parameters. Keep in mind that the pre-trained weights were
trained on millions of images over hundreds of epochs, so they have learned rich features
from being previously trained on large datasets. Our experiment was carried out with a
few specific detailed goals in mind, they are:

1. To research the role of depth on the performance of such models, various residual
convolutional neural networks, having different layers, such as ResNet-18, ResNet-34,
ResNet-50, ResNet-102, and ResNet-152 were tested.

2. Various train/test data split ratios were experimented on to determine the optimum
value of the train/test split ratio for such a research area.

3. Different batch sizes were selected based on the capacity of the GPU system obtainable
in the laboratory to test for the influence of batch size on the training and if so on the
result of the training and test processes of the model.

4. The discriminative learning process was studied to determine the best learning rates
to select in re-training the various models to achieve an optimal training process from
one domain of data to a new domain of datasets: specific to this research is the tomato
plant leaf dataset for disease recognition.

Plants 2022, 11, 2935 25 of 33

4.3. Training Procedure
4.3.1. Tuning the Learning Rate Schedule

We began with an extremely low learning rate, and used it for one mini-batch, then
determined the losses and increased the learning rate by a certain percentage, i.e., doubling
it each time. Then, we ran another mini-batch and repeated the procedure above until
the loss worsened rather than improved. This is the point where we realized we had
gone too far. Then, we chose a learning rate that was slightly lower than this point. We
used discriminative learning rates and a gradual unfreezing of the network to re-train
the network using the tomato leaf images. The learning rate tool in fast.ai (fastai is a
deep learning library which provides practitioners with high-level components [88]) was
employed to return a plot of learning rate versus loss (cross-entropy) and to identify the
optimal learning rates to use with the Adam optimizer. Figure 20 shows the plot of the
learning rate curve as we trained the network. We used smaller learning rates in the early
layers to permit the weights in those layers to change in a slower pattern than those from
the later layers: 1 × 10−4, 1 × 10−3, and 1 × 10−2 for the first, middle, and last layers,
respectively. While training, for the first three epochs, only the final layers were trained,
while all prior layers were frozen. Subsequently, all layers were unfrozen and trained for
an additional 27 epochs.

Plants 2022, 11, x FOR PEER REVIEW 26 of 35

rich features from being previously trained on large datasets. Our experiment was carried

out with a few specific detailed goals in mind, they are:

1. To research the role of depth on the performance of such models, various residual

convolutional neural networks, having different layers, such as ResNet-18, ResNet-

34, ResNet-50, ResNet-102, and ResNet-152 were tested.

2. Various train/test data split ratios were experimented on to determine the optimum

value of the train/test split ratio for such a research area.

3. Different batch sizes were selected based on the capacity of the GPU system obtain-

able in the laboratory to test for the influence of batch size on the training and if so

on the result of the training and test processes of the model.

4. The discriminative learning process was studied to determine the best learning rates

to select in re-training the various models to achieve an optimal training process from

one domain of data to a new domain of datasets: specific to this research is the tomato

plant leaf dataset for disease recognition.

4.3. Training Procedure

4.3.1. Tuning the Learning Rate Schedule

We began with an extremely low learning rate, and used it for one mini-batch, then

determined the losses and increased the learning rate by a certain percentage, i.e., dou-

bling it each time. Then, we ran another mini-batch and repeated the procedure above

until the loss worsened rather than improved. This is the point where we realized we had

gone too far. Then, we chose a learning rate that was slightly lower than this point. We

used discriminative learning rates and a gradual unfreezing of the network to re-train the

network using the tomato leaf images. The learning rate tool in fast.ai (fastai is a deep

learning library which provides practitioners with high-level components [88]) was em-

ployed to return a plot of learning rate versus loss (cross-entropy) and to identify the op-

timal learning rates to use with the Adam optimizer. Figure 20 shows the plot of the learn-

ing rate curve as we trained the network. We used smaller learning rates in the early layers

to permit the weights in those layers to change in a slower pattern than those from the

later layers: 1 × 10−4, 1 × 10−3, and 1 × 10−2 for the first, middle, and last layers, respectively.

While training, for the first three epochs, only the final layers were trained, while all prior

layers were frozen. Subsequently, all layers were unfrozen and trained for an additional

27 epochs.

(a) (b)

Figure 20. Showing results of the learning rate finder on the network: (a) shows the learning rate

find result before unfreezing for the network of depth 152; (b) shows the result of the second learn-

ing rate find after unfreezing the model and training briefly on the first selected learning rate.

Figure 20. Showing results of the learning rate finder on the network: (a) shows the learning rate
find result before unfreezing for the network of depth 152; (b) shows the result of the second learning
rate find after unfreezing the model and training briefly on the first selected learning rate.

We can see from plot Figure 20a that in the range of 1 × 10−6 to 1 × 10−4, nothing
happened and the model did not train. Then, the loss started to decrease until it reached a
minimum at 1 × 10−1, and then it increased again. This showed that a learning rate greater
than 1 × 10−1 was high and will make training diverge, but a learning rate of 1 × 10−1 was
already too high for training; hence, we needed to select a better rate. Figure 20 shows us
four different points from our learning rate finder: valley, slide, steep, and minimum points,
respectively. With such, we can select an appropriate value for the learning rate. However,
that is not the end of the training procedure. Our goal is to train the whole network without
breaking the pre-trained weights.

Figure 21 shows activations of a convolutional neural network by layers, visually
demonstrating what is learned by the different layers of a model [89].

Plants 2022, 11, 2935 26 of 33

Plants 2022, 11, x FOR PEER REVIEW 27 of 35

We can see from plot Figure 20a that in the range of 1 × 10−6 to 1 × 10−4, nothing hap-

pened and the model did not train. Then, the loss started to decrease until it reached a

minimum at 1 × 10−1, and then it increased again. This showed that a learning rate greater

than 1 × 10−1 was high and will make training diverge, but a learning rate of 1 × 10−1 was

already too high for training; hence, we needed to select a better rate. Figure 20 shows us

four different points from our learning rate finder: valley, slide, steep, and minimum

points, respectively. With such, we can select an appropriate value for the learning rate.

However, that is not the end of the training procedure. Our goal is to train the whole

network without breaking the pre-trained weights.

Figure 21 shows activations of a convolutional neural network by layers, visually

demonstrating what is learned by the different layers of a model [89].

Plants 2022, 11, x FOR PEER REVIEW 28 of 35

Figure 21. Activations of a convolutional neural network by layers.

Because different layers in a neural network capture different types of information,

there is a need for them to be fine-tuned to different extents. Instead of using the same

learning rate for all layers of the model, the practice of discriminative fine-tuning allows

for the tuning of each layer in a neural network with different learning rates. For a proper

context, the regular SGD update of a model’s parameters θ at time step t looks can be

represented by the following:

𝜃𝑡 = 𝜃𝑡 − 1 − 𝜂 · ∇𝜃𝐽(𝜃) (11)

where η is the learning rate and ∇θJ(θ) represents the gradient with regard to the objective

function of the model in question.

For discriminative fine-tuning, we split the parameters θ into {θ1,...,θL}, where θl con-

tains the parameters of the model at the l-th layer and L is the number of layers in the

entire model.

Similarly, we obtain {η1,...,ηL}, where ηl signifies the learning rate of the l-th layer.

The SGD update with discriminative fine-tuning can then be represented by the fol-

lowing:

𝜃𝑡𝑙 = 𝜃𝑡𝑙 − 1 − 𝜂𝑙 · ∇𝜃𝑙𝐽(𝜃) (12)

Empirically, it has been found to be the best practice to first of all choose the learning

rate ηL of the last layer by fine-tuning only the last layer and using ηl−1 = ηl/2.6 as the learn-

ing rate for lower layers.

4.3.2. Unfreezing and Re-Tuning the Learning Rate Schedule

As we went about fine-tuning the model, the deepest layers of our pre-trained Res-

Net model did not need as high a learning rate as the last ones, so we should probably use

different learning rates for those—this is known as using discriminative learning rates. It

is based on the idea that we use a lower learning rate for the early layers of the neural

network, and a higher learning rate for the later layers, especially the randomly added

layers that suit the problem to be solved. It derives its foundation from the insights drawn

from the proposal of Jason Yosinski et al. [87] as summarized in Figure 22 below, which

shows the impact different layers make and training methods on the transfer learning ap-

proach in applications of deep learning models.

Figure 21. Activations of a convolutional neural network by layers.

Because different layers in a neural network capture different types of information,
there is a need for them to be fine-tuned to different extents. Instead of using the same
learning rate for all layers of the model, the practice of discriminative fine-tuning allows
for the tuning of each layer in a neural network with different learning rates. For a proper
context, the regular SGD update of a model’s parameters θ at time step t looks can be
represented by the following:

θt = θt− 1− η · ∇θ J(θ) (11)

Plants 2022, 11, 2935 27 of 33

where η is the learning rate and ∇θJ(θ) represents the gradient with regard to the objective
function of the model in question.

For discriminative fine-tuning, we split the parameters θ into {θ1,...,θL}, where θl

contains the parameters of the model at the l-th layer and L is the number of layers in the
entire model.

Similarly, we obtain {η1,...,ηL}, where ηl signifies the learning rate of the l-th layer.
The SGD update with discriminative fine-tuning can then be represented by the

following:
θtl = θtl − 1− ηl · ∇θl J(θ) (12)

Empirically, it has been found to be the best practice to first of all choose the learning
rate ηL of the last layer by fine-tuning only the last layer and using ηl−1 = ηl/2.6 as the
learning rate for lower layers.

4.3.2. Unfreezing and Re-Tuning the Learning Rate Schedule

As we went about fine-tuning the model, the deepest layers of our pre-trained ResNet
model did not need as high a learning rate as the last ones, so we should probably use
different learning rates for those—this is known as using discriminative learning rates. It
is based on the idea that we use a lower learning rate for the early layers of the neural
network, and a higher learning rate for the later layers, especially the randomly added
layers that suit the problem to be solved. It derives its foundation from the insights drawn
from the proposal of Jason Yosinski et al. [87] as summarized in Figure 22 below, which
shows the impact different layers make and training methods on the transfer learning
approach in applications of deep learning models.

Plants 2022, 11, x FOR PEER REVIEW 29 of 35

Figure 22. Layer depth against performance in training methods on transfer learning.

The learning rate finder selects a minibatch of images, determines the gradient for

the minibatch, and then steps the weights based on the learning rate and the gradient.

Leslie Smith initially set a very low learning rate for the first minibatch before gradually

raising it. We chose the steep or minimal point divided by a value of 10 because the min-

imum was where learning stops, but the steepest point was where learning was most ef-

fective. The early layers did not need to be modified at all; however, the later layers did

need to be adjusted to fit the tomato leaf images. Therefore, we used discriminative learn-

ing rates and set a smaller learning rate for the early layers and a greater learning rate for

the latter layers.

4.4. Experimental Setup

The training and testing processes in this experiment were implemented on Pytorch

using fastai library [88]; the scikit-learn, pillow, and OpenCV libraries were used, all of

which are written in Python. The model was trained and tested on an NVIDIA DGX-1

V100 with 8X Tesla V100 GPUs with a performance of one petaFLOP.

To carry out this research, a computer system was used to carry out the analysis pro-

cesses. The computer system has the following specifications: Windows 10, 64-bit, Intel

Core i7-4720 CPU @ 2.60 GHz, RAM 32 GB and GPU Nvidia GeForce GTX 1050 4 GB

dedicated memory, and Python 3.7 on Anaconda. The PC was used on a Linux-based

DELL PowerEdge T640 Tower Server with CUDA-based video cards GTX 1080TI, each

GPU Video memory was 11Gb, with a storage memory of 10TB Hard Drive and 3320 GB

SSD. Tables 12 and 13 detail the setup of the system used and the parameters used in

running the model.

Table 12. Configuration of the machine used.

Name Parameter

Memory 32 GB

Processor Intel(R) Xeon(R) Silver 4114 CPU @ 2.20 GHz

Server model DELL PowerEdge T640 Tower Server

Graphics
CUDA-based video cards 4X 1080TI; GPU Video

memory of 11 Gb

Figure 22. Layer depth against performance in training methods on transfer learning.

The learning rate finder selects a minibatch of images, determines the gradient for the
minibatch, and then steps the weights based on the learning rate and the gradient. Leslie
Smith initially set a very low learning rate for the first minibatch before gradually raising
it. We chose the steep or minimal point divided by a value of 10 because the minimum
was where learning stops, but the steepest point was where learning was most effective.
The early layers did not need to be modified at all; however, the later layers did need to be
adjusted to fit the tomato leaf images. Therefore, we used discriminative learning rates and
set a smaller learning rate for the early layers and a greater learning rate for the latter layers.

Plants 2022, 11, 2935 28 of 33

4.4. Experimental Setup

The training and testing processes in this experiment were implemented on Pytorch
using fastai library [88]; the scikit-learn, pillow, and OpenCV libraries were used, all of
which are written in Python. The model was trained and tested on an NVIDIA DGX-1 V100
with 8X Tesla V100 GPUs with a performance of one petaFLOP.

To carry out this research, a computer system was used to carry out the analysis
processes. The computer system has the following specifications: Windows 10, 64-bit, Intel
Core i7-4720 CPU @ 2.60 GHz, RAM 32 GB and GPU Nvidia GeForce GTX 1050 4 GB
dedicated memory, and Python 3.7 on Anaconda. The PC was used on a Linux-based DELL
PowerEdge T640 Tower Server with CUDA-based video cards GTX 1080TI, each GPU
Video memory was 11Gb, with a storage memory of 10TB Hard Drive and 3320 GB SSD.
Tables 12 and 13 detail the setup of the system used and the parameters used in running
the model.

Table 12. Configuration of the machine used.

Name Parameter

Memory 32 GB
Processor Intel(R) Xeon(R) Silver 4114 CPU @ 2.20 GHz

Server model DELL PowerEdge T640 Tower Server
Graphics CUDA-based video cards 4X 1080TI; GPU Video memory of 11 Gb

OS Linux
Language Python 3

Framework Pytorch

Table 13. Configuration of the machine used.

Name Parameter

Solver type Adam
Batch sizes 20, 30, 40, 50, 60, 70, 80, 90, 100

Image input size 256 × 256
Train/Test-split ratio 40/60, 50/50, 60/40, 70/30, 80/20

Learning rate Discriminative ranges
Drop out 0.5

5. Discussion

Using data from ten different classes, the effect of different depths, and batch sizes
(depth = 18, 34, 50, 101, and 152 and BS = 40, 50, 60, 70, 80, 90, and 100) and parameter
values on their performance in adequately recognizing healthy tomatoes and other diseased
classes were investigated in this study. The research was carried out using transfer learning
and a pre-trained residual neural network. They performed well on the training and test
data, according to the results. However, the steady state in the test data was observed to
be delayed as the batch size value increased. The highest recognition accuracy value was
99.51% for depth = 152, with a train/validation data split size of 80/20 and a batch size
of 40. According to the findings, the batch size value has no significant effect on overall
performance but increasing the batch size value delays obtaining stable results.

Table 11 shows a detailed comparison of our proposed technique with other state-of-
the-art models. As can be seen from Table 11 and Figure 13, our model outperformed the
previous models, surpassing that of Li et al. [58], which was the closest in performance,
with a +0.75% performance gain, and achieved a favorable performance with a +3.79%
improvement from that of Paymode et al. [69] and other previous models. However, most
recent models, such as Islam et al. [84] and Tarek et al. [71] outperformed our method,
recording 100% and 99.81% accuracy. Whereby some authors used the accuracy metric to
measure their performance, we recorded a much higher accuracy but chose to benchmark
against our F1 score value, which is regarded as a much better form of performance measure

Plants 2022, 11, 2935 29 of 33

for classification and recognition problems, since it combines both the precision and recall
of the model in question.

6. Conclusions

Discriminative learning was implemented in training our proposed networks, having
diverse layers, such as 18, 34, 50, 102, and 152 layers, respectively. The results show that
the network with the highest depth produced the best performance, suggesting that deeper
networks could still be better in deep learning. Five train/test data split ratios of 40/60,
50/50, 60/40, 70/30, and 80/20 were experimented on to determine the optimum value of
the train/test split ratio for such a research area. The split ratio of 80/20 resulted in the
optimal solution, with 70/30 coming after it. Different batch sizes were selected based on
the capacity of the GPU system obtainable in the laboratory to test for the influence of batch
size on the training, and if so on the result of the training and test processes of the model.
The charts show a slight increase in performance for lesser batch sizes, while the most
notable effect of the batch sizes was in speeding up the training process. The discriminative
learning process was studied to determine the best learning rates to select in re-training
the network during transfer learning, and the results show how effective it is to pre-train,
determine a range of suitable learning rates, and re-train the entire network based on the
discriminative learning rates to achieve a faster and more efficient performance. The data
augmentation also proved to be effective, as the results were a little bit improved with the
augmentation process.

Author Contributions: Conceptualization, P.S.K.; methodology, P.S.K.; software, P.S.K., A.K.; vali-
dation, K.X.; formal analysis, P.S.K., A.K.; resources, K.X.; data curation, P.S.K.; writing—original
draft preparation, P.S.K.; writing—review and editing, E.O.O., A.K.; visualization, E.O.O., A.K.;
supervision, K.X.; funding acquisition, K.X. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China No.
U1813222 and No. 42075129, the Hebei Province Natural Science Foundation No. E2021202179, Key
Research and Development Project from Hebei Province No. 19210404D, No. 20351802D, and No.
21351803D.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The PlantVillage dataset is publicly available online at https://github.
com/spMohanty/PlantVillage-Dataset (accessed on 13 November 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hughes, D.P.; Salathe, M. An Open Access Repository of Images on Plant Health to Enable the Development of Mobile Disease

Diagnostics. arXiv 2015, arXiv:1511.08060.
2. Food and Agriculture Organization of the United Nations. Plant Pests and Diseases. Available online: https://www.fao.org/

emergencies/emergency-types/plant-pests-and-diseases/en/ (accessed on 13 November 2021).
3. FAOSTAT. 2019. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 13 November 2021).
4. Panno, S.; Davino, S.; Caruso, A.G.; Bertacca, S.; Crnogorac, A.; Mandić, A.; Noris, E.; Matić, S. A Review of the Most Common

and Economically Important Diseases That Undermine the Cultivation of Tomato Crop in the Mediterranean Basin. Agronomy
2021, 11, 2188. [CrossRef]

5. Das, S. Over View of Septoria Diseases on Different Crops and Its Management. Int. J. Agric. Environ. Biotechnol. 2020, 13, 361–370.
[CrossRef]

6. Gilardi, G.; Matic, S.; Guarnaccia, V.; Garibaldi, A.; Gullino, M.L. First Report of Fusarium Clavum Causing Leaf Spot and Fruit
Rot on Tomato in Italy. Plant Dis. 2021, 105, 2250. [CrossRef]

7. Infantino, A.; Loreti, S. Malattie. In Il Pomodoro; Angelini, R., Ed.; Collana Coltura & Cultura, Bayer CropScience: Bologna, Italy,
2010; pp. 194–219.

8. Barba, M.; Martelli, G.; Tomassoli, L.; Galllitelli, D.; Di Serio, F.; Pasquini, G. Virosi e Fitoplasmosi. In Proceedings of the AA.VV. Il
Pomodoro; Bayer CropScience: Bologna, Italy, 2010; pp. 220–235.

https://github.com/spMohanty/PlantVillage-Dataset
https://github.com/spMohanty/PlantVillage-Dataset
https://www.fao.org/emergencies/emergency-types/plant-pests-and-diseases/en/
https://www.fao.org/emergencies/emergency-types/plant-pests-and-diseases/en/
http://www.fao.org/faostat/en/#data/QC
http://doi.org/10.3390/agronomy11112188
http://doi.org/10.30954/0974-1712.03.2020.13
http://doi.org/10.1094/PDIS-05-20-1096-PDN

Plants 2022, 11, 2935 30 of 33

9. Zaagueri, T.; Mnari-Hattab, M.; Moussaoui, N.; Accotto, G.P.; Noris, E.; Marian, D.; Vaira, A.M. Chickpea Chlorotic Dwarf Virus
Infecting Tomato Crop in Tunisia. Eur. J. Plant Pathol. 2019, 154, 1159–1164. [CrossRef]

10. Williams’, C.E.; Clair, D.A.S.; Williams, C.E.; St, N.D.; Clair, D.A. Phenetic Relationships and Levels of Variability Detected
by Restriction Fragment Length Polymorphism and Random Amplified Polymorphic DNA Analysis of Cultivated and Wild
Accessions of Lycopersicon Esculentum. Genome 2011, 36, 619–630. [CrossRef]

11. Bai, Y.; Im, P.; In, L.; Ut, D.O. Domestication and Breeding of Tomatoes: What Have We Gained and What Can We Gain in the
Future? Ann. Bot. 2007, 100, 1085–1094. [CrossRef]

12. Blanca, J.; Montero-Pau, J.; Sauvage, C.; Bauchet, G.; Illa, E.; Díez, M.J.; Francis, D.; Causse, M.; van der Knaap, E.; Cañizares, J.
Genomic Variation in Tomato, from Wild Ancestors to Contemporary Breeding Accessions. BMC Genom. 2015, 16, 257. [CrossRef]

13. King, K.C.; Lively, C.M. Does Genetic Diversity Limit Disease Spread in Natural Host Populations? Heredity 2012, 109, 199–203.
[CrossRef]

14. Singh, V.K.; Singh, A.K.; Kumar, A. Disease Management of Tomato through PGPB: Current Trends and Future Perspective.
3 Biotech 2017, 7, 255. [CrossRef]

15. Khirade, S.D.; Patil, A.B. Plant Disease Detection Using Image Processing. In Proceedings of the 2015 International Conference
on Computing Communication Control and Automation, Pune, India, 26–27 February 2015; IEEE: Piscataway, NJ, USA, 2015;
pp. 768–771.

16. Bharate, A.A.; Shirdhonkar, M.S. A Review on Plant Disease Detection Using Image Processing. In Proceedings of the Proceedings
of the International Conference on Intelligent Sustainable Systems, ICISS 2017, Palladam, India, 7–8 December 2017; Institute of
Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2018; pp. 103–109. [CrossRef]

17. Song, Z.; Cai, C.; Yan, Y. Automatic Identification of Grape Varieties Based on Leaf Morphological Characteristics. Comput. Simul.
2012, 29, 307–310.

18. Wang, L.I.; Shao-Xian, T. Review of Crop Diseases Recognition Based on Image Processing. Hunan Agric. Mach. 2012, 1, 176–178.
19. Tao, H.; Zhao, L.; Xi, J.; Yu, L.; Wang, T. Fruits and Vegetables Recognition Based on Color and Texture Features. Trans. Chin. Soc.

Agric. Eng. 2014, 30, 305–311.
20. Sladojevic, S.; Arsenovic, M.; Anderla, A.; Culibrk, D.; Stefanovic, D. Deep Neural Networks Based Recognition of Plant Diseases

by Leaf Image Classification. Comput. Intell. Neurosci. 2016, 2016, 1–11. [CrossRef]
21. Zhou, G.; Zhang, W.; Chen, A.; He, M.; Ma, X. Rapid Detection of Rice Disease Based on FCM-KM and Faster R-CNN Fusion.

IEEE Access 2019, 7, 143190–143206. [CrossRef]
22. Durmus, H.; Gunes, E.O.; Kirci, M. Disease Detection on the Leaves of the Tomato Plants by Using Deep Learning. In Proceedings

of the 2017 6th International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 7–10 August 2017; IEEE: Piscataway, NJ,
USA, 2017; pp. 1–5. [CrossRef]

23. Antonellis, G.; Gavras, A.G.; Panagiotou, M.; Kutter, B.L.; Guerrini, G.; Sander, A.C.; Fox, P.J. Shake Table Test of Large-Scale
Bridge Columns Supported on Rocking Shallow Foundations. J. Geotech. Geoenviron. Eng. 2015, 141, 04015009. [CrossRef]

24. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [CrossRef]

25. Rangarajan, A.K.; Purushothaman, R.; Ramesh, A. Tomato Crop Disease Classification Using Pre-Trained Deep Learning
Algorithm. Procedia Comput. Sci. 2018, 133, 1040–1047. [CrossRef]

26. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd
International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May
2015; pp. 1–14.

27. Karthik, R.; Hariharan, M.; Anand, S.; Mathikshara, P.; Johnson, A.; Menaka, R. Attention Embedded Residual CNN for Disease
Detection in Tomato Leaves. Appl. Soft Comput. 2020, 86, 105933. [CrossRef]

28. Anand, R.; Veni, S.; Aravinth, J. An Application of Image Processing Techniques for Detection of Diseases on Brinjal Leaves Using
K-Means Clustering Method. In Proceedings of the 2016 International Conference on Recent Trends in Information Technology
(ICRTIT), Chennai, India, 8–9 April 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [CrossRef]

29. Zhang, S.; Wang, H.; Huang, W.; You, Z. Plant Diseased Leaf Segmentation and Recognition by Fusion of Superpixel, K-Means
and PHOG. Optik 2018, 157, 866–872. [CrossRef]

30. Rani, F.A.P.; Kumar, S.; Fred, A.L.; Dyson, C.; Suresh, V.; Jeba, P. K-Means Clustering and SVM for Plant Leaf Disease Detection
and Classification. In Proceedings of the 2019 International Conference on Recent Advances in Energy-Efficient Computing and
Communication (ICRAECC), Nagercoil, India, 7–8 March 2019; Fred, A.L., Dyson, C., Suresh, V., Eds.; IEEE: Piscataway, NJ, USA,
2019; pp. 1–4. [CrossRef]

31. Kumari, C.U.; Jeevan Prasad, S.; Mounika, G. Leaf Disease Detection: Feature Extraction with K-Means Clustering and Classifica-
tion with ANN. In Proceedings of the 2019 3rd International Conference on Computing Methodologies and Communication
(ICCMC), Erode, India, 27–29 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1095–1098.

32. Liu, B.; Tan, C.; Li, S.; He, J.; Wang, H. A Data Augmentation Method Based on Generative Adversarial Networks for Grape Leaf
Disease Identification. IEEE Access 2020, 8, 102188–102198. [CrossRef]

33. Lv, M.; Zhou, G.; He, M.; Chen, A.; Zhang, W.; Hu, Y. Maize Leaf Disease Identification Based on Feature Enhancement and
DMS-Robust Alexnet. IEEE Access 2020, 8, 57952–57966. [CrossRef]

http://doi.org/10.1007/s10658-019-01698-y
http://doi.org/10.1139/g93-083
http://doi.org/10.1093/aob/mcm150
http://doi.org/10.1186/s12864-015-1444-1
http://doi.org/10.1038/hdy.2012.33
http://doi.org/10.1007/s13205-017-0896-1
http://doi.org/10.1109/ISS1.2017.8389326
http://doi.org/10.1155/2016/3289801
http://doi.org/10.1109/ACCESS.2019.2943454
http://doi.org/10.1109/Agro-Geoinformatics.2017.8047016
http://doi.org/10.1061/(ASCE)GT.1943-5606.0001284
http://doi.org/10.1109/CVPR.2018.00745
http://doi.org/10.1016/j.procs.2018.07.070
http://doi.org/10.1016/j.asoc.2019.105933
http://doi.org/10.1109/ICRTIT.2016.7569531
http://doi.org/10.1016/j.ijleo.2017.11.190
http://doi.org/10.1109/ICRAECC43874.2019.8995157
http://doi.org/10.1109/ACCESS.2020.2998839
http://doi.org/10.1109/ACCESS.2020.2982443

Plants 2022, 11, 2935 31 of 33

34. Jiang, D.; Li, F.; Yang, Y.; Yu, S. A Tomato Leaf Diseases Classification Method Based on Deep Learning. In Proceedings of the
Proceedings of the 32nd Chinese Control and Decision Conference, CCDC 2020, Hefei, China, 22–24 August 2020; Institute of
Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 1446–1450. [CrossRef]

35. Waheed, A.; Goyal, M.; Gupta, D.; Khanna, A.; Hassanien, A.E.; Pandey, H.M. An Optimized Dense Convolutional Neural
Network Model for Disease Recognition and Classification in Corn Leaf. Comput. Electron. Agric. 2020, 175, 105456. [CrossRef]

36. Huang, S.; Liu, W.; Qi, F.; Yang, K. Development and Validation of a Deep Learning Algorithm for the Recognition of Plant Disease.
In Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
Zhangjiajie, China, 10–12 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1951–1957. [CrossRef]

37. Chen, X.; Zhou, G.; Chen, A.; Yi, J.; Zhang, W.; Hu, Y. Identification of Tomato Leaf Diseases Based on Combination of
ABCK-BWTR and B-ARNet. Comput. Electron. Agric. 2020, 178, 105730. [CrossRef]

38. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp.
770–778. [CrossRef]

39. Sethy, P.K.; Barpanda, N.K.; Rath, A.K.; Behera, S.K. Deep Feature Based Rice Leaf Disease Identification Using Support Vector
Machine. Comput. Electron. Agric. 2020, 175, 105527. [CrossRef]

40. Oyewola, D.O.; Dada, E.G.; Misra, S.; Damaševičius, R. Detecting Cassava Mosaic Disease Using a Deep Residual Convolutional
Neural Network with Distinct Block Processing. PeerJ Comput. Sci. 2021, 7, e352. [CrossRef]

41. Zeng, W.; Li, M. Crop Leaf Disease Recognition Based on Self-Attention Convolutional Neural Network. Comput. Electron. Agric.
2020, 172, 105341. [CrossRef]

42. Chen, J.J.; Chen, J.J.; Zhang, D.; Sun, Y.; Nanehkaran, Y.A. Using Deep Transfer Learning for Image-Based Plant Disease
Identification. Comput. Electron. Agric. 2020, 173, 105393. [CrossRef]

43. Li, Y.; Nie, J.; Chao, X. Do We Really Need Deep CNN for Plant Diseases Identification? Comput. Electron. Agric. 2020, 178, 105803.
[CrossRef]

44. Ramcharan, A.; Baranowski, K.; McCloskey, P.; Ahmed, B.; Legg, J.; Hughes, D.P. Deep Learning for Image-Based Cassava Disease
Detection. Front. Plant Sci. 2017, 8, 1852. [CrossRef]

45. Ramcharan, A.; McCloskey, P.; Baranowski, K.; Mbilinyi, N.; Mrisho, L.; Ndalahwa, M.; Legg, J.; Hughes, D.P. A Mobile-Based
Deep Learning Model for Cassava Disease Diagnosis. Front. Plant Sci. 2019, 10, 272. [CrossRef]

46. Adedoja, A.; Owolawi, P.A.; Mapayi, T. Deep Learning Based on NASNet for Plant Disease Recognition Using Leave Images.
In Proceedings of the 2019 International Conference on Advances in Big Data, Computing and Data Communication Systems
(icABCD), Winterton, South Africa, 5–6 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [CrossRef]

47. Devi, S.N.; Muthukumaravel, A. A Novel Salp Swarm Algorithm With Attention-Densenet Enabled Plant Leaf Disease Detection
And Classification. In Precision Agriculture, Proceedings of the 2022 International Conference on Advanced Computing
Technologies and Applications (ICACTA), Coimbatore, India, 4–5 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–7.
[CrossRef]

48. Bhujel, A.; Kim, N.-E.; Arulmozhi, E.; Basak, J.K.; Kim, H.-T. A Lightweight Attention-Based Convolutional Neural Networks for
Tomato Leaf Disease Classification. Agriculture 2022, 12, 228. [CrossRef]

49. Zhao, Y.; Sun, C.; Xu, X.; Chen, J. RIC-Net: A Plant Disease Classification Model Based on the Fusion of Inception and Residual
Structure and Embedded Attention Mechanism. Comput. Electron. Agric. 2022, 193, 106644. [CrossRef]

50. Keivani, M.; Mazloum, J.; Sedaghatfar, E.; Tavakoli, M.B. Automated Analysis of Leaf Shape, Texture, and Color Features for
Plant Classification. Traitement du Signal 2020, 37, 17–28. [CrossRef]

51. Li, J.; Yang, J. Supervised Classification of Plant Image Based on Attention Mechanism. In Proceedings of the 2021 7th International
Conference on Systems and Informatics (ICSAI), Chongqing, China, 13–15 November 2021; IEEE: Piscataway, NJ, USA, 2021;
pp. 1–6. [CrossRef]

52. Kanda, P.S.; Xia, K.; Sanusi, O.H. A Deep Learning-Based Recognition Technique for Plant Leaf Classification. IEEE Access 2021, 9,
162590–162613. [CrossRef]

53. Thanikkal, J.G.; Dubey, A.K.; Thomas, M. Importance of Image Morphological Features in Continues Learning. In Proceedings
of the 2022 International Mobile and Embedded Technology Conference (MECON), Noida, India, 10–11 March 2022; IEEE:
Piscataway, NJ, USA, 2022; pp. 372–376. [CrossRef]

54. Twum, F.; Missah, Y.M.; Oppong, S.O.; Ussiph, N. Textural Analysis for Medicinal Plants Identification Using Log Gabor Filters.
IEEE Access 2022, 10, 83204–83220. [CrossRef]

55. Gajjar, V.K.; Nambisan, A.K.; Kosbar, K.L. Plant Identification in a Combined-Imbalanced Leaf Dataset. IEEE Access 2022, 10,
37882–37891. [CrossRef]

56. Goyal, N.; Gupta, K.; Kumar, N. Clustering-Based Hierarchical Framework for Multiclass Classification of Leaf Images. IEEE
Trans. Ind. Appl. 2022, 58, 4076–4085. [CrossRef]

57. Ganguly, S.; Bhowal, P.; Oliva, D.; Sarkar, R. BLeafNet: A Bonferroni Mean Operator Based Fusion of CNN Models for Plant
Identification Using Leaf Image Classification. Ecol. Inform. 2022, 69, 101585. [CrossRef]

58. Li, M.; Zhou, G.; Chen, A.; Yi, J.; Lu, C.; He, M.; Hu, Y. FWDGAN-Based Data Augmentation for Tomato Leaf Disease Identification.
Comput. Electron. Agric. 2022, 194, 106779. [CrossRef]

http://doi.org/10.1109/CCDC49329.2020.9164457
http://doi.org/10.1016/j.compag.2020.105456
http://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00269
http://doi.org/10.1016/j.compag.2020.105730
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1016/j.compag.2020.105527
http://doi.org/10.7717/peerj-cs.352
http://doi.org/10.1016/j.compag.2020.105341
http://doi.org/10.1016/j.compag.2020.105393
http://doi.org/10.1016/j.compag.2020.105803
http://doi.org/10.3389/fpls.2017.01852
http://doi.org/10.3389/fpls.2019.00272
http://doi.org/10.1109/ICABCD.2019.8851029
http://doi.org/10.1109/ICACTA54488.2022.9753001
http://doi.org/10.3390/agriculture12020228
http://doi.org/10.1016/j.compag.2021.106644
http://doi.org/10.18280/ts.370103
http://doi.org/10.1109/ICSAI53574.2021.9664220
http://doi.org/10.1109/ACCESS.2021.3131726
http://doi.org/10.1109/MECON53876.2022.9752445
http://doi.org/10.1109/ACCESS.2022.3196788
http://doi.org/10.1109/ACCESS.2022.3165583
http://doi.org/10.1109/TIA.2022.3153757
http://doi.org/10.1016/j.ecoinf.2022.101585
http://doi.org/10.1016/j.compag.2022.106779

Plants 2022, 11, 2935 32 of 33

59. Too, E.C.; Yujian, L.; Njuki, S.; Yingchun, L. A Comparative Study of Fine-Tuning Deep Learning Models for Plant Disease
Identification. Comput. Electron. Agric. 2019, 161, 272–279. [CrossRef]

60. Hu, G.; Wu, H.; Zhang, Y.; Wan, M. A Low Shot Learning Method for Tea Leaf’s Disease Identification. Comput. Electron. Agric.
2019, 163, 104852. [CrossRef]

61. Wang, G.; Sun, Y.; Wang, J. Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning. Comput. Intell.
Neurosci. 2017, 2017, 1–8. [CrossRef] [PubMed]

62. Agarwal, M.; Gupta, S.K.; Biswas, K.K. Development of Efficient CNN Model for Tomato Crop Disease Identification. Sustain.
Comput. Inform. Syst. 2020, 28, 100407. [CrossRef]

63. Gandhi, R.; Nimbalkar, S.; Yelamanchili, N.; Ponkshe, S. Plant Disease Detection Using CNNs and GANs as an Augmentative
Approach. In Proceedings of the 2018 IEEE International Conference on Innovative Research and Development (ICIRD), Bangkok,
Thailand, 11–12 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [CrossRef]

64. Elhassouny, A.; Smarandache, F. Smart Mobile Application to Recognize Tomato Leaf Diseases Using Convolutional Neural
Networks. In Proceedings of the 2019 International Conference of Computer Science and Renewable Energies (ICCSRE), Agadir,
Morocco, 22–24 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [CrossRef]

65. Darwish, A.; Ezzat, D.; Hassanien, A.E. An Optimized Model Based on Convolutional Neural Networks and Orthogonal Learning
Particle Swarm Optimization Algorithm for Plant Diseases Diagnosis. Swarm Evol. Comput. 2020, 52, 100616. [CrossRef]

66. Mishra, S.; Sachan, R.; Rajpal, D. Deep Convolutional Neural Network Based Detection System for Real-Time Corn Plant Disease
Recognition. Procedia Comput. Sci. 2020, 167, 2003–2010. [CrossRef]

67. Lamba, M.; Gigras, Y.; Dhull, A. Classification of Plant Diseases Using Machine and Deep Learning. Open Comput. Sci. 2021, 11,
491–508. [CrossRef]

68. Zhao, S.; Peng, Y.; Liu, J.; Wu, S. Tomato Leaf Disease Diagnosis Based on Improved Convolution Neural Network by Attention
Module. Agriculture 2021, 11, 651. [CrossRef]

69. Paymode, A.S.; Malode, V.B. Transfer Learning for Multi-Crop Leaf Disease Image Classification Using Convolutional Neural
Network VGG. Artif. Intell. Agric. 2022, 6, 23–33. [CrossRef]

70. Islam, M.S.; Sultana, S.; Al Farid, F.; Islam, M.N.; Rashid, M.; Bari, B.S.; Hashim, N.; Husen, M.N. Multimodal Hybrid Deep
Learning Approach to Detect Tomato Leaf Disease Using Attention Based Dilated Convolution Feature Extractor with Logistic
Regression Classification. Sensors 2022, 22, 6079. [CrossRef]

71. Tarek, H.; Aly, H.; Eisa, S.; Abul-Soud, M. Optimized Deep Learning Algorithms for Tomato Leaf Disease Detection with
Hardware Deployment. Electronics 2022, 11, 140. [CrossRef]

72. Tej, B.; Nasri, F.; Mtibaa, A. Detection of Pepper and Tomato Leaf Diseases Using Deep Learning Techniques. In Proceedings of
the 2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET), Hammamet, Tunisia, 22–25
March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 149–154. [CrossRef]

73. Ozbilge, E.; Ulukok, M.K.; Toygar, O.; Ozbilge, E. Tomato Disease Recognition Using a Compact Convolutional Neural Network.
IEEE Access 2022, 10, 77213–77224. [CrossRef]

74. Mukherjee, G.; Chatterjee, A.; Tudu, B. Identification of the Types of Disease for Tomato Plants Using a Modified Gray Wolf
Optimization Optimized MobileNetV2 Convolutional Neural Network Architecture Driven Computer Vision Framework.
Concurr. Comput. Pract. Exp. 2022, 34, e7161. [CrossRef]

75. Wu, S.G.; Bao, F.S.; Xu, E.Y.; Wang, Y.X.; Chang, Y.F.; Xiang, Q.L. A Leaf Recognition Algorithm for Plant Classification Using
Probabilistic Neural Network. In Proceedings of the ISSPIT 2007—2007 IEEE International Symposium on Signal Processing and
Information Technology, Giza, Egypt, 15–18 December 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 11–16. [CrossRef]

76. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE
2021, 109, 43–76. [CrossRef]

77. Neyshabur, B.; Sedghi, H.; Zhang, C. What Is Being Transferred in Transfer Learning? Adv. Neural Inf. Process. Syst. 2020, 33,
512–523.

78. Saini, D.; Chand, T.; Chouhan, D.K.; Prakash, M. A Comparative Analysis of Automatic Classification and Grading Methods for
Knee Osteoarthritis Focussing on X-ray Images. Biocybern. Biomed. Eng. 2021, 41, 419–444. [CrossRef]

79. Cai, C.; Wang, S.; Xu, Y.; Zhang, W.; Tang, K.; Ouyang, Q.; Lai, L.; Pei, J. Transfer Learning for Drug Discovery. J. Med. Chem. 2020,
63, 8683–8694. [CrossRef]

80. Achicanoy, H.; Chaves, D.; Trujillo, M. StyleGANs and Transfer Learning for Generating Synthetic Images in Industrial Applica-
tions. Symmetry 2021, 13, 1497. [CrossRef]

81. Zhu, C. Pretrained language models. In Machine Reading Comprehension; Elsevier: Amsterdam, The Netherlands, 2021; pp. 113–133.
ISBN 978-0-323-90118-5.

82. Bashath, S.; Perera, N.; Tripathi, S.; Manjang, K.; Dehmer, M.; Streib, F.E. A Data-Centric Review of Deep Transfer Learning with
Applications to Text Data. Inf. Sci. 2022, 585, 498–528. [CrossRef]

83. Hussain, M.; Bird, J.J.; Faria, D.R. A Study on CNN Transfer Learning for Image Classification. In Advances in Computational
Intelligence Systems, Proceedings of the Contributions Presented at the 18th UK Workshop on Computational Intelligence, Nottingham, UK,
5–7 September 2018; Springer: Cham, Switzerland, 2019; Volume 840, pp. 191–202. [CrossRef]

84. Howard, J.; Gugger, S. Deep Learning for Coders with Fastai and PyTorch; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2020; Volume
66, ISBN 978-1-492-04552-6.

http://doi.org/10.1016/j.compag.2018.03.032
http://doi.org/10.1016/j.compag.2019.104852
http://doi.org/10.1155/2017/2917536
http://www.ncbi.nlm.nih.gov/pubmed/28757863
http://doi.org/10.1016/j.suscom.2020.100407
http://doi.org/10.1109/ICIRD.2018.8376321
http://doi.org/10.1109/ICCSRE.2019.8807737
http://doi.org/10.1016/j.swevo.2019.100616
http://doi.org/10.1016/j.procs.2020.03.236
http://doi.org/10.1515/comp-2020-0122
http://doi.org/10.3390/agriculture11070651
http://doi.org/10.1016/j.aiia.2021.12.002
http://doi.org/10.3390/s22166079
http://doi.org/10.3390/electronics11010140
http://doi.org/10.1109/IC_ASET53395.2022.9765923
http://doi.org/10.1109/ACCESS.2022.3192428
http://doi.org/10.1002/cpe.7161
http://doi.org/10.1109/ISSPIT.2007.4458016
http://doi.org/10.1109/JPROC.2020.3004555
http://doi.org/10.1016/j.bbe.2021.03.002
http://doi.org/10.1021/acs.jmedchem.9b02147
http://doi.org/10.3390/sym13081497
http://doi.org/10.1016/j.ins.2021.11.061
http://doi.org/10.1007/978-3-319-97982-3_16

Plants 2022, 11, 2935 33 of 33

85. Bengio, Y. Practical Recommendations for Gradient-Based Training of Deep Architectures. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany,
2012; Volume 7700, pp. 437–478. ISBN 9783642352881.

86. Howard, J.; Ruder, S. Universal Language Model Fine-Tuning for Text Classification. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics, Melbourne, Australia, 15–20 July 2018; Association for Computational Linguistics:
Stroudsburg, PA, USA, 2018; Volume 1, pp. 328–339. [CrossRef]

87. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How Transferable Are Features in Deep Neural Networks? In Proceedings of the
Advances in Neural Information Processing Systems, Montreal, QC, USA, 8–13 December 2014; Neural Information Processing
Systems Foundation: La Jolla, CA, USA, 2014; Volume 4, pp. 3320–3328. [CrossRef]

88. Howard, J.; Gugger, S. Fastai: A Layered API for Deep Learning. Information 2020, 11, 108. [CrossRef]
89. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Computer Vision—ECCV 2014, Proceedings of

the3th European Conference, Zurich, Switzerland, 6–12 September 2014; Springer: Cham, Switzerland, 2014; Volume 8689, pp. 818–833.
[CrossRef]

http://doi.org/10.18653/v1/P18-1031
http://doi.org/10.48550/arXiv.1411.1792
http://doi.org/10.3390/info11020108
http://doi.org/10.1007/978-3-319-10590-1_53

	Introduction
	Related Work
	Evaluation Metrics, Results, and Discussion
	Evaluation Metrics
	Results and Discussion
	Results on Varied Network Depth
	Results on Varied Train-Validation Data Split Ratios
	Results on Different Batch Sizes
	Results on Computing Time
	Benchmark against Other Models

	Materials and Methods
	Data Acquisition and Pre-Processing
	Datasets
	Data Pre-Processing

	Our Proposed Method
	Convolutional Neural Networks
	Transfer Learning Approach
	Overall Architecture of the Proposed Method

	Training Procedure
	Tuning the Learning Rate Schedule
	Unfreezing and Re-Tuning the Learning Rate Schedule

	Experimental Setup

	Discussion
	Conclusions
	References

