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Abstract: Tropicalization is one of the major objectives in breeding haploid inducers to address the
poor adaptation of temperate haploid inducers in doubled haploid production in tropical maize.
Gaining a better understanding of weather profiles in targeted agroecology is important. This study
aimed to investigate the seasonal variation of tropical savanna climate and its impact on agronomic
traits and haploid induction rate (HIR) of Stock-6-derived haploid inducer lines. A total of 14 haploid
inducers were evaluated across two typical growing seasons between 2020 and 2021. Weather data
were collected on daily minimum and maximum temperatures, relative humidity, precipitation, and
solar radiation whereas phenotypic data were recorded on plant phenology, tassel attributes, plant
stature, ear components, inducer seed rate (ISR), and HIR. The effects of season, genotype, and
genotype by season were significant for all traits except season factor on ISR. Seasonal variation
existed where the dry season was more suitable for haploid induction and inducer maintenance, as
haploid inducers revealed better agronomic performance and seed set, delayed flowering dates, and
higher HIR. Since the crossover performance of haploid inducers over seasons was detected, further
implications on genotype selection in each season are discussed.

Keywords: haploid production; inducer maintenance; R1-nj biomarker; seed set; Zea mays L.

1. Introduction

Doubled haploid (DH) technology has become a part of worldwide commercial
maize breeding programs since it fastens the formation of homozygous inbred lines from
6–8 generations to only 2 generations [1]. Haploid induction, the first step of DH technology,
may be accomplished with two systems: in vivo and in vitro methods [2]. In vivo haploid
induction is preferable and widely adopted in maize [1]. Through this system, haploid
inducers act as pollinators of source (donor) germplasm to produce maternal haploids [1].
The proportion between the number of induced haploids and total seeds per induction
cross is called haploid induction rate (HIR). The first haploid inducer was Stock 6 with
2.3% of HIR [3], and more recent haploid inducers have HIRs ranging from 8–15% [4–10].
Most modern haploid inducers are adapted to temperate regions. When introduced to the
tropics, poor tropical adaptation results in shorter plant stature, poor flowering synchrony,
pollen production, and seed set, and susceptibility to major tropical diseases [11]. This mal-
adaptation syndrome complicates haploid induction and inducer maintenance, hindering
the rapid adoptions of temperate inducers in tropical maize breeding programs [12]. Thus,
haploid inducers with high HIR and tropical adaptation are essential for use in tropical
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regions. The International Maize and Wheat Improvement Center (CIMMYT) in collabora-
tion with the University of Hohenheim developed the first generation of tropically adapted
inducer lines (TAILs) [11], and recently released CIM2GTAILs as the second generation
of TAILs possessing 8–15% of HIR and good adaptation to both tropical and subtropical
environments [13]. These inducers are available for a licensing fee; however, the cost can
be unaffordable for seed start-ups.

Thailand has a typical tropical savanna climate [14] that covers three seasons, namely,
rainy (May to October), cool dry (October–February), and summer dry (February–May).
This climate has several features as follows: 1200–1400 mm of rainfall per year, 63–84% of
relative humidity, 13–24 ◦C of seasonal minimum temperature, and 30–40 ◦C of seasonal
maximum temperature (Thai Meteorological Department, Thailand. Available online:
http://www.tmd.go.th (accessed on 8 May 2022)). Temperature is one of the critical
parameters determining the adaptation and HIR of haploid inducers. Kebede et al. [15]
reported that the winter season was more suitable for haploid induction than the summer
season in subtropical Mexico. In contrast, De La Fuente et al. [2] noticed higher HIR in
a warmer than in a cooler summer under a temperate climate in Iowa. However, there is
no study reporting the weather variability and its effect on the agronomic adaptation and
HIR of maize haploid inducers under tropical savanna climates.

Khon Kaen University in Thailand has initiated breeding haploid inducers by introduc-
ing the temperate inducer ‘Stock 6’, which is a public maize haploid inducer, to Thai maize
germplasm possessing tropical backgrounds, aiming to develop new haploid inducers
showing agronomic adaptation for tropical savanna regions and sufficient HIR [16]. Fa-
vorable traits for tropical maize and vegetable corn include earliness, shorter plant stature,
and high grain yield [17,18]. In addition to those criteria, maize haploid inducers with
large tassel size, longer pollen-shed duration, high pollen production, and resistance to ear
rot are preferable to optimize self- and cross-pollinations for haploid seed production in
induction nurseries and inducer maintenance, respectively [19]. Therefore, this study aimed
to investigate the effect of seasonal variation of tropical savanna climate on agronomic traits
and the HIR of Stock-6-derived haploid inducer lines. Information obtained in this study
will assist breeders by means of screening their haploid inducers against different seasons
of haploid induction to achieve optimal haploid production and inducer maintenance.

2. Results
2.1. Analysis of Variance

Season (S) effect was highly significant on all measured traits except on inducer seed
rate (ISR) (Table 1). The effects of genotype (G) and the interaction between season and
genotype (GSI) were highly significant on all observed traits. Genotype accounted for the
highest proportion of source of variance on ISR, ear length (EL), husk cover (HC), GR, plant
height (PH), ear height (EH), primary tassel branch (PTB), and total tassel branch (TTB).
Season largely contributed to ear weight (EW), ear diameter (ED), row number per ear
(NRE), seed number per row (NSR), cob diameter (CD), and seed diameter (SD). The GSI
was predominant for haploid induction rate (HIR).

The significance of genotype indicated the phenotypic variability among 14 haploid
inducer lines on overall agronomic performance, yield components, and HIR. The signifi-
cance of season suggested that phenotypic means of inducers on most traits changed in
different growing seasons. The predominance of the GSI on HIR implied that the HIR of
inducer lines was sensitive to seasonal variation, and each genotype expressed different
responses to different growing seasons.

http://www.tmd.go.th
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Table 1. Mean squares from the combined ANOVA on HIR, ISR, yield components, and agronomic
traits across two seasons between 2020 and 2021.

SOV df HIR ISR
Yield Components

EW EL ED HC NRE NKR CD KD

Season (S) 1 10.1 ** 164.7 ns 57,150.1 ** 76.9 ** 40.3 ** 6.3 ** 403.3 ** 1931.5 ** 10.9 ** 1.3 **
(14.1) (0.5) (79.5) (13.3) (60.4) (10.4) (47.4) (54.1) (47.7) (46.5)

Rep/S (a) 4 0.1 41.9 3.7 0.3 0.0 0.1 0.4 1.9 0.0 0.0
(0.7) (0.5) (0.0) (0.2) (0.2) (0.7) (0.2) (0.2) (0.2) (0.9)

Genotype (G) 13 1.8 ** 1674.0 ** 856.0 ** 20.9 ** 1.0 ** 2.8 ** 14.1** 87.2 ** 0.5 ** 0.1 **
(33.0) (64.4) (15.5) (47.0) (17.9) (59.8) (21.5) (31.7) (26.6) (28.0)

G × S 13 2.3 ** 767.9 ** 171.6 ** 14.8 ** 1.0 ** 1.0 ** 16.9 ** 25.7 ** 0.4 ** 0.1 **
(41.5) (29.5) (3.1) (33.4) (18.7) (22.6) (25.8) (9.4) (22.1) (21.8)

Pooled error (b) 52 0.1 33.3 25.9 0.7 0.0 0.1 0.8 3.2 0.0 0.0
(10.7) (5.1) (1.9) (6.1) (2.8) (6.6) (5.2) (4.6) (3.3) (2.8)

C.V.(a)(%) 29.0 8.4 4.2 5.4 5.9 14.9 5.9 8.3 6.0 12.4
C.V.(b)(%) 30.8 7.5 11.3 8.7 6.3 13.2 8.5 10.7 6.3 6.2

SOV df
Agronomic traits

GR PSD DTA DSI PH EH PTB TTB TSL SPL

Season (S) 1 342.5 * 19.6 ** 1288.6 ** 3375.7 ** 29,385.2 ** 10,906.4 ** 82.4 ** 199.3 ** 2979.6 ** 1818.3 **
(6.3) (41.8) (57.7) (78.8) (42.4) (35.7) (14.9) (20.4) (72.3) (69.1)

Rep/S (a) 4 24.7 0.1 2.9 1.5 98.7 41.9 0.2 3.4 4.2 5.9
(1.8) (0.9) (0.5) (0.1) (0.6) (0.5) (0.1) (1.4) (0.4) (0.9)

Genotype (G) 13 213.9 ** 0.7 ** 44.6 ** 46.8 ** 2369.2 ** 1234.6 ** 24.6 ** 42.8 ** 51.0 ** 29.3 **
(51.4) (19.2) (26.0) (14.2) (44.5) (52.5) (57.6) (57.0) (16.1) (14.5)

G × S 13 72.0 ** 0.9 ** 11.7 ** 9.3 ** 400.9 ** 135.5 ** 8.6 ** 11.3 ** 24.1 ** 22.8 **
(17.3) (24.2) (6.8) (2.8) (7.5) (5.8) (20.2) (15.0) (7.6) (11.3)

Pooled error (b) 52 24.1 0.1 3.8 3.3 66.9 32.5 0.8 1.2 2.9 2.2
(23.2) (13.8) (8.9) (4.0) (5.0) (5.5) (7.2) (6.1) (3.7) (4.3)

C.V.(a)(%) 5.8 8.3 3.0 2.2 7.3 9.8 4.0 14.0 7.6 14.0
C.V.(b)(%) 5.8 8.9 3.4 3.2 6.0 8.6 8.2 8.1 6.3 8.5

HIR, haploid induction rate; ISR, inducer seed rate; EW, ear weight; EL, ear length; ED, ear diameter; HC, husk
cover; NRE, the number of rows per ear; NKR, the number of kernels per row; CD, cob diameter; SD, seed
diameter; GR, germination rate; PSD, pollen-shed duration; DTA, days to anthesis; DSI, days to silking; PH, plant
height; EH, ear height; PTB, primary tassel branch; TTB, total tassel branch; TSL, tassel length; SPL, spike length;
ns, not significant; and *,**, significant at p ≤ 0.05 and p ≤ 0.01, respectively. The number within the parentheses
is the percentage of sum squares to the total sum of squares.

2.2. Seasonal Variation and Plant Phenology

The daily minimum, average, and maximum temperatures during the dry season were
18.3 ◦C, 26.0 ◦C, and 33.1 ◦C, respectively, which were lower than those during the rainy
season which had the daily minimum, average, and maximum temperatures of 24.5 ◦C,
30.2 ◦C, and 37.7 ◦C, respectively (Figure 1). Total precipitation in the dry season was much
lower than that in the rainy season, as indicated by 2.6 mm against 682.5 mm. Relative
humidity during the dry season (56 to 69%) was lower than that during the rainy season
(66 to 84%). Meanwhile, the solar radiation of the dry season (21.8 MJ m−2 day−1) was
slightly higher than that of the rainy season (20.7 MJ m−2 day−1). These results indicated
that seasonal variation between the dry and rainy seasons existed.

The phenology was expressed in days after sowing (DAS) and growing degree days
(GDD) (Figure 2). Haploid inducers grown in the rainy season required 1104.9 of GDD or
53 days to anthesis (VT stage) while the same set of genotypes in the dry season required
945.2 of GDD or 61 DAS. In regard to achieving physiological maturity (R6 stage), haploid
inducers in the rainy season required 1965.4 of GDD or 98 DAS while it required at least
1689.3 of GDD or 106 DAS. This result indicated that the phenology of overall haploid
inducer lines grown in the rainy season was faster than in the dry season, as indicated by
higher GDDs but shorter days to anthesis and maturity.
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2.3. Performance of Maize Haploid Inducers against Seasonal Variation

Maize haploid inducers grown in the dry season showed a slightly lower germination
rate than in the rainy season (Table 2). On the contrary, these inducers had significantly
higher values of PSD, DTA, DSI, PH, EH, PTB, TTB, TSL, and SPL in the dry season than in
the rainy season, indicating that the weather profiles of the dry season conditioned maize
inducers to delay the flowering dates, extend the duration of pollen shed, broaden the
tassel architecture, and enhance the vegetative growth that resulted in higher plant stature.
Likewise, the considerable increases in genotypic means in EW, ED, NRE, NKR, CD, and
KD were noticed in the dry season while slight increases in the means were found in EL
and HC. These results illustrated that the dry season may provide suitable conditions for
ear development and seed set of maize inducers. Two major parameters, HIR and ISR,
showed higher values in the dry season than in the rainy season, suggesting that both
activities of haploid induction and inducer seed maintenance were more efficient in the
dry season.

Table 2. Means of agronomic traits, yield components, and haploid induction ability in maize haploid
inducers in the dry and rainy seasons.

Season

Agronomic Traits

GR
(%)

PSD
(d)

DTA
(d)

DSI
(d)

PH
(cm)

EH
(cm) PTB TTB TSL

(cm)
SPL
(cm)

Dry 83.3 ± 1.2 4.5 ± 0.1 61.1 ± 0.5 63.9 ± 0.6 154.1 ± 4.0 77.7 ± 2.7 11.7 ± 0.4 14.8 ± 0.5 33.0 ± 0.6 22.1 ± 0.5
Rainy 87.4 ± 1.3 3.5 ± 0.1 53.3 ± 0.5 51.2 ± 0.5 116.7 ± 2.7 54.9 ± 2.1 9.7 ± 0.4 11.7 ± 0.4 21.1 ± 0.6 12.8 ± 0.5

p-value 0.033 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 0.004 <0.001 <0.001

Season
HIR
(%)

ISR
(%)

Yield Components

EW
(g)

EL
(cm)

ED
(cm) HC NRE NKR CD

(cm)
KD
(cm)

Dry 1.6 ± 0.2 78.7 ± 1.9 71.1 ± 2.4 10.4 ± 0.2 3.7 ± 0.1 2.4 ± 0.1 13.0 ± 0.2 21.5 ± 0.5 2.3 ± 0.1 0.8 ± 0.1
Rainy 0.9 ± 0.2 75.9 ± 4.0 19.0 ± 1.7 8.5 ± 0.5 2.3 ± 0.1 1.8 ± 0.1 8.6 ± 0.5 11.9 ± 0.8 1.6 ± 0.1 0.5 ± 0.1

p-value 0.008 0.562 <0.001 0.003 <0.001 0.007 <0.001 <0.001 <0.001 <0.001

Values are means ± SE. GR, germination rate; PSD, pollen-shed duration; DTA, days to anthesis; DSI, days to
silking; PH, plant height; EH, ear height; PTB, primary tassel branch; TTB, total tassel branch; TSL, tassel length;
SPL, spike length; HIR, haploid induction rate; ISR, inducer seed rate; EW, ear weight; EL, ear length; ED, ear
diameter; HC, husk cover; NRE, the number of rows per ear; NKR, the number of kernels per row; CD, cob
diameter; and KD, kernel diameter.

2.4. Interaction between Genotype and Season in Maize Haploid Inducers

In the dry season, KHI 65 and KHI 66 had the highest HIR (3.4% and 3.3%, respectively)
among 14 haploid inducers, followed by KHI 54 (2.5%) (Table 3). In regard to ISR, the
highest values were noticed in four haploid inducers, namely, KHI 47 (94.2%), KHI 42
(93.6%), KHI 5 (92.0%), and KHI 55 (91.8 %). The results showed that haploid inducers with
the highest HIR were from the moderate group while haploid inducers with the highest
ISR were noticed from each group. In this growing season, there was no clear association
between HIR and ISR where haploid inducers with high haploid production tend to possess
moderate inducer seed set.

In the rainy season, the highest HIR was found in three haploid inducers: KHI 42
(1.8%), KHI 50 (1.8%), and KHI 66 (1.5%). In addition, four haploid inducers, KHI 56
(97.5%), KHI 5 (95.6%), KHI 42 (95.2%), and KHI 72 (94.3%), had the highest ISR. In this
season, both HIR and ISR seemed to be correlated as more haploids were induced from the
inducer genotypes with higher ISR. For instance, KHI 42 having 95.2% of inducer seed set
showed a 1.8% haploid frequency per cross.
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Table 3. Means of 14 haploid inducers on haploid induction rate (HIR) and inducer seed rate (ISR)
evaluated in the dry season of 2020/2021 and the rainy season of 2021.

Group Haploid
Inducers

Dry Season Rainy Season

HIR
(%)

ISR
(%)

HIR
(%)

ISR
(%)

High KHI 49 1.8 cd (A) 74.0 bc (A) 0.0 e (B) 82.9 b (A)
KHI 59 0.8 ef (A) 81.3 b (A) 0.3 e (B) 88.7 ab (A)
KHI 54 2.5 bc (A) 62.5 de (B) 0.9 d (B) 72.8 c (A)
KHI 42 0.8 ef (B) 93.6 a (A) 1.8 a (A) 95.2 a (A)
KHI 47 1.7 cd (A) 94.2 a (A) 1.6 ab (A) 92.1 ab (A)

Moderate KHI 5 1.8 cd (A) 92.0 a (A) 0.0 e (B) 95.6 a (A)
KHI 65 3.4 a (A) 71.4 cd (A) 0.0 e (B) 66.4 cd (A)
KHI 66 3.3 ab (A) 75.2 bc (A) 1.5 ab (B) 53.5 e (B)
KHI 50 1.1 def (B) 81.0 bc (A) 1.8 a (A) 61.0 de (B)
KHI 80 0.6 f (A) 63.8 de (A) 0.0 e (B) 0.0 f (B)

Low KHI 56 1.0 def (B) 79.4 bc (B) 1.5 ab (A) 97.5 a (A)
KHI 61 0.4 f (B) 80.9 bc (A) 0.9 d (A) 71.9 c (A)
KHI 72 1.5 de (A) 60.7 e (B) 1.3 bc (A) 94.3 a (A)
KHI 55 1.7 d (A) 91.8 a (A) 1.0 cd (B) 90.6 ab (A)

Means with different letters outside parenthesis in the same column are significantly different by Duncan’s
multiple range test (DMRT) at 0.05 probability level. Means with different letters within parenthesis in the same
row and trait are significantly different by Tukey’s honest significant difference test (HSD) at 0.05 probability level.

3. Materials and Methods
3.1. Plant Materials

A total of 14 Stock-6-derived maize inducer lines were used in this study (Table 4).
The origin and pedigree of these lines were described by Dermail et al. [16]. Briefly, base
populations were established from intercrossing between temperate inducer Stock 6 with
2.3% of HIR [7] and eight tropical corn genotypes including three waxy corn (KND, TL,
and TB), two sweet corn (101L and WST), and three field corn genotypes (Pacific339, NS3,
and NSX).

Table 4. Brief profiles of fourteen Stock-6-derived inducer lines used in this study.

No. Genotypes Pedigree Group 1

1 KHI 49 WST/Stock6-S(C6)-IDLT2A-28-B High
2 KHI 59 WST/Stock6-S(C6)-IDLT2A-WS-B High
3 KHI 54 WST/Stock6-S(C6)-IDLT2A-34-1-B High
4 KHI 42 TL/Stock6-S(C6)-IDLT1B-93-B High
5 KHI 47 WST/Stock6-S(C6)-IDLT2A-24-B High
6 KHI 5 NSX/Stock6-S(C6)-IDLT1A-110-B Moderate
7 KHI 65 KND/Stock6-S(C6)-IDLT2B-22-B Moderate
8 KHI 66 TB/Stock6-S(C6)-IDLT3-4-B Moderate
9 KHI 50 WST/Stock6-S(C6)-IDLT2A-29-B Moderate
10 KHI 80 TB/Stock6-S(C6)-IDLT4-4-B Moderate
11 KHI 56 WST/Stock6-S(C6)-IDLT2A-36-B Low
12 KHI 61 KND/Stock6-S(C6)-IDLT2B-15-B Low
13 KHI 72 TB/Stock6-S(C6)-IDLT4-24-B Low
14 KHI 55 WST/Stock6-S(C6)-IDLT2A-35-B Low

1 Based on unweighted selection index (z) of three attributes, namely, HIR, inducer seed rate, and agronomic
score. High: genotypes with z ≥ 2.5; moderate: genotypes with 0.5 < z < 2.5; and low: genotypes with z ≤ 0.5.

About 78 S3 families were obtained in the dry season of 2019, and those materials
were further utilized for dual studies, namely, the first study on selection gain through the
modified ear-to-row method [16] and the second study on seasonal variation which was
emphasized in this paper. Unweighted selection index, a simultaneous selection method
without considering certain economic values of traits of interest, [20] was performed at the
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preliminary study to sort all 78 genotypes based on HIR, inducer seed rate, and agronomic
score. The top rank genotype had the highest indices (z). Then, we determined the
thresholds of selection indices (z) to categorize the sorted genotypes into three groups: high
(genotypes with z ≥ 2.5), moderate (genotypes with 0.5< z < 2.5), and low (genotypes with
z ≤ 0.5). According to the groups established, representative five, five, and four genotypes,
respectively, were selected based on the top rank within the group. The list of the genotypes
is presented in Table 4.

3.2. Field Experiment

Fourteen Stock-6-derived maize inducer lines were evaluated under field conditions
at the Agronomy Field Crop Research Station, Khon Kaen University, Khon Kaen, Thailand
(16◦28’27.7” N, 102◦48’36.5” E; 190 m above sea level (masl)) in two different growing
seasons, namely, the dry season (November 2020–February 2021) and the rainy season
(April–August 2021). The inducer lines were assigned in a randomized complete block
design (RCBD) with three replications. The plot size was 4 rows of 5 m in length. The
plant spacing was 0.75 m × 0.25 m; thus, the plant density was about 80 plants per
plot. In both seasons, standard agronomic practices were used following the Department
of Agriculture, Thailand, recommendations (Thai Agricultural Practice, Department of
Agriculture, Thailand. Available online: http://www.doa.go.th (accessed on 12 June 2022))
including land preparation, fertilization, irrigation, and pest, disease, and weed control.

The weather profiles such as daily minimum and maximum temperatures (◦C), relative
humidity (%), precipitation rate (mm), and solar radiation (MJ m−2 day−1) were collected
daily during the experiment from the Agricultural Weather Station, Agronomy Field
Research Station, Khon Kaen University, Thailand. Growing degree days (GDD) [21] of
each growing season were calculated for every day after planting by accumulating the
temperature per day using the following formula:

◦C day−1 = ((Tmin + Tmax)/2) - 10 (1)

where Tmin is the daily minimum temperature (◦C) and Tmax is the daily maximum
temperature (◦C). The base temperature for maize is 10 ◦C.

3.3. Haploid Induction and Ploidy Identification

Two commercial F1 hybrids S7328 and P789 released by Syngenta Seeds and Pacific
Seeds, respectively, were used as the donor parent or tester. Three staggered planting dates
for donor genotypes with intervals of seven days were carried out to ensure flowering
synchrony. The donor was placed adjacent to the inducer plots. About ten inducer plants
per plot were selected and self-pollinated for inducer maintenance, and those selected
plants per plot were also individually cross-pollinated to ten ears of each donor genotype
for haploid induction.

All dried seeds from each donor ear were classified based on the R1-nj anthocyanin
biomarker on the crown (top endosperm tissue) and scutellum of the embryo [22]. They
were classified into putative diploid if the seeds showed purple colorations of the en-
dosperm and embryo and putative haploid if the seeds showed purple endosperm and
colorless embryo. Haploid induction rate (HIR) and inducer seed rate (ISR) were calculated
as follows:

HIR (%) =
seed number of putative haploid

total seed number per ear
× 100 (2)

ISR (%) =
seed number of inducer

total seed number per ear
× 100 (3)

3.4. Data Collection

Germination rate was calculated as the percentage of emerged seedlings per plot at
14 days after sowing (DAS). At the reproductive stage, the following agronomic traits were

http://www.doa.go.th
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recorded using the sample basis of 10 plants per plot except for flowering dates which were
plot-based measurements: plant height (cm), as a distance from ground level to the node
bearing the flag leaf; ear height (cm), as a distance from ground level to the node bearing
the uppermost ear; days to anthesis, as the number of days from sowing to when 50% of the
plants shed pollen; days to silking, as the number of days from sowing until silks emerged
on 50% of the plants; pollen-shed duration (days), as the number of days from the last day
of pollen shedding minus the first day of pollen shedding; primary tassel branching, as
the number of primary tassel branches having anthers emerged; total tassel branching, as
the total number of tassel branches including the primary and secondary branches; tassel
length (cm), as the length from the lowermost primary branch to the tip of the tassel; and
spike length (cm), as the length from the uppermost branch to the tip of the spike.

Yield components were measured on ten ears per plot at the physiological maturity
stage approximately 45 days after pollination (DAP). The parameters included ear weight
(g), ear diameter (cm), ear length (cm), husk cover, the number of rows per ear, the number
of kernels per row, cob diameter (cm), and kernel diameter (cm).

3.5. Statistical Analysis

All observed data were subjected to Bartlett’s test for homogeneity of variance and
the Shapiro–Wilk test for normality. Then, combined analysis of variance was performed
considering season and genotype as random effects and replication as a fixed effect by
using PROC MIXED of SAS ver. 9.0 (SAS Institute. SAS for Windows Version 9.0; SAS
Institute: Cary, NC, United States, 2002) using the following linear model:

Yijk = µ + si + rj(si) + gk + sigk + εijk (4)

where i = 1, 2; j = 1, 2, 3; k = 1, 2, 3 . . . 14; Yijk denotes the phenotype of genotype k in
season i and replication j; µ is the overall mean; si is the effect of season i; rj(si) is the effect
of replication k nested within season i; gk is the effect of genotype k; sigk is the effect of
the interaction between season i and genotype k; and εijk is the pooled error of season i,
replication j, and genotype k.

Duncan’s multiple range test (DMRT) at 0.05 probability level was used for mean
comparison [23].

4. Discussion
4.1. Phenotype of Maize Haploid inducers Is Affected by Genotype, Season, and their Interaction

In this study, all agronomic traits and haploid induction rate clearly showed quanti-
tative inheritance, with continuous variation, and respective phenotypes resulting from
genotype, environment, and the interaction between genotype and environment [24]. The
significance of genotype for all observed traits may be explained by the fact that the 14 hap-
loid inducers used in this study were derived from different groups, based on haploid
induction rate, R1-nj expression, and agronomic trait performance. Genotype had a strong
impact on for ISR and several agronomic traits because we included several tropical non-
inducer genotypes as founder parents, which had different plant ideotypes including plant
stature, flowering behaviors, and yields, and the alleles of those traits may be segregated
during population improvements. ISR was defined as the proportion of inducer seed per
ear that expressed the R1-nj anthocyanin marker. Chaikam et al. [25] reported that tropical
maize showed a high frequency of complete inhibition of R1-nj due to the presence of C1-I,
a dominant anthocyanin inhibitor gene. In addition, the minor contribution of genotype on
HIR might be due to the common founder parent used which was Stock 6.

The significant effect of season on most attributes indicated the presence of weather
dynamics of tropical savanna climate from the dry season to the rainy season which altered
the phenotypic means of haploid inducers. This result corroborated previous studies where
seasonal variation under tropical savanna regions significantly contributed to the agronomic
traits and yield components of vegetable corn [26,27]. Meanwhile, the predominant effect of
GSI on HIR implied that the HIR of haploid inducers was sensitive to seasonal variation and



Plants 2022, 11, 2902 9 of 13

each genotype responded differently in different growing seasons. GSI reflects genotype
by environment interaction (GEI) and illustrates the failure of genotypes to be stable in
different environmental conditions [28].

4.2. Seasonal Variation Is Responsible for Unstable Performance of Maize Haploid Inducers

In our region, the tropical savanna climate has two common maize-growing seasons,
namely, the rainy and the dry seasons. In this study, the rainy season was identified with
a high precipitation rate, relative humidity, and daily temperature, while the opposite
weather features were clearly noticed in the dry season. The effect of contrasting tempera-
ture profiles over two seasons on maize phenology was illustrated with growing degree
days [21,29]. Growing degree days (GDD) is one of the thermal units and is represented by
the accumulated temperature above a base level for a whole crop growing period [30]. The
values vary depending on the environmental conditions [31]. In maize, it has been adopted
for estimating plant phenology including flowering, maturity, and harvest dates [32], for
assessing the suitable growing environments [33], and for simulating crop growth such
as in hybrid-maize models [34]. Our study found that the phenology of overall haploid
inducer lines grown in the rainy season was faster than in the dry season, as indicated
by higher GDDs but shorter days to anthesis and maturity. This corroborated previous
studies in maize reporting that a warm-temperature zone had a higher accumulation of
GDD and shorter sowing–silking interval than a cold-temperature zone in the tropical
climates of Thailand and Mexico [35], the semi-humid and semi-arid climates of China [33],
the semi-arid and humid subtropical of Texas [36], and the temperate climate of Czech Re-
public [37]. Lower daily temperatures led to increased maize vegetative growth [31] while,
on the contrary, warmer daily temperatures accelerated the maize growth rate, which in
turn shortened both vegetative and reproductive stages [38]. In our study, we also noticed
variations during the vegetative period but fewer variations during the reproductive period.
The result confirmed previously similar studies in maize, stating that the silking–maturity
period was less variable than the sowing–silking period [39,40].

Weather plays critical roles in crop growth and phenology [41,42], aboveground
biomass, and yield [31]. Among weather parameters, temperature, solar radiation, and
precipitation are three major factors determining the development rate, biomass, yield
components, and grain yield of maize under diverse climate regions from subtropical to
temperate [31,37,43,44]. Our findings suggest that the dry season is more suitable than the
rainy season for growing maize haploid inducers, as indicated by taller plant stature and
ear position, later flowering, bigger tassel size, higher tassel branching, longer pollen-shed
duration, larger ear and seed sizes, better seed set, and higher haploid induction rate.
Kebede et al. [15] reported that the winter season was more suitable for haploid induction
than the summer season in the subtropical climate of Mexico. Colder temperatures resulted
in the maize plants being left for longer durations in the field [32]. Since the dry matter
accumulation in maize relied on plant growth rate and growth duration [40], a prolonged
vegetative stage and photoperiod made the maize utilize the abundant resources including
radiation, water, and nutrients [45] to produce more photosynthates for more leaves [46,47],
taller plant stature [36], later flowering and harvesting times without significantly altering
the pollen production [48,49], and higher aboveground biomass [50] and grain yield [51].
In addition, cool nights in the dry season may benefit maize plants especially at the
flowering and grain-filling stages by enhancing the accumulation of assimilates through
photosynthesis and respiration processes [49,52].

In contrast, the conditions during the rainy season were unfavorable for haploid
induction due to early flowering, smaller tassel size, and short pollen-shed duration, and
prevalence of tropical diseases such as downy mildew, northern corn leaf blight, and
rust. This led to poor pollination and seed set of both inducer and test crosses. High
daily temperature, relative humidity, and precipitation during the rainy season were
likely responsible. De La Fuente et al. [2] noticed that high precipitation rates during the
pollination period dropped the haploid induction rate due to the significant damage by
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fungal ear diseases. In maize, increasing temperature and GDD significantly shorten the
growth period and rate, resulting in reduced post-silking aboveground biomass [31], 1000-
kernel weight, and grain yield [53]. There was a negative association between increasing
temperature and maize yield [54,55] in which each additional GDD30+ led to a yield
reduction of about 1.0–1.2% [29,56]. High temperatures contributed to yield reduction,
not only because of the damage to maize flowers during daytime [30], but also because of
increased respiration and decreased net dry matter accumulation during nighttime [57].
The impairment of maize flowers was further explained by the pollen sterilility [38,58]
and the reduced floret elongation rate and number [59,60], leading to poor fertilization
synchronization and high kernel abortion [61]. Since the potential kernel number and kernel
weight rely on the number of florets [62] and the kernel growth rate [44], respectively, this
condition may cause a reduction in the final seed set as the maize grain yield is composed
of the kernel number per unit area and weight per kernel [63]. In addition, nitrogen is
one of essential macronutrients for optimum maize growth, photosynthesis, and grain
formation [64]; thus, excessive precipitation combined with warm daily temperatures
during the rainy season may contribute to more yield losses due to nitrogen leaching and
denitrification [65–67].

4.3. Crossover Performance of Maize Haploid Inducers and Implication for Haploid Induction

The significant interaction between genotype and season was revealed by the incon-
sistent performance of haploid inducers to produce haploid seeds over contrasting maize
growing seasons. When cool temperatures during daytime and nighttime and low relative
humidity occurred during the dry season, two haploid inducers, KHI 65 and KHI 66, were
the best option. In contrast, when the weather conditions were getting worse, indicated
by increasing temperatures, rainfall, and relative humidity, other haploid inducers such as
KHI 42 and KHI 50 were the most viable option. In in vivo haploid induction, flowering
synchrony between the silking of donor germplasm and the anthesis of haploid inducers
is important, and occasionally incompatible pollinations occur when it comes to the male
reproductive organ which has a shorter flowering period than the female one. In general,
five to seven days are the total pollen-shed duration of maize inbred lines [49,68], while the
stigmas of female plants are still receptive for 13 days after the silking initiation [69]. Since
the pollen-shed duration of our haploid inducers was not only shorter than that normally
reported, but also affected by the seasonal variation from five days in the dry season to
three days in the rainy season, performing multiple planting dates with constant interval
days of haploid inducers as the pollinator was feasible to extend the pollen production
for haploid induction. The situation might be more complicated if vast germplasm with
diverse silking dates are included. If so, utilizing two or more haploid inducers, having
similar HIR with a different anthesis date, and multiple planting dates for those inducers
with irregular interval days can be applied.

5. Conclusions

The effects of season, genotype, and genotype by season were significant for all traits
except that season factored on inducer seed rate. Under a tropical savanna climate, the
dry season was more suitable for growing haploid inducers for haploid production and
inducer maintenance, as they revealed better agronomic performance and seed set, delayed
flowering dates, and higher haploid induction rate (HIR). Two haploid inducers KHI 65
and KHI 66 (HIR~3.3–3.5%) were proposed to be used in the dry season when the weather
conditions were suitable for maize growth, flowering, and seed development. Meanwhile,
the other two inducers, KHI 42 and KHI 50 (HIR~1.8%), were the best option in the rainy
season when high temperature, high precipitation, relative humidity, and disease incidence
occurred. Applying two or more haploid inducers and using multiple planting dates for
those inducers was suggested to achieve optimal seed set and potential haploid seeds per
induction cross.
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