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Abstract: Cuscuta campestris is a parasitic weed species that inflicts worldwide noxious effects in many
broadleaf crops due to its capacity to withdraw nutrients and water directly from the crop vascular
system using haustorial connections. Cuscuta campestris control in the majority of crops affected is
non-existent, and thus, research for the development of control methods is needed. Hydrocinnamic
acid occurs naturally in the rhizosphere, playing regulatory roles in plant–plant and plant–microbe
communities. The toxicity of hydrocinnamic acid against C. campestris was recently identified. In
the present work, a structure–activity relationship study of 21 hydrocinnamic acid analogues was
performed to identify key structural features needed for its allelopathic action against the seedling
growth of this parasitic plant. The findings of this study provide the first step for the design of
herbicides with enhanced activity for the control of C. campestris infection.

Keywords: field dodder; parasitic weeds; phenylpropanoic acid; allelochemicals; structure–activity
relationship; sustainable crop protection

1. Introduction

More than 1% of flowering plants have evolved the capacity to parasitize other plants
to obtain all or part of their required nutrients [1]. Among them, the dodders (Cuscuta genus)
contain over 170 species distributed across tropical, subtropical, and temperate regions [1,2].
Cuscuta campestris is considered one of the most damaging parasitic weed species, severely
affecting the yield of dicotyledonous crops of economic importance [3]. There is no effective
Cuscuta control for the most affected crops [4,5]. After Cuscuta germination, a filiform
seedling twines around the nearest crop stem producing haustoria, which penetrate into
the crop stem and fuse with the crop vascular system to extract nutrients and water [6,7].
Cuscuta plants are root- and leaf-less plants with little or no chlorophyll, and therefore,
they are completely dependent on crop-derived nutrition, otherwise they die within 7 to
10 days after germination [8]. The identification of allelochemicals that target the vulnerable
pre-attached Cuscuta seedlings and interfere with the necessary host contact for infection
is the first step for the design of alternatives that provide efficacy and sustainability to
parasitic weed chemical control [7].

During a recent screening to discover new inhibitors of Cuscuta seedling growth,
hydrocinnamic acid was identified as a promising compound showing strong inhibitory
activity [9]. Hydrocinnamic acid, also known as phenylpropanoic acid, is a carboxylic acid
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with the formula C9H10O2 belonging to the class of phenylpropanoids that originate from
the shikimic acid pathway [10]. Hydrocinnamic acid occurs naturally in the rhizosphere,
either originating during the breakdown of crop residues [11] or exuded in intact form
from plant roots [12], regulating ecosystems through different roles in plant–plant [13] and
plant–microbe interactions [14]. Hydrocinnamic acid has been reported to inhibit seed
germination in several species [15–17]. Thus, the objective of this work was to study the
structure–activity relationships of 21 hydrocinnamic acid analogues in order to identify key
structural features needed for its herbicidal action against Cuscuta. This is the first report
on the phytotoxic activity of many of the tested compounds.

2. Results and Discussion

The Cuscuta growth inhibition of hydrocinnamic acid (1, Figure 1) was studied in vitro
in comparison with 21 structural analogues (2–22, Figure 1) in a range of concentrations
from 0.25 to 1 mM.
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Figure 1. Summary of the structures of compounds 1–22 used in this study.

Five days after treatment, Cuscuta growth was significantly affected by the compound
treatment (ANOVA, p < 0.001) by the concentration applied (ANOVA, p < 0.001), and by
the interaction of compound x concentration (ANOVA, p < 0.001). Figure 2 shows different
levels of activity among hydrocinnamic acid (1) and its analogues (2–22), which allowed
the classification of compounds with (i) enhanced activity, (ii) similar activity, and (iii)
decreased activity in comparison with the parent compound (1).

2.1. Study of Structure–Activity Relationship on the Growth Inhibition Induced by
Hydrocinnamic Acid

The growth inhibition results shown in Figure 2 were used to calculate the IC50 values
in order to compare the effect of the substitution on the bioactivity, and CLogp values were
calculated to correlate the activity level with the lipophilicity. These parameters are shown
in Table 1.
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Figure 2. In vitro assessment of the Cuscuta growth inhibition induced by compounds 1–22 at
concentrations of 1, 0.5, and 0.25 mM. Bars with different letters are significantly different (Tukey test
at p < 0.05). Error bars represent the standard error of the mean.

Table 1. IC50 and CLogp values of compounds 1–22, ~1000, inhibition was close to 50% at the highest
tested concentration; >1000, compound was far from 50% inhibition at the highest concentration
tested but activity was significant; <250, IC50 was lower than the lowest tested concentration.

Compound CLogp IC50 (µM) R2 Compound CLogp IC50 (µM) R2

1 1.903 518 0.9961 12 0.676 >1000 -

2 1.186 572 0.9978 13 2.046 <250 -

3 0.746 >1000 - 14 2.616 <250 -

4 1.236 >1000 - 15 2.766 <250 -

5 1.822 334 0.9950 16 1.646 >1000 -

6 2.616 <250 - 17 0.639 >1000 -

7 1.236 >1000 - 18 1.085 >1000 -

8 1.822 879 0.9990 19 2.445 488 0.9987

9 2.402 415 1.000 20 2.228 484 0.9979

10 2.786 <250 - 21 2.808 511 0.9981

11 1.336 ~1000 - 22 1.712 ~1000 -

The strongest bioactivity was found for compounds 6, 10, and 13–15, with IC50 values
less than 250 µM. All of them achieved 100% (or close) inhibition at the highest concentra-
tion (1 mM), with compounds 6, 14, and 15 maintaining this level of inhibition at 0.5 mM.
The key success of these compounds (6, 10, and 13–15) was also their ability to cause
inhibition values higher than 75% at the lowest concentration tested (0.25 mM). In this
regard, it should be noted that there is a structural correlation between compound 14
and 2,4-dichlorophenoxyacetic acid, one of the most frequently used herbicides due to its
efficacy, selectivity, and broad spectrum of weed control [18].

On the other hand, the lowest bioactivity was found for compounds 3, 4, 7, 12, and
16–18. The bioactivity of these compounds was statistically significant, but below the
50% baseline for the highest concentration tested. This result for compound 7 is in agree-
ment with previous studies that showed moderate or weak phytotoxicity for this com-
pound [19,20], though it should be noted that higher phytotoxicity was previously found
on the root growth of tomato and radish [21].
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Regarding the correlation between the activity level and the lipophilicity, it was
observed that compounds with CLogp values lower than 1.712 (Table 1) were found to
be the least active. On the other hand, compounds with CLogp values higher than 2.046
were found to be the most active. However, no clear direct correlation was found between
the linear evolution of CLogp and the bioactivity. The relationship of high CLogp with
bioactivity could be due to the fact that the compounds are preferentially distributed in
hydrophobic environments, such as the lipid bilayer of the membrane. This is related to
studies where it has been reported that cinnamic acid and derivatives produce changes in
the permeability of the cell membrane [22] and reduce H+ ATPase activity [23].

In general, by comparison with hydrocinnamic acid (1), whose IC50 value was 518 µM,
the bioactivity was influenced by the position and the type of functional groups it contained.
It was observed that depending on the position at the aromatic ring, the effect of the
functional group would improve or decrease the bioactivity of hydrocinnamic acid (1).
Therefore, halogens at para or meta positions would significantly increase the bioactivity
(13–15, and 6), a methoxy group at meta (5) increases the activity of compound 1 while at
para (8) it would decrease it. In addition, the hydroxy group at ortho (2) maintained similar
level of activity than compound 1, while at meta (4) and para (7), they drastically decreased
the bioactivity, even when a second functionalization was included in the form of an extra
hydroxy (17) or methoxy group (18). This low activity observed for compound 17 supports
the moderate or low inhibitory activity reported in other studies on the growth of Triticum
aestivum, Lactuca sativa, and Setaria viridis [19,24,25].

The detailed analysis of the effects of each functional group on the bioactivity is
reported below.

Halogenated substituents increased the inhibitory activity of the core molecule, hy-
drocinnamic acid, regardless of the position. The compound possessing the largest and
least electronegative Br group (15) had the strongest inhibitory activity. There appeared
to be no significant difference between a substituent Cl at para and meta (14 and 6, re-
spectively). Among the halogenated derivatives, the lowest bioactivity was shown by that
containing the smallest halogen atom (F, compound 13). Inclusion of a halogen atom even
increased the bioactivity of the weakly active compound 8 (containing a methoxy group),
almost doubling it in the case of compound 19. To contextualize these results regarding
the halogenation effects on the bioactivity, it can be highlighted that the phytotoxic activity
of several halogenated derivatives of natural compounds has been known for some time.
Halogenated derivatives of benzoic acid (weakly phytotoxic) with improved phytotoxicity
were reported [26,27], as well as the finding of chlorinated and fluorinated derivatives of
benzoxazinones with potent phytotoxicity [28,29]. These last studies described how the
position of the halogen atom plays a key role in the level of phytotoxicity as a consequence
of the marked electronic transformation of the tested compounds. A study with different
chlorinated derivatives of benzophenones also showed that the position of the Cl atom in
the aromatic ring is relevant for growth-inhibiting or chlorosis-inducing activities, suggest-
ing the impact of unknown factors, involving steric effects [30]. Given that studies such as
those already mentioned have found different levels of activity regarding the position of
the Cl atom, it is worth highlighting the results herein reported for hydrocinnamic acid, in
which compounds 6 and 14, differing in the ortho or para positions of the Cl atom, showed
similar inhibition on Cuscuta growth.

Hydroxyl groups had a negative effect on the bioactivity. There were differences
in activity depending on where the alcohol was substituted, being found to induce an
improved activity for the ortho derivative (2, IC50 = 572 µM) greater than the meta (4) or
para (7) derivatives (IC50 > 1000 µM). The activity for the para derivative is similar to the
activity of the related compound, p-coumaric acid, found in a previous study on Cuscuta [9].
The increased activity of the hydroxylated derivative at the ortho position (2) was also
found in a previous study on Cuscuta [9], which may be due to its ability to cyclize and
form coumarins [31]. Indeed, compound 2 also generates growth inhibition on radish
seedlings [21]. In a previous study, scopoletin and umbelliferone were found to have low
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but significant activity on Cuscuta [9]. The cyclization in scopoletin and umbelliferone
occurs from cinnamic acid, but an ortho alcohol is necessary for cyclization, and could be
also relevant for the increased activity found in hydroxyl at the ortho position.

Methoxy groups had a positive effect on the bioactivity at the meta (5) but negative
at the para position (8). Nevertheless, in both cases, methylation of the corresponding
hydroxylated compounds at these positions increased the bioactivity (4 and 7). This
improvement regarding the hydrocinnamic acids was also previously described for the
family of flavones, for which it has been reported that the most active are generally methoxy-
substituted [32].

Carboxy groups on the aromatic ring both at para (16) and ortho (3) positions reduced
the activity to negligible levels. Methyl and trifluoromethyl groups at the para position
both increased the bioactivity, especially in the case of the CF3 group (10), which could be
related to the similarity in size to hydrogen but the different electronegativity of F. Cyano
and amino groups at the para position, on the other hand, substantially decreased the
bioactivity of compound 1, which was more apparent in the case of compound 12 with an
amino group.

Carboxylic acid derivatives. Three molecules derived from the carboxylic acid of
hydrocinnamic acid were studied: acyl chloride (20), ethyl ester (21), and alcohol (22).
Derivatization of hydrocinnamic acid (1) to form the ethyl ester (21) had little effect on
the bioactivity, with very similar EC50 (518 and 511 µM, respectively), while the CLogp
was very different (1.903 and 2.808, respectively). Thus, neither the lipophilicity or the
acidity of the compounds appeared to be affecting the bioactivity. This finding might be
a key factor, since the control of the solubility and acidity of the bioactive compound by
esterification may ease the future formulation of the bioactive compounds. Stronger activity
was found for the acyl chloride derivative of 1 (20), demonstrating again the beneficial
effect of halogens on the bioactivity. In the case of compound 22, where the acid group has
been reduced to an alcohol, the bioactivity was almost lost, demonstrating the importance
of the acid group for the growth inhibition activity.

The overall structure–activity relationship discussion described above is summarized
in Figure 3.
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2.2. Identification of Inductors of Necrosis in C. campestris Seedlings

Additional to the modification of inhibitory activity of seedling growth, this SAR study
was also used to identify structural features that induced necrosis in Cuscuta seedlings
(Figure 4). The induction of necrosis observed in this study was significantly affected
by the compound treatment (ANOVA, p < 0.001). No necrosis was observed in Cuscuta
seedlings treated with the control or hydrocinnamic acid (Figure 4A–C). Despite not having
significant growth-reducing activity, intense necrosis was observed in the root apices of all
seedlings treated with compounds 17 and 12 (Figure 4E,F,I,J). Treatments with compound
18 (Figure 4G,H) also induced necrosis, but necrosis was observed to be less intense than
the necrosis induced by compounds 12 and 17. Compound 17 is similar to caffeic acid, the
only difference being the absence of the double bond between carbons 2 and 3. It has been
observed that, as in compound 17, caffeic acid does not induce Cuscuta growth inhibition,
but rather the induction of necrosis [9]. Both compounds with the highest necrosis effect
(12 and 17) also possess low and similar CLogp values (0.676 and 0.639, respectively), lower
than in the case of compound 18 (1.085), indicating that low lipophilicity may play a role in
producing the necrotic effect. It is interesting to consider that other studies also reported
necrotic activity for compound 7 [33,34].

In our previous study, we reported the cinnamic-acid-derived compounds caffeic acid,
ferulic acid, vanillic acid, and naringenin, all having necrosis-inducing effects on Cuscuta
seedlings that varied from strong to moderate [9].

By comparing previous findings with the results reported in the present research,
some hints about the structural requirements for necrosis-inducing activity can be found.
First, the presence of the double bond of cinnamic acid is not mandatory to obtain a strong
necrosis-inducing effect, since compound 17 has a similar necrotic effect to caffeic acid. In
addition, the presence of two adjacent hydroxy groups in the aromatic ring is beneficial for
inducing necrosis, and the methylation of one of these groups decreases the necrotic effect,
as observed previously between caffeic and ferulic acid [9], and confirmed in the present
work with compound 17 when compared with compound 18.

Moreno-Robles et al. [9] reported that vanillic acid, also containing a methoxy group,
shows the negative effect of the methylation on the necrosis, while also hints at the relevance
of the phenol fragment for necrosis. On the other hand, compound 12, with an amino
group, has a similar effect to the hydroxylated compounds, hinting that polar groups, such
as amino and hydroxyl groups, with the possibility to form hydrogen bonds, could have a
positive effect on the necrosis-inducing capacity.
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Figure 4. Photographs showing a Cuscuta seedling treated with control (A,B); hydrocinnamic acid
(1) 1 mM (C); 3-(4-fluorophenyl)propionic acid (13) (D); 3,4-dihydroxyhydrocinnamic acid (17) (E,F);
3-(3-hydroxy-4-methoxyphenyl)propionic acid (18) (G,H); 3-(4-aminophenyl)propionic acid (12) (I,J).
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3. Materials and Methods
3.1. Plant Material and Chemicals

Seeds of Cuscuta were collected in July 2019 from mature Cuscuta campestris plants
parasitizing field pea at the Institute for Sustainable Agriculture (IAS-CSIC), Alameda del
Obispo Research Center (Córdoba, southern Spain, coordinates 37.856 N, 4.806 W, datum
WGS84). Dry Cuscuta seeds were separated from capsules by sifting with a 0.6 mm mesh
sieve followed by winnowing with a fan. Cuscuta seeds were stored dry in the dark at room
temperature until use for this work in 2022.

Hydrocinnamic acid and its 21 analogues were purchased from Sigma-Aldrich (St.
Louis, MO, USA): hydrocinnamic acid (1, cat. no. 135232), 3-(2-hydroxyphenyl)propionic
acid (2, cat. no. 393533), 3-(2-carboxyphenyl)propionic acid (3, cat. no. 406465), 3-(3-
hydroxyphenyl)propanoic acid (4, cat. no. PH011597), 3-(3-methoxyphenyl)propionic
acid (5, cat. no. 349763), 3-(3-chlorophenyl)propionic acid (6, cat. no. 631302), 3-(4-
hydroxyphenyl)propionic acid (7, cat. no. H52406), 3-(4-methoxyphenyl)propanoic acid
(8, cat. no. M23527), 3-(p-tolyl)propionic acid (9, cat. no. 118265), 4-(trifluoromethyl)
hydrocinnamic acid (10, cat. no. 457035), 3-(4-cyanophenyl)propionic acid (11, cat. no.
746010), 3-(4-aminophenyl)propionic acid (12, cat. no. 560251), 3-(4-fluorophenyl)propionic
acid (13, cat. no. 560502), 3-(4-chlorophenyl)propionic acid (14, cat. no. 656151), 3-(4-
bromophenyl)propionic acid (15, cat. no. 595438), 3-(4-carboxyphenyl)propionic acid (16,
cat. no. 531553), 3,4-dihydroxyhydrocinnamic acid (17, cat. no. 102601), 3-(3-hydroxy-4-
methoxyphenyl)propionic acid (18, cat. no. CDS006461), 3-(3-chloro-4-methoxyphenyl)
propionic acid (19, cat. no. 638773), hydrocinnamoyl chloride (20, cat. no. 249440), ethyl
3-phenylpropionate (21, cat. no. 284416), 3-phenyl-1-propanol (22, cat. no. 140856).

3.2. In Vitro Experiments for Screening of Allelopathy against Growth of Cuscuta Seedling

A screening of the 21 compounds (2–22) described in Figure 1 was performed to
identify allelopathic activity against the growth of Cuscuta seedling. Seeds of C. campestris
show physical dormancy induced by a thick seed coat that preserves seedbank viability
in agricultural fields over time [7]. To promote Cuscuta germination, the hard coat of
Cuscuta seeds was eliminated by scarification with sulfuric acid for 45 min [35], followed by
thorough rinses. Then, five scarified Cuscuta seeds were placed using tweezers onto 5 cm
diameter filter paper discs inside 5.5 cm diameter Petri dishes. All compounds were dis-
solved in methanol and then diluted to 1, 0.5, and 0.25 mM in sterilized distilled water. This
was conducted for all compounds except for the compound 3-(4-carboxyphenyl)propionic
acid, which was dissolved in dimethyl sulfoxide, or the compounds 3-phenyl-1-propanol,
ethyl 3-phenylpropionate, and hydrocinnamoyl chloride, which were purchased in liq-
uid formulation and dissolved directly in water. The final concentration of organic sol-
vent in all treatments was 1%, including for the compounds 3-phenyl-1-propanol, ethyl
3-phenylpropionate, and hydrocinnamoyl chloride. Triplicate aliquots of 1 mL of each
treatment were applied to filter paper discs containing the scarified Cuscuta seeds. Triplicate
aliquots of treatment only containing 1% of solvent and sterile distilled water were used as
a control. Treated Cuscuta seeds were incubated in the dark at 23 ◦C for 5 days. The seedling
length was measured in each of the five Cuscuta seedlings for each of the three replicate
filter paper discs per treatment. Seedling growth for each treatment was calculated in
relation to the seedling growth of the corresponding control. In addition, notes were taken
for each Cuscuta seedling regarding whether the root apex had developed necrosis. The
percentage of seedlings that developed a necrotic root was calculated in each triplicated
disk for each treatment.

3.3. Calculations and Statistical Analysis

Compounds that reached inhibitions of 50% and that were active at more than one
concentration were statistically analyzed to determine their IC50 using GraphPad Prism
v.5.00 software package (GraphPad Software, Inc., San Diego, CA, USA). The bioactivity
data were fitted to a sigmoidal dose–response model with variable slope. Calculation of
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CLogp was performed using ChemOffice v20.1 (PerkinElmer, Wal-tham, MA, USA) using
the appropriate tool in ChemDraw Professional [36]. All bioassays were performed using a
completely randomized design. Percentage data were approximated to normal frequency
distribution by means of angular transformation. Then, percentage data were subjected to
analysis of variance (ANOVA). The significance of mean differences among treatments was
evaluated by Tukey test at p < 0.05. Statistical analysis was performed using SPSS software
27 (SPSS Inc., Chicago, IL, USA).

4. Conclusions

The results demonstrate that phytotoxicity is influenced by the position and the type
of functional groups present on the substituted hydrocinnamic acid analogues. In par-
ticular, the carbonyl group of the propanoid chain seems an important factor for activity.
Furthermore, the presence of halogens on the aromatic ring increases the activity, while sub-
stitutions with cyano and amino groups, as well as hydroxyl or carboxyl groups, decreases
the activity. Interesting data were also obtained with the presence of a methoxy group in the
meta position, while its presence in the para position had a negative effect on the bioactivity.
Structural features that induced necrosis in Cuscuta seedlings were also identified, and the
results suggest that low lipophilicity may play a role in determining the necrotic effect.
These results provide interesting and useful information for the design of herbicides for the
control of C. campestris, starting from the compounds with increased activity in respect to
hydrocinnamic acid. However, future studies are needed to determine the mode of action
of the active compounds and their ecotoxicity before realizing formulations for practical
application as herbicides.
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