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Abstract: In this work, Solanum lycopersicum cv. Micro-Tom suspension-cultured cells were used
to analyze the effect of different elicitors including β-cyclodextrins (CD), methyl jasmonate (MJ),
β-glucan (Glu) and 3-hexenol (Hex) separately and the combined treatments of CD + MJ, CD + glu
and CD + Hex on triterpene compound production after 24, 72 and 96 h. Moreover, we studied the
changes induced by elicitors in the expression of key biosynthetic genes to elucidate the regulation of
the triterpene biosynthetic pathway. The relative abundance of the triterpene compounds identified in
the extracellular medium after elicitation (squalene, fucosterol, avenasterol, β-sitosterol, cycloartenol
and taraxasterol) was determined by gas chromatography coupled to mass spectrometry, and the
expression level of genes in treated-cells was analyzed by real-time quantitative polymerase chain
reaction (qRT-PCR). Results showed that, in CD-treated cells (CD, CD + MJ, CD + Glu, CD + Hex),
specialized metabolites were accumulated mainly in the extracellular medium after 72 h of elicitation.
Moreover, qRT-PCR analysis revealed that the highest triterpene levels in CD-treated cells (CD,
CD + MJ, CD + Glu, CD + Hex) were highly correlated with the expression of cycloartenol synthase,
3-hydroxy-3-methylglutaryl-CoA reductase and squalene epoxidase genes at 24 h of treatment, whereas
the expression of sterol methyltransferase was increased at 72 h. According to our findings, CD acts as
a true elicitor of triterpene biosynthesis and can promote the release of bioactive compounds from
the tomato cells into the extracellular medium. The results obtained provide new insights into the
regulation of the triterpene metabolic pathway, which might be useful for implementing metabolic
engineering techniques in tomato.
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1. Introduction

Solanum lycopersicum (tomato) is a model plant used to study the development of its
fruits and their production. Since the sequencing of its genome in 2012, S. lycopersicum has
been widely used for genetic, genomic, developmental, and physiological studies, and new
knowledge has been acquired through omics approaches [1–3]. Among the many existing
tomato varieties, Micro-Tom (MT, a dwarf cultivar of tomato) is currently being used as a
model cultivar because of its advantages over Arabidopsis, including its shorter life cycle
and small size.

Triterpenes have been extensively studied in the cuticle of tomato fruits, including
compounds such as taraxasterol, lupeol, lanosterol, cycloartenol, cholesterol, stigmasterol
and β-sitosterol [4–8]. Studies have also shown that different plant cell cultures exposed to
elicitation can also produce phytosterols [9,10]. Phytosterols are part of the cell membranes
in plants, and these compounds are involved in plant defense responses [11–13]. Triterpenes
are isoprenoid compounds biosynthesized in the cytoplasm from farnesyl diphosphate
(FPP) via the mevalonic acid (MVA) pathway [14]. Then, squalene synthase (SQS) can
form squalene, the precursor of all sterols and other triterpenes in plants, from two FPP
molecules [15]. The cyclization of squalene leads to the synthesis of 2,3-oxidosqualene in a
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reaction catalysed by squalene epoxidase (SQE) [16]. Depending on its spatial conformation,
2,3-oxidosqualene is converted to pentacyclic triterpenes (e.g., taraxasterol) for cyclization
reactions [17] or to cycloartenol by cycloartenol synthase (CAS) [18] (Figure 1). Likewise,
lanosterol synthase produces the cyclization product lanosterol in mammals, leading to
cholesterol, and in fungi leading to ergosterol as end products [19].
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Figure 1. Simplified phytosterol biosynthetic pathway. HMGR: 3-hydroxy-3-methylglutaryl-CoA
reductase; SQS: squalene synthase; SQE: squalene epoxidase; CAS: cycloartenol synthase; SMT:
sterol methyltransferase.

Many of the triterpenic metabolites synthesized by S. lycopersicum are of particular
interest because of their beneficial effects on human health. For example, they are reported
to reduce stimulate blood circulation, maintain the lipid profile, remove toxins and decrease
high blood pressure [20]. Thus, new environmentally friendly and sustainable methods
have been developed for triterpene production, including elicited plant suspension-cultured
cells (SCC) [21]. In our research group, we have obtained a system to produce these
bioactive compounds based on the use of β-cyclodextrins (CD) in SCC [22]. CD can
act as an elicitor, and it binds with apolar compounds, enhancing their release to the
culture medium [23].

On the other hand, the elicitor which is most frequently used to enhance secondary
metabolite production in plant in vitro cultures due to its effectivity is methyl jasmonate
(MJ) (60% according to a literature search), followed by jasmonic acid and salicylic acid
(approximately 10 and 15%, respectively) [24]. MJ is an essential oil derived from α-
linolenic acid and was first isolated from Jasminum grandiflorum [25]. MJ regulates many
physiological processes in plants, including development and growth as well as plant
defense responses [26]. Instead, green leaf C6-volatiles ((Z)-3-hexenol (Hex), (Z)-3-hexenal
and (Z)-3-hexenyl acetate) are mainly involved in allelopathic responses [27]. Furthermore,
exposure of plant SCC to these volatile compounds was shown to induce the expression of
genes related to defense responses and the production of phytoalexins [28]. Other used
elicitors are β-glucans (Glu), oligosaccharides obtained from fungal cell walls [29]. Glu has
been applied to trigger the biosynthesis of metabolites in soybean and rice cells [30,31] and
the production of phytosterols and tocopherols in Linum usitatissimum SCC [23].

Considering these antecedents, the aim of the present work was to analyze triterpene
biosynthesis in S. lycopersicum cv. Micro-Tom SCC after supplementing culture medium
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with the elicitors MJ, Glu and Hex, separately or in combination with CD. The capacity
of these elicitors to regulate the biosynthesis and release of triterpene compounds in the
culture medium was studied.

2. Results and Discussion
2.1. Effect of Elicitors on the Growth of MT Tomato SCC

In this study, the growth capacity of MT tomato SCC was evaluated for 96 h in SCC
treated with 50 mM CD, 100 µM MJ, 1 mg L−1 Glu, and 40 µM Hex, alone or in combination
(Figure 2). According to the ANOVA analysis, the growth of MT tomato SCC was signifi-
cantly affected by the elicitor treatment and time of elicitation but not by the interaction
between both factors. Regarding the elicitor treatments, the biomass accumulation was
similar between the control and Glu, but when the culture medium was supplemented with
CD, alone or in combination with MJ, a significant decrease in cell growth was detected. CD
also had a slight negative impact on growth when applied with Glu or Hex. However, in
all treatments, the maximum biomass accumulation was reached at 96 h of elicitation. Simi-
larly, Vidal-Limón et al. [28] found reduced biomass in Taxus media SCC in the presence of
CD + coronatine; this effect was even more pronounced when the T. media cells were elicited
with Hex + CD + coronatine. In contrast, Almagro et al. [23] described no negative effect on
cell growth of L. usitatissimum SCC elicited with Glu or Hex or in the combined treatments
with CD. On the other hand, several studies have reported that MJ causes a modification of
secondary metabolism and arrests the cell cycle in SCCs of some plant species [32,33]. The
reduction in cell growth associated with elicitation arises from competition between the
defense- and growth-related metabolism [34,35]. In fact, to survive under stress conditions,
plants must control cell growth patterns, regulate cellular redox homeostasis, maintain
cellular metabolic functions, and activate secondary metabolism [36].
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Figure 2. Effect of methyl-β-cyclodextrins (CD), alone or jointly with methyl jasmonate (MJ), glucan
(Glu) or hexenol (Hex) on the cell growth of S. lycopersicum SCC expressed as g of fresh weight (FW)
L−1 at 24, 72 and 96 h of treatment. F-values from two-way ANOVA significant at the 99.9% (***)
level of probability.

2.2. Effect of Elicitors on Total Triterpene Content in MT Tomato SCC

It is well-known that elicitors can induce the production of primary and secondary
metabolites in some plant SCC [23]. As well as acting as a true elicitor, CD form inclu-
sion complexes with apolar metabolites, which favors their release into the extracellular
medium [37]. The application of CD at a concentration of 50 mM has been described as
optimal for both actions [22]. Here, the concentrations of MJ, Glu and Hex were selected
based on our previous data [9,10,23]. Hence, we analyzed the effect of 50 mM CD, applied
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alone or jointly with 1 mg L−1 Glu, 100 µM MJ, and 40 µM Hex, on the production of
triterpenes in MT tomato SCC (Figure 3). For this purpose, the extracellular medium was
sampled periodically at 24, 72 and 96 h after elicitation. As shown by the ANOVA analy-
sis, both the treatment type and duration, as well as the interaction of these two factors,
significantly influenced triterpene production (Figure 3). Thus, a significant enhancement
in total triterpenes was observed after MT tomato SCC were treated with CD, with the
maximum extracellular levels being reached at 72 h of elicitation with 50 mM CD, alone
or jointly with Glu, Hex or MJ (Figure 3). Of the six triterpenes identified by GC-MS in
the extracellular medium, the most abundant were taraxasterol, which represented more
than 60% of the triterpenes identified, followed by fucosterol (around 17%), and to a lesser
extent, squalene, β-sitosterol, avenasterol and cycloartenol were also found (Figure 3). The
intracellular levels of total triterpenes were very low in all treatments, as in the control cells
(data not shown).

Plants 2022, 11, x FOR PEER REVIEW 5 of 11 
 

 

 
Figure 3. Relative abundance level of the triterpenoid compounds identified in the extracellular me-
dium of Solanum lycopersicum SCC treated with methyl-β-cyclodextrins (CD), alone or jointly with 
methyl jasmonate (MJ), glucan (Glu) or hexenol (Hex) at 24, 72 and 96 h of treatment. The relative 
abundance levels have been presented as the fold increase relative to the control. Bars with different 
letters show significant differences (p < 0.05) between the treatments used within each time 
according to Tukey’s test (p ≤ 0.05). F-values from two-way ANOVA significant at the 99.9% (***) 
level of probability. 

2.3. Effect of Elicitors on the Expression of Triterpene Biosynthetic Genes 
Having established that the elicitation of MT tomato SCC with CD, individually or 

jointly with MJ, Glu or Hex, triggers a significant accumulation of triterpenes (mainly fu-
costerol and taraxasterol) in the culture medium (Figure 3), we analysed the expression of 
key biosynthesis genes by qRT-PCR to identify how the presence of elicitors affected to 
the triterpene biosynthesis (Figure 4). The genes studied were: hmgr1 (encoding 3-hy-
droxy-3-methylglutaryl coenzyme A reductase 1 (HMGR1), Figure 4a), sqs (squalene syn-
thase (SQS), Figure 4b), sqe (squalene epoxidase, Figure 4c), cas (cycloartenol synthase, 
Figure 4d), and smt1 (S-adenosyl-2-methionine:(24 (28) C-methyltransferase 1 (SMT), Fig-
ure 4e). According to the ANOVA analysis, expression levels of all target genes were sig-
nificantly influenced by the duration and type of treatment, as well as by the interaction 
of both factors. However, all elicitors tested triggered different gene expression patterns 
throughout the experiments (from 24 to 96 h). 

Figure 3. Relative abundance level of the triterpenoid compounds identified in the extracellular
medium of Solanum lycopersicum SCC treated with methyl-β-cyclodextrins (CD), alone or jointly
with methyl jasmonate (MJ), glucan (Glu) or hexenol (Hex) at 24, 72 and 96 h of treatment. The
relative abundance levels have been presented as the fold increase relative to the control. Bars with
different letters show significant differences (p < 0.05) between the treatments used within each time
according to Tukey’s test (p ≤ 0.05). F-values from two-way ANOVA significant at the 99.9% (***)
level of probability.

According to these results, CD increased the levels of triterpenes in the extracellular
medium due to their structural properties since they can trap triterpenes in their hydropho-
bic central cavity, forming an inclusion complex [38]. By isolating the metabolites, CD
can protect them from degradation and enhance their release into the culture system [36].
Previously, it was reported that elicitation with CD improved triterpene production in
SCC of tomato, carrot, and flax, respectively [10,23,39]. On the other hand, Sharma and
Zafar [40] showed that treating Taraxacum officinale Weber cultures with 25 mM CD or
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200 µM MJ increased the production of taraxasterol, as in our experiments. The enhanced
extracellular triterpene accumulation demonstrated in the present study indicates that
CD-elicited MT tomato SCC constitutes a highly promising biotechnological production
system for bioactive compounds of pharmacological interest.

2.3. Effect of Elicitors on the Expression of Triterpene Biosynthetic Genes

Having established that the elicitation of MT tomato SCC with CD, individually or
jointly with MJ, Glu or Hex, triggers a significant accumulation of triterpenes (mainly
fucosterol and taraxasterol) in the culture medium (Figure 3), we analysed the expression of
key biosynthesis genes by qRT-PCR to identify how the presence of elicitors affected to the
triterpene biosynthesis (Figure 4). The genes studied were: hmgr1 (encoding 3-hydroxy-3-
methylglutaryl coenzyme A reductase 1 (HMGR1), Figure 4a), sqs (squalene synthase (SQS),
Figure 4b), sqe (squalene epoxidase, Figure 4c), cas (cycloartenol synthase, Figure 4d), and
smt1 (S-adenosyl-2-methionine:(24 (28) C-methyltransferase 1 (SMT), Figure 4e). According
to the ANOVA analysis, expression levels of all target genes were significantly influenced
by the duration and type of treatment, as well as by the interaction of both factors. However,
all elicitors tested triggered different gene expression patterns throughout the experiments
(from 24 to 96 h).

The enzyme HMGR1 catalyses the biosynthesis of MVA produced by HMG-coenzyme
A (Figure 1). This reaction represents a limiting step in the triterpene biosynthetic path-
way [41] and is sensitive to multiple stimuli, both external (light, wounds, etc.) and internal
(e.g., phytohormones). As shown in Figure 4, the maximum transcript levels of hmgr1 were
detected at 24 h of incubation with Glu (Figure 4a), when they were about 5-fold higher
than in control cells. Furthermore, it should be noted that only the combined treatment of
CD + MJ induced a significant up-regulation of hmgr1 until 72 h when the expression was
4.4- and 2.9-fold higher than in cells incubated with CD or MJ individually (Figure 4c), and
never, the combined treatment of Glu or Hex with CD, increased the expression levels of
hmgr1 above the control cells.

The relative expression levels of sqs encoding the sterol and triterpene pathway-specific
SQS (Figure 1) in MT tomato SCC treated with CD, MJ, Glu or Hex, alone or in combination,
at 24, 72 and 96 h of elicitation are depicted in Figure 4b. Elicitation with Glu significantly
increased sqs transcript accumulation at 24 h (3-fold with respect to control cells), which
subsequently decreased until 96 h. Hex also increased the expression of sqs at 24 h but to
a lesser extent than Glu. Similar to hmgr1, the sqs gene was significantly upregulated by
the combination of CD + MJ, its expression being around 5.5-fold higher compared to the
control treatment at 72 h of incubation.

Expression of the sqe gene was also studied (Figure 4c). Its maximum expression was
found at 24 h of treatment with CD + MJ (10.8-, 6- and 2.6-fold higher than in control, CD-
and MJ-treated cells, respectively). The transcript levels of sqe were slightly increased by
treatments with CD, CD + Glu or CD + Hex at 24 h, otherwise remaining quite constant
during the study period.

The expression of the cas gene, the enzyme responsible for generating cycloartenol
(Figure 4d), increased significantly in all treatments at 24 h of elicitation. The highest
increases were detected after elicitation with MJ, individually or in combination with
CD (CD + MJ) and Hex (13-, 9.5- and 10-fold higher, respectively, than the control). As
mentioned, eukaryotic triterpene biosynthesis begins with 2,3-oxidosqualene, which leads
to the formation of pentacyclic triterpenes such as taraxasterol or generates cycloartenol,
the precursor of all the known phytosterols. As the relative abundance of taraxasterol was
double that of total phytosterols (cycloartenol + β-sitosterol + fucosterol), these results
suggest that CD, individually or with MJ, Hex or Glu, activates the expression of the cas
gene and could induce the putative genes involved in taraxasterol biosynthesis.



Plants 2022, 11, 2782 6 of 10Plants 2022, 11, x FOR PEER REVIEW 6 of 11 
 

 

 
Figure 4. Relative expression level of hmgr1 (a), sqs (b), sqe (c), cas (d) and smt1 (e) genes in S. lyco-
persicum SCC elicited with methyl-β-cyclodextrin (CD), alone or jointly with methyl jasmonate (MJ), 
glucan (Glu) or hexenol (Hex) at 24, 72 and 96 h of treatment. The control with reference value = 1 
was used to normalize the relative expression levels of each gene. Levels of transcripts were calcu-
lated using the actin gene as internal control. Bars with different letters show significant differences 
(p < 0.05) between the treatments used within each time according to Tukey’s test. F-values from 
two-way ANOVA significant at the 99.9% (***), evel of probability. 

The enzyme HMGR1 catalyses the biosynthesis of MVA produced by HMG-coen-
zyme A (Figure 1). This reaction represents a limiting step in the triterpene biosynthetic 
pathway [41] and is sensitive to multiple stimuli, both external (light, wounds, etc.) and 
internal (e.g., phytohormones). As shown in Figure 4, the maximum transcript levels of 
hmgr1 were detected at 24 h of incubation with Glu (Figure 4a), when they were about 5-
fold higher than in control cells. Furthermore, it should be noted that only the combined 
treatment of CD + MJ induced a significant up-regulation of hmgr1 until 72 h when the 
expression was 4.4- and 2.9-fold higher than in cells incubated with CD or MJ individually 
(Figure 4c), and never, the combined treatment of Glu or Hex with CD, increased the ex-
pression levels of hmgr1 above the control cells. 

Figure 4. Relative expression level of hmgr1 (a), sqs (b), sqe (c), cas (d) and smt1 (e) genes in
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The last gene analysed from the phytosterol biosynthetic pathway was smt1 (Figure 4e),
which encodes SMT, the enzyme that methylates carbon 24 of cycloartenol to obtain 24-
methylcycloartenol (Figure 1). The expression levels of smt1 (Figure 4e) were always lower
in all treated cells compared to the control at 24 h of elicitation. In contrast, the maximum
transcript levels were observed in cell cultures incubated with MJ alone (at 72 h) or with CD
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(at 96 h), being on average 5.6- and 6.5-fold higher than in the control, respectively. CD and
Hex alone also increased the expression of smt1 at 72 h of treatment, whereas Glu had no
impact. The upregulation of smt1 in MT tomato SCC treated with CD, alone or with MJ, Glu
or Hex, at 72 h of elicitation correlated well with the increment in the relative abundance of
fucosterol, β-sitosterol, avenasterol and cycloartenol in the extracellular medium at 96 h of
treatment (Figure 3).

Therefore, the enhanced extracellular accumulation of triterpenes observed in MT
tomato SCC elicited with CD, individually or jointly with MJ, Glu or Hex, correlated well
with the higher expression levels of hmgr1, sqe, cas and smt1 at any of the times analysed. The
results indicate that CD can act as an elicitor, promoting both the biosynthesis of triterpenes
as well as their excretion from the cells, which favours their accumulation in the extracellular
medium. Miras-Moreno et al. [42] also observed an enhancement in the expression of the cas
but not the sqs gene in CD-treated Daucus carota SCC. Similarly, in D. carota SCC, elicitation
with CD increased the extracellular accumulation of phytosterols [39].

3. Materials and Methods
3.1. Plant Materials

Friable calli from Solanum lycopersicum L. cv. Micro-Tom (MT tomato) were obtained
from fruits of tomato in vitro plants, and they were maintained at 25 ◦C under a 16 h
light/8 h dark photoperiod with a photon flux density of 85 µmol m−2 s−1 at 25 ºC. These
calli were subcultured every 21 days on a solid Murashige and Skoog [43] basal medium
supplemented with Morel vitamins [44], 0.8 mg L−1 naphthalenacetic acid, 0.1 mg L−1

kinetin, 0.25 g L−1 casein hydrolysate, and 30 g L−1 sucrose at pH 5.8. SCC were established
by transferring 20 g of friable callus into 250-mL Erlenmeyer flasks containing 100 mL of
the same medium without agar, and they were maintained in the same conditions of tª and
photoperiod as described above in an orbital shaker at 115 rpm. These MT tomato SCC were
subcultured every 15 days by diluting the cells with an equal volume of culture medium.

3.2. Elicitation of MT Tomato SCC

Elicitation treatments were applied to 15-day-old MT tomato SCC. The treatments
were 50 mM β-CD (Wacker Chemie, Madrid, Spain), 100 µM MJ (Duchefa Biochemie,
Haarlem, The Netherlands, 40 µM cis-3-hexen-1-ol (Hex; Sigma-Aldrich, Madrid, Spain),
1 mg L−1 Glu (Sigma-Aldrich, Madrid, Spain) and the combined treatments of CD plus MJ
(CD + MJ), Glu (CD + Glu) and Hex (CD + Hex). Briefly, 4 g of fresh weight (FW) of MT
tomato cells from SCC were grown in 20 mL sterile fresh medium containing CD alone or
with MJ, Hex or Glu, the quantities being based on previous experience [5,6,13,14]. After
24, 72 and 96 h of incubation, the culture medium was separated from the cells by gentle
vacuum filtration. Triterpene metabolites were extracted from the culture medium, the
extracts were analysed by GC-MS as described by Miras-Moreno et al. [45], and the cells
were used to extract RNA to analyse gene expression.

3.3. Extraction and Identification of Triterpene Compounds

Triterpene metabolites were extracted for aqueous two-phase partition with ethyl
acetate (1:1, v/v). The organic phase was collected and evaporated at 40 ◦C in vacuum; the
dry extract was dissolved in 1 mL methanol for the chromatographic analysis. Identification
of triterpene compounds was based on mass spectra obtained by a gas chromatograph
Agilent Technologies 6890 Network GS System equipped with a mass selective detector
in a capillary column 30 m × 0.25 mm (Agilent 19,091 S-433HP-5MS) (GC-MS). A range
of temperature from 60 to 310 ◦C was programmed as the GC oven temperature for the
analysis of triterpenes. Helium was used as carrier gas at 0.1 mL min−1. An ionization
energy of 70 eV was used, and the mass range was recorded from m/z 50–800. The
injection volume was 1.0 µL. The results were analysed using Chemstation software. The
identification of the triterpene compounds in the extracellular medium was carried out
by comparing the experimental mass spectra and retention time with those obtained from
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commercial external standards and those that appear in the NBS 75 K library. The results
were expressed as the sum of the relative abundance of each identified compound. All
experiments were performed in triplicate.

3.4. Quantitative Real-Time RT-PCR (qRT-PCR)

The total RNA was extracted from 500 mg cells using a Trizol reagent (Invitrogen,
Madrid, Spain) following the manufacturer’s protocol. The purification included a DNase
treatment using the RNase free DNase Set (Qiagen, Hilden, Germany). The yield and purity
of the RNA were determined using a NanoDrop ND-2000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA). Starting from 1 µg of the purified RNA, the cDNA
was synthetized using the RevertAid First Strand cDNA Synthesis Kit (Thermo Fischer
Scientific, Waltham, MA, USA) according to the manufacturer’s protocol. The cDNA
samples obtained were kept at −80 ◦C until used. qRT-PCR was performed in an Applied
Biosystems QuantStudio 7500 Real-Time PCR system (Thermo Fisher Scientific, Waltham,
MA, USA) in 10 µL, using the 2X Power SYBR Green PCR Master Mix (Applied Biosystems,
Carlsbad, CA, USA). Here, we used 5 µL SYBR Green reaction mix, 51 nM forward and
reverse gene-specific primers and 33 ng of cDNA. Gene-specific primers were designed
with OligoAnalyzer 3.1 software (Table 1). The reaction conditions and the efficiency of
each primer pair were determined by performing a calibration curve with serial dilutions
from a pool of all cDNA samples, as described by Qiagen (Hilden, Germany). For each
gene, expression values were normalized to actin (act) as the reference gene. The relative
expression values of the hmgr1, sqs, sqe, cas and smt1 genes were analyzed after 24, 72 and
96 h of elicitation. All experiments were performed in triplicate.

Table 1. List of specific primers used for qRT-PCR.

Gene
Abbreviation Accession Number Primer Pair

(5′-Forward-3′/5′-Reverse-3′)
Size
(pb)

hmgr1 NM_001309881.1 CTTCCACTCCCATTGTACCTAAC/GATCTTCTCACGCCACCTTAC 93
sqs NM_001247787.2 ACCCACCGATGTTAAAGTACC/CTGGTCCATGAGAACCTTGT 108
sqe XM_026029244.1 GCACATGCTCCTCTTACAGTAG/GAGGGAACATCAACCTTAGGG 86
cas NM_001246855.2 CGCTTTGTTGGTCCTATCACT/GAGGGTGTGGGTAGTAAAGG 133

smt1 XM_004229602.3 AAGTTCTCTCTGCTGTTGACAAA/ACTCTCCCCATCCGTATTCATAGAAG144
act FJ532351.1 TCAGGCTGTGCTTTCCTTGT/CGACCAGCAAGATCCAAACG 141

3.5. Statistical Analysis

Data were expressed as the mean ± standard deviation (SD) of three independent
replicates. For comparing the treatment means, an analysis of variance (ANOVA) was
tested by Tukey’s honestly significant difference (HSD) test using the Statistical Package
for the Social Sciences software version 22 (SPSS Inc., Chicago, IL, USA), and statistically
significant differences were considered at p < 0.05.

4. Conclusions

The work reported here involved an in-depth study of triterpene biosynthesis, es-
pecially taraxasterol and phytosterols in MT tomato SCC. Elicitation with CD, alone or
jointly with MJ, Glu, or Hex, after 96 h of treatment increased the extracellular accumula-
tion of triterpenes, especially of the phytosterol, fucosterol, and the pentacyclic triterpene
taraxasterol. Moreover, the comparative analysis of the metabolomic and transcriptomic
profile in elicited MT tomato SCC showed that the expression of key genes of triterpene
biosynthesis correlated well with the extracellular levels of fucosterol and taraxasterol.
However, although the maximum transcript levels were reached at the beginning of the
elicitation (24 h), the highest accumulation of triterpenoids occurred at 96 h of treatment.
Therefore, in this plant system, CD acts not only as a sequester of highly apolar metabolites
in the culture medium but also as a true elicitor, as it induced the upregulation of genes
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related to plant defense. This work shows that elicitors could be used to modulate bioactive
compound levels in food plants like tomatoes.
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6. Szakiel, A.; Pączkowski, C.; Pensec, F.; Bertsch, C. Fruit cuticular waxes as a source of biologically active triterpenoids. Phytochem.
Rev. 2012, 11, 263–284. [CrossRef]
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