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Abstract: The global demand for oilseeds is increasing along with the human population. The
family of Brassicaceae crops are no exception, typically harvested as a valuable source of oil, rich
in beneficial molecules important for human health. The global capacity for improving Brassica
yield has steadily risen over the last 50 years, with the major crop Brassica napus (rapeseed, canola)
production increasing to ~72 Gt in 2020. In contrast, the production of Brassica mustard crops has
fluctuated, rarely improving in farming efficiency. The drastic increase in global yield of B. napus is
largely due to the demand for a stable source of cooking oil. Furthermore, with the adoption of highly
efficient farming techniques, yield enhancement programs, breeding programs, the integration of
high-throughput phenotyping technology and establishing the underlying genetics, B. napus yields
have increased by >450 fold since 1978. Yield stability has been improved with new management
strategies targeting diseases and pests, as well as by understanding the complex interaction of
environment, phenotype and genotype. This review assesses the global yield and yield stability
of agriculturally important oilseed Brassica species and discusses how contemporary farming and
genetic techniques have driven improvements.

Keywords: Brassica; oilseed; mustard; yield; security; genotype and phenotype

1. Introduction

The Brassicaceae family consists of 4636 accepted taxa, divided into 340 genera and
52 tribes [1,2]. Brassica is considered the most important as it contains many of the economi-
cally important crops such as oilseeds and condiment varieties, or cruciferous vegetables [3].
Despite the extreme phenotypic variation between Brassica spp. [3,4], only a select few
are commonly cultivated. For example, the mustard crops Brassica carinata (Ethiopian
mustard), B. nigra (black mustard), B. alba (white mustard) and B.juncea (brown mustard)
are typically grown for the production of condiments due to the taste of their oils ranging
from sweet to spicy. Whereas B. napus (rapeseed, oilseed rape, canola) is grown as a ma-
jor source of oilseed for the production of edible vegetable oil [5], as the derived oil has
healthy characteristics such as having less than 2% erucic acid and less than 30 µmol g-1 of
aliphatic glucosinolates in the meal [6]. Spurred on by the constant need for improvements,
breeding programs have developed new varieties with altered oilseed characteristics to
fit certain niches. This has in turn provided farmers with a suite of cultivars to choose
from, each yielding seeds with different health benefits or industrial uses, for example
oilseed with no erucic acid, low levels of gluconisolates, high levels of antioxidants (phe-
nolic compounds), varying vitamin content (C, B9 and K) and the inclusion/exclusion
of lutein [7]. Furthermore, with the development of B. napus hybrid lines, such as the
dual-purpose winter-hybrid and high stability oil varieties, the annual global production
has steadily increased each year [8]. In 1979, the global B. napus crop yield was recorded
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to be ~154.2 Mt [9], in 1994, the global yield increased to 34.1 Gt, with no commercially
available hybrid varieties. In 2020, the global yield was recorded to be 72.37 Gt with the
majority being hybrid varieties (Figure 1A) [10]. In contrast to B. napus, the global yield
of Brassica mustard crops has been highly variable (Figure 1B). In 1994, the global average
yield of mustards was 552.3 Mt, with the following years showing steady increase, until
1999, where global yield plummeted. Thereafter, global yield peaked intermittently at 2004
(796.7 Mt), 2009 (704.1 Mt), 2014 (682.2 Mt) and 2016 (685.9 Mt) (Figure 1B). Over the last
26 years, Brassica mustard crop yield has decreased by ~2.1% indicating the crop may be
grown in non-optimal environments or in volatile socio-economic climates [10].
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The global production of Brassica mustard crops is expected to increase due to national
renewable energy directives being established. For example, B. napus was the only oilseed
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crop grown in Brazil for decades due to its ability to grow well under the tropical climate,
however, with the national drive for production of biodiesel, several B. juncea and B. rapa
varieties were found to be better alternatives due to their oilseed properties (such as higher
erucic acid content (22:1) [11]. In contrast, B. napus and B. carinata are prioritized as sources
of oil for biofuel in the US, UK and the EU [12–14] as central Europe is well suited for
growing winter varieties of B. napus [8]. For example, in a ten-year average (2010–2020), the
EU achieved the highest farming efficiency (yield/area used) of ~2.76 t/ha (Figure 2) glob-
ally, whereas Canada and Asia averaged ~2.11 t/ha and 1.59 t/ha, respectively. The main
contributor to the difference is climate; the EU has an extended growing period (particularly
long day photoperiods) and growing seasons compared to Asia and Canada [15,16].
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National socio-economic position and climate are major drivers for yield stability. For
example, in 2017, the EU shifted their focus from growing B. napus and instead began
relying on imports from Australia and Canada, after both were able to meet the strict EU
Renewable Energy Directive greenhouse gas criterion [17]. This led to a significant decrease
in production (2.98–2.54 t/ha). However, both drivers can be overcome through by devel-
oping new and improved crop management/enhancement programs. China’s production
of B. napus maintained a slow and steady increase between 2005 and 2015, thereafter, with
the years following (2015–2020) seeing a greater increase in farming efficiency, resulting
in the national best farming efficiency of 1.753 t/ha (Figure 2) [10]. This shift indicates a
concerted effort towards improving yield from given area farmed, rather than relying on
increasing the area farmed for increasing yield due to space limitations.

Several other nations have also begun investing in oilseed enhancement programs. For
example, the Canola Council of Canada has projected an overall increase in B. napus yield
from ~21 Mt in 2020 to ~25 Mt in 2025 as per their enhancement programs to meet global
demand [18,19]. Furthermore, the Australian Field Applied Research (AFAR) initiative
showed that Australia is capable of producing B. napus yields in excess of 6 t/ha [20] nearly
doubling Europe’s efficiency. This is an amazing feat, as Australia’s production of oilseed
crop has consistently been the lowest globally since 2006 due to the extreme climate, such
as a short growing season, high temperatures and low rainfall. Climate is a significant
constraint and often dictates which crop can be grown. For example, the preferred oilseed
crop in India is B. juncea due to consistent rainfall, whereas B. napus is often selected for its
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drought tolerance [15]. The yield of B. juncea in the region has increased from 0.76 Mt in
1950, to 7.98 Mt in 2020, however, it still does not meet the domestic demand for edible oils.

Yield and yield stability of Brassica oilseed and mustard crops currently relies on the
optimization of agronomic practices by enhancement programs, creating new varieties
through breeding programs and improving management programs to prevent disease and
pest incursions. All these programs have gained significant momentum with the integration
of molecular resources such as characterization of germplasm, breeding pedigrees and
identification of trait-associated loci in breeding programs. Karim et al. 2014., showed
that high yielding, short duration B. napus lines with up to 4.6 times higher yields can
be rapidly created when crossed with hybrid Brassica rapa and/or Brassica oleracea [16].
However, targeting a particular phenotypic trait such as yield, or oilseed content is not
always straightforward. Crop genotypes do not always correlate with crop phenotype.
For example, quantitative disease resistance in B. napus has been shown to improve yield
stability by providing enhanced immunity against several pathogens such as Leptosphearia
maculans (blackleg), Sclerotinia sclerotium (Sclerotinia stem rot) and Plasmodiophora brassicae
(clubroot), however the underlying genes have yet to be identified due to the multi-genic
nature of quantitative resistance, despite substantial genomic resources being available
such as reference genomes or pangenomes [5,21–24]. Furthermore, phenotypic traits often
dictate regional viability as the main influence of yield security are stressors such as biotic
(disease and pests) and abiotic (temperature, salinity, pH, heavy metals and hydration)
stress. More emphasis has been applied to targeting biotic stress resistance phenotypes
as unmanaged biotic stress leads to yield loss. Annually, B. napus yield is affected by
10–20% loss in UK and Canada and up to 90% in Australia, due to L. maculans, the causal
agent of blackleg [25–27]. As such, to aid in improving Brassica crop yield and yield security,
this review will assess current farming and disease management programs; introduce the
gap between phenotype and genotype; discuss the underlying genetics of yield; and
discuss studies that have adopted molecular technology to develop new and improved
Brassica crops.

Enhancing Crop Yield and Yield Stability with Farming Techniques and Management Plans

Crop yield and yield stability has been influenced by human intervention for cen-
turies. However, in the future, crop yield and stability will become more affected by the
consequences of human intervention. Ray et al. 2019., performed an extensive study of
ten global crops, including B. napus, relating observed yield to observed weather from
1974–2013 and found that climate change may have already affected canola production.
Since the 1970s, the growing season temperature has increased by 1.2 ◦C and this change
has likely affected canola production globally [28]. As a result, the study found that the
mean production of canola in western and eastern Europe decreased by 11.4%, North
and Central America decreased by 0.4%, whereas in northern Europe, Asia and Ocea-
nia it increased by 3.1%, 5.9% and 0.6%, respectively. However, the declining trend of
B. napus production does not continue past 2013, with the following years (2013–2020) of
global production increasing both in yield (averaging ~72 Gt) (Figure 1A) and efficiency
(averaging ~2.06 t/ha, Figure 2) [10]. This is most likely due to the rapidly developing
molecular resources available (discussed later in Underlying genetics dictate crop yield),
integrated farming strategies and adaptive management programs. Several studies have
shown through integrating molecular resources and farming techniques, crop yield, yield
stability and yield quality can be secured [29–33].

Environmental conditions are the greatest influencers of biomass accumulation, yield
during the growth period [6] and may influence plant immunity [34–39]. The critical period
is the phase of growth in which abiotic stresses have the greatest influence on yield [40].
Kirkegaard et al. 2018., showed that the critical period for canola is between 100 ◦Cd to
400 ◦Cd after the start of flowering. The critical period for the other Brassica oilseed crops
is yet to be established. The second major period is the seed-filling period, also known as
grain-fill. The environmental conditions during this time have been found to influence
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seed size and oil content [6]. Furthermore, the harvested yield is dictated by monitoring
the seed branches and meristem for colour change; Graham et al. 2017., found that once
60–80% of all pod branches have changed colour the canola should be harvested to achieve
maximum yield [41]. Along with time of harvesting, plant density also dictates maximum
yield and harvestability [42–48]. The angle of the lowest branches decreases as row spacing
increases for B. napus. As such, not only does high density improve total crop yield, it also
improves the actual yield captured through mechanical harvesting [43]. In contrast, in B.
carinata, row spacing affected seed and oil yield, branch production and the number of
pods per plant [46], implying plant density must be carefully evaluated for climate and
oilseed crop used.

Plant density differs by climate. In China, the optimum density for B. napus is
58.5 × 104 plants/ha [45,49]; in Europe, the optimum density is ~80–150 × 104 plants/ha [50,51];
in Canada, the optimum density is ~50–80 × 104 plants/ha [51]; and in Australia (Western
Australia), the optimum density is 25–35 × 104 plants/ha [52]. Furthermore, Ming et al.
2017, showed that typically with high density plant trials, traits associated with rapid leaf
senescence (green leaf index, chlorophyll content and malondialdehyde accumulation) are
increased, seed pod traits (pod area index, pod photosynthesis and radiation use efficiency)
were increased and root associated traits (root length, root tips, root surface area and root
volume) were decreased.

Lastly, yield security of Brassica oilseed crops is a major concern. Andert et al. 2021.,
performed a case study of East-German canola farmers and found that on-field data showed
yield instability for winter hybrid varieties, which in turn, may cause farmers to begin
growing less canola overall [53]. The concern is borne mainly out of future risk from
insects and diseases causing irreparable damage to their seasonal yields. As such, disease
management strategies are critical for yield stability. A survey of over 100 growers and
agronomists established that the best approach towards disease management involved the
integration of farming techniques, managing genetic diversity, and careful use of fungi-
cides [25]. Integrated strategies for improving yield with respect to farming techniques
has been reviewed extensively [6,25,51]. In summary, maximum grain yield from Brassica
oilseed crops is dictated by (1) environmental conditions during the critical period, (2) plant
density and (3) disease management strategies; grain quality is dictated by: (1) the environ-
mental conditions during the pod-fill stage and (2) genetic diversity. As such, the complex
interaction between genotype, phenotype and the environment together, drive grain yield
capacity, quality and stability.

2. Bridging the Genetic and Phenotypic Gap

Determining the underlying genetic mechanisms driving crop yield is a complex task,
considering the interactions between genetic (G), environmental (E) and GxE forces that
may affect crop performance [54–56]. Multi-environment studies can be more powerful in
detecting smaller effect quantitative trait loci (QTL) controlling complex traits such as yield,
allowing for the identification of QTL of pleiotropic effect or QTL that suffer significant
effects due to GxE interaction [54,56,57]. For instance, a study using segregating B. napus
populations showed that 81.5% of the QTL linked to yield were pleiotropic [58]. In B.
napus, a multi-environment analysis of seed composition traits observed that most QTL
suffered from GxE effects, with a major QTL qWIE_N9 associated with seed pigment in
over five environments [56]. Another study identified a QTL region on chromosome A09
linked to variation in days to flowering, seed yield and plant height under water limited
conditions [58]. However, measuring phenotypic traits of hundreds of plants growing in
multiple location breeding trials is costly and time consuming, restricting the number of
traits measured and frequency of measurements through crop development.

High-throughput phenotyping (HTP) has emerged as an alternative to manual phe-
notypic trait measurement, accelerating the process of collecting phenotype information
through remote and proximal sensors to measure a variety of plant traits [59–61]. HTP
sensors can be deployed on stationary platforms at a greenhouse or attached to ground and
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aerial vehicles in the field. These platforms enable the non-destructive measurement of phe-
notypic traits, which can be used to identify genetic variants associated with improved crop
performance and tolerance to environmental stress [62–64]. The use of HTP platforms is
less labor-intensive than manually measuring traits and prevents the introduction of biases
due to human error or sampling methods [65]. Several international groups have invested
in the development of HTP centres that either provide the structure for the collection of
HTP datasets or publishes their datasets, such as the Australian Plants Phenomics Facility,
International Maize and Wheat Improvement Center (CIMMYT), the Genomes to Fields
Initiative and TERRA-REF [66,67]. For instance, the TERRA-REF project collects multiple
image types of the plants throughout their development along with environmental data,
agronomic information and genomic sequences of hundreds of plant varieties [67]. The
in-depth measurements of plant development through HTP offered by TERRA-REF offers
a great opportunity to uncover genes linked to crop yield and a better understanding of
their combined impact on plant response to environmental conditions. Nonetheless, even
less comprehensive HTP datasets offer an advantage over manual phenotype measurement
methods as the images collected can be re-analysed and shared with other researchers for
further investigation [68].

A wide range of sensors is available for monitoring specific plant traits under field
or controlled conditions such as RGB, multispectral and hyperspectral cameras, infrared
thermal or LiDAR sensors. Infrared thermography images of the plant canopy contribute
to determining crop water stress [69] and assist in identifying QTL associated with stom-
atal density and canopy temperature in Setaria [70] https://sciwheel.com/work/citation?
ids=13155099&pre=&suf=&sa=0, accessed on 4 September 2022. Multispectral and hyper-
spectral cameras have been widely employed to obtain quantitative measurements of the
canopy reflectance throughout plant development, supporting the identification of potas-
sium deficiency and green peach aphid susceptibility [71], classification of fungal infection
severity in B. napus seeds [72] and seed pod maturity [73]. Besides tracking specific crop
traits that would be difficult to track manually, such as measuring canola flower numbers
in the field to predict yield [74,75], HTP platforms can substantially expand the temporal
resolution and number of traits monitored to identify genetic variation linked to increased
crop performance. For instance, an HTP study using weekly images of maize identified
candidate genes associated with regulating plant architecture at early development [76].
Similarly, daily HTP measurements of 477 B. napus genotypes revealed multiple medium
and small effect QTL were associated with early plant growth, most of which were active
during short phases of the development [77]. Dynamic QTLs were also observed in a B.
napus trial that monitored 43 traits across twelve time points, reporting that only 35% of
the QTL identified were present on all time points [78]. These studies indicate the need for
stage-specific investigations that uncover transient QTL that may play a role in the plant’s
early vigour [79].

HTP platforms have the potential to provide ample information regarding the plant
phenotype; however, efficient data collection and processing are considered a key constraint
for breeding [60,80]. Image data collection and processing protocol must be carefully
designed to avoid biases due to lightning and other environmental conditions, mainly
if the measured phenotypic traits are based on the tissue spectral reflectance [81,82]. In
addition, there is a need to adapt conventional GWAS and GS methods or implement
machine/deep learning models to incorporate the rich information from HTP into the
genotype selection pipeline [60]. Machine/deep learning currently presents competitive
results for predicting phenotypic traits based on genomic data for GS [83], multi-trait
and multi-environment prediction [84,85]. Machine/deep learning has the advantage of
automatically extracting features from complex data, building an abstract representation
of their relationship regarding the prediction target, which is particularly suited to image
dataset analysis [86]. Recent studies have applied machine/deep learning to integrate
HTP, environmental and genetic data for selecting varieties under field trial. For example,
a study on wheat used generalized Poisson regression, a statistical machine learning

https://sciwheel.com/work/citation?ids=13155099&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13155099&pre=&suf=&sa=0
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method, to merge hyperspectral images with environmental and genetic data to predict
count phenotypes for GS [87]. Another study used canopy temperature and vegetation
indices for GS of wheat, highlighting that adding the HTP features increased the yield
prediction by 70% in genomic models [88]. In maize, it was shown that a multimodal deep
learning model using multispectral images and genomic data could accurately identify
75% high yield plots at an early developmental stage [89]. The use of HTP also allows
monitoring of the phenotypic traits during the plant development under multi-environment
trials, helping the identification of varieties better adapted to the changing environmental
conditions. Leveraging phenotypic and genomic datasets using the appropriate analysis
tools have the potential to accelerate the breeding of higher-yielding B. napus varieties.
Observing the impact of genomic variation on crop yield can be facilitated by the use of
HTP, but a comprehensive database on B. napus genetic resources is required to design
future resilient crops.

3. Underlying Genetics Dictate Plant Yield

In order to improve yield in plants, one must study the underlying genetic mechanisms
and related mechanisms, such as plant architecture. Plant architecture (PA) refers to the three-
dimensional organisation of the plant, including its morphological characteristics [90,91]. PA
modifications are fundamental for high-yield breeding, often linked with a crop’s adaptive
ability and yield potential, such as seed oil content [92], silique number, number of seeds
per silique and seed weight [93]. Additionally, traits such as plant height, biomass yield
and flowering time indirectly influence seed yield [94]. There have been many studies in B.
napus linking PA with yield. For example, a gene knockout experiment showed that a stop
codon mutation in the meristem identity gene APETALA1 affected flower morphology,
PA and yield [95]. Additionally, a study in B. rapa showed plant yield was significantly
correlated with PA-related traits such as main inflorescence length, branch height and
branch segment [96].

Identifying yield-related traits has been the focus of many genetic studies in B. napus.
These studies primarily focus on identifying QTL and single nucleotide polymorphisms
(SNPs) related to yield and PA. For example, genetic mapping of different genotypes of
B. napus and genetic mapping identified 190 PA-related genes for 91 unique PA QTL and
2350 yield loci-pairs [96]. In a separate study, a map comprising 7716 DArTseq markers
was created from a population of 145 B. napus lines and identified 20 QTL associated
with flowering time and grain yield. Twenty-two putative candidate genes for flowering
time and grain yield were identified in the QTL region [97]. Raboanatahiry et al. 2018.,
aligned 972 QTL for seed-yield and yield-related traits in B. napus onto one genetic map
and identified 92 regions where 198 QTL overlapped. The study showed that the regions
identified could be used to select for desired traits. Additionally, 147 candidate genes
potentially influencing PA and yield were identified [94]. A SNP array-based genetic map
was used to identify 695 QTL for 14 traits, including PA, flowering, silique and other
seed-related traits, in B. juncea. It also showed that epistasis among loci plays an important
role in controlling heterosis in yield of B. juncea [98].

Many studies in B. napus have used GWAS to identify yield-related genetic variants.
Using data from 520 B. napus accessions, GWAS for seven yield-determining traits; main
inflorescence pod number, branch pod number, pod number per plant, seed number per
pod, thousand seed weight, main inflorescence yield, and branch yield, identified 128
SNPs and 14 candidate genes for yield improvement [99]. GWAS was also used to identify
candidate genes associated with stress tolerance, oil content, seed quality and ecotype
improvement for 588 accessions of B. napus [100]. Another study used genotyping by
sequencing to screen 125 accessions of B. napus and identified 85,126 SNPs for GWAS,
directly associating 18 SNPs with seed yield and another 61 SNPs with yield-related
traits [101]. By understanding the genetic control of PA in crops, more efficient breeding
strategies to improve crop yield can be developed [102].
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A pangenome is the collection of all genes within a species, first coined by Tettlin et al.
in 2005 to describe the gene diversity in Streptococcus agalactiae [103]. Pangenomes consist of
a core genome, containing the sequences shared between all individuals of a species, and the
accessory genome (also known as the dispensable or variable genome), which contains the
genes that are not found in all individuals. In the last couple of decades, pangenomes have
been constructed for various bacteria, fungi, animals and plants, including B. oleracea [104],
B. rapa [105] and B. napus [106]. Pangenomes can be assembled in one of three ways: de
novo sequencing and comparison; iterative mapping and assembly; and graph-based
assembly. These methods have been extensively covered in other reviews, detailing the
construction, benefits and disadvantages of each method [107,108].

Unlike single reference genomes, pangenomes allow the capture of sequences affected
by structural variation such as presence/absence variation (PAVs) or copy number varia-
tions (CNVs), that may affect agronomically important traits such as disease resistance and
yield [109,110]. In B. oleracea, use of the pangenome has identified multiple genes coding for
resistance against other abiotic factors such as drought [111]. Similarly, pangenomes have
identified important presence/absence variations (PAVs) in the Brassica genus. In B. oleracea
and Brassica macrocarpa, a pangenome was used to identify PAVs associated with disease
resistance, secondary metabolites and flowering time [104]. In B. napus, the pangenome
identified PAVs associated with flowering time, silique length, seed weight and flowering
time [106] as well as PAVs and SNPs associated with disease resistance [112,113]. In B. rapa,
a pangenome was used to identify PAVs associated with flowering time, stress resistance
and lignin formation [114]. Pangenomes can be used for further study of QTL and SNPs by
acting as detailed references for trait-mapping tools such as GWAS, allowing for improved
studies of genetic variation.

Another way to study candidate genes in Brassicas is to construct pangenomes based
on specific functional traits. Trait pangenomes aim to describe the landscape of genetic
variation related to a trait and investigate the impact of genetic variation. Trait-specific
pangenomes have been used to study resistance gene analogs in B. oleracea and B. na-
pus [111,113,115] and have been employed as a reference for resistance gene cloning [116].
Trait pangenomes could help in further dissecting the genetic variability associated with
yield under certain conditions, such as low phosphorous deficiency in B. napus [117].
Pangenomes have only been introduced to Brassica research recently and use of pange-
nomics in Brassica breeding is still in its infancy. However, further understanding of the
genetics underlying variation can lead to the development of molecular markers that can
be used to predict the location of desirable crop traits and marker-assisted breeding for
improvement of crop yield in Brassicas.

4. Developing New Phenotypes via Genome Editing Technology

Genome editing presents an opportunity to rapidly introduce or manipulate specific
traits of interest that may not be present in the existing gene pool of elite crop varieties, or
that may be difficult and time consuming to introduce through traditional introgression
breeding approaches. The advent of clustered regularly interspaced short palindromic
repeats systems associated with Cas enzymes (CRISPR/Cas) has opened the doors for
widespread editing in oilseed Brassicas, which greatly benefit from sharing homologs of well
characterised genes associated with yield in Arabidopsis. However, the high gene homology
and copy number of the allotetraploid Brassicas, such as B. napus and B. juncea, present a
challenge in terms of editing accuracy, in particular single base editing [118], and in gene
redundancy via multiple homologs, requiring all genes homologous to the target to be
modified to produce a reliable phenotype [119]. Polygenic traits will require a more intricate
multiplex approach, targeting more than one locus in a single round of editing. Yield is
one such trait that is complex and will likely benefit from a multiplex approach in order
to achieve rapid improvement [120]. Although hybrid-CRISPR Cas enzymes have been
designed for targeting multiple loci for inactivation or activation [121,122], the technology
has yet to be applied in Brassica. In Brassica oilseeds, yield remains poorly characterised on
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the molecular level, and knowledge of the genetic mechanisms controlling seed size and oil
content is scarce [120]. Hence, many of the traits currently targeted for yield improvement
are those that are closely related to yield, or those that are indirectly related, but highly
correlated. For example, current research has mainly focused on increasing seed number
through changes to silique structure and improving harvestability through a reduction in
plant heigh and an increase in plant density [118]. In addition, other traits such as pod
shattering resistance [123,124] and flowering time [125], which significantly influence yield,
have been investigated.

Not surprisingly, B. napus has received the most attention of all the oilseed Brassicas
when it comes to the use of editing for yield improvement. Yang et al. were the first to
examine multilocular siliques in B. napus using CRISPR/Cas9 and introduced mutations to
CLV pathway genes, resulting in an increased number of multilocular siliques. Multilocular
siliques were found to contain more seeds than regular bilocular siliques, and seed weight
per silique was increased by 74% in the mutants [126]. A more recent study induced muta-
tions in BnD14, a strigolactone receptor, to change architectural traits in B. napus relating to
yield [127]. Knockout lines for BnD14 displayed dwarfed phenotypes, which are easier to
harvest, with prolific branching and nearly 40% more flowers than their WT counterparts.
To combat pod shattering, Zaman et al., knocked out homeologs of SHATTERPROOF1/2, a
class of genes involved in the pod dehiscence regulatory pathway, creating a transgene-free
line that was approximately 10 times more resistant to pod shattering when measured
on the pod-shattering resistance index [127]. These examples represent a growing list of
studies (list shown in Table 1) that successfully exploit genome editing via CRISPR systems
to functionally characterise and manipulate key genes associated with yield or yield-related
traits in B. napus. Although examples of editing for yield improvement in B. juncea are yet
to be seen, several potential targets have been identified and characterised, such as genes
involved with multilocular silique development [128,129], and provide a guide for future
editing efforts.

As we start to understand the complex mechanisms underpinning yield and identify
yield-related genes in oilseed Brassicas, exponentially improving their yield through genome
editing is only just out of reach. Advances in CRISPR systems in terms of simplicity
and accuracy is a driving force propelling CRISPR into the mainstream. Novel CRISPR
techniques, such as the recently proposed and highly sophisticated CRISPR-Combo system,
which simultaneously enables gene editing and gene activation at multiple loci, will likely
spearhead the race to high-yielding genome edited crops [122], as well as DNA-free gene
editing technology which has been dubbed ‘the way of true plant editing’ [130–132]. These
systems will become necessary in future for the development of new and improved crops
that have improved yield and yield stability.

Table 1. Recent examples of yield-related trait improvement using CRISPR/Cas9 in Brassica napus.

Trait Target Gene Arabidopsis Homolog Mutant Phenotype Reference

Flowering time BnaSVP Short Vegetative Phase
(SVP)

40–50% decrease in time until
flowering [133]

Plant height, internode
length and number of

branches
BnD14 DWARF14 (D14)

34% reduction in plant height, 200%
increase in branch number and 37%
increase in total flowers per plant

[127]

Plant height and
branch angle BnaA03.BP BREVIPEDICELLUS

(BP)
~16% reduction in plant height and

branch angle reduced from 84◦ to 14◦ [134]

Pod shattering
resistance

BnSHP1/BnSHP2
homeologs SHATTERPROOF1/2 ~10 times more resistant to pod

shattering [135]

Number of seeds per
silique BnaEOD3 ENHANCER3 OF DA1

(EOD3)

Shorter silique length and smaller
seeds, but 42% increase of number of

seeds per silique
[136]
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Table 1. Cont.

Trait Target Gene Arabidopsis Homolog Mutant Phenotype Reference

Pod shattering
resistance

BnJAG.A02, BnJAG.C02,
BnJAG.C06, BnJAG.A07,

BnJAG.A08
JAGGED (JAG) 2 times more resistant to pod

shattering [123]

Multilocular silique
development

BnA04.CLV3,
BnC04.CLV3,
BnC02.CLV3

CLAVATA3 (CLV3) 74% increase in seed weight per
silique [126]

Plant height, primary
branch number and

silique number
BnaMAX1 More Axillary Growth

(MAX)

~35% reduction in plant height, 3
times more primary branches and

~65% increase in total silique number
[137]

5. Conclusions

Crop yield and yield stability have been the focus of agriculture for thousands of years.
However, with realization of climate change and the predicted increase in world population
by 2050, concerted efforts are necessary to meet growing demands. As an example of this
demand, B. napus production has increased from 154.2 Mt in 1979 to 72.37 Gt in 2020 and is
now only second to soybean as a source of oilseed. Although primarily grown as a source of
vegetable oil or mustard oil, B. napus (and to a lesser extent B. carinata), B. juncea and B. rapa
have also been identified as excellent sources of biofuel, applying more pressure for studies
to maximise yields. The majority of (if not all) studies that are associated with maximising
yield involve genetics and/or gene-editing technology as it is a proven and rapid method
for yield improvement. The global FE (t/ha) of B. napus pre-genetics age (<2003, before
the sequencing of the human genome) was 1.48 t/ha, compared to now (2004–2020) which
is 1.94 t/ha. Despite the adoption of genetic resources, the global yield of Brassica crops
is insufficient for current and future demands, in particular mustard crops, however, this
is more likely due to yield instability. An investigation of global and national FE clearly
shows fluctuations for both B. napus and Brassica mustard crops in recent years, which
can cause repercussions towards the supply chain of these crops, for example, farmers
losing confidence in their crops. As such, research studies investigating the influence of
environment, phenotype and genotype on crop yield and yield stability are required to
produce reliable crops for farmers to meet demands.

Studies have shown that environmental conditions are the greatest influencers of
biomass accumulation, furthermore, climate dictates the particular genotypes and phe-
notypes that can thrive in any one region. High-throughput phenotyping technology
allows for the rapid analysis and characterization of new and potential Brassica cultivars
of their ability to grow well in a region. As an alternative to manual phenotyping, HTP
technology accelerates the process of collecting phenotype information through remote
and proximal sensors to measure a variety of plant traits all of which are catalogued and
integrated. Coupled to deep/machine learning technology, HTP can quickly establish
the optimal phenotype (highest yield) for the region. However, HTP is limited by the
availability of genomic resources, such as QTL, GWAS and SLAF-seq data associated with
plant architecture. As such, genetic studies are critical. However, the underlying genes that
are associated with phenotypic variations exhibited by plants are great and nearly impossi-
ble to identify by genomics alone. Hence, pangenomic analysis has been developed as a
strategy to capture the genetic diversity to bridge the gap between genotype to phenotype.
Many Brassica crops have pangenomes available such as B. napus, B. rapa and B. oleracea,
providing unique insights into DNA polymorphisms, structural variation and patterns for
genome duplication. The combination of genomics/pangenomics and phenotypic studies
has enhanced the prediction of molecular markers associated with specific crop traits for
crop yield and yield stability. Furthermore, like HTP technology leading to improved
phenotyping capabilities; gene-editing technology has enhanced genotyping by rapidly
characterizing yield-associated candidate genes and creating new genotypes. It is predicted
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that DNA-free gene-editing technology will lead to the development of non-GMO plant
genotypes that can rapidly be produced and adopted by farmers.

The combination of environment, phenotype and genotype dictate yield and yield
stability. As such, developing methodologies to understand these factors and their complex
interactions are critical for ensuring future demand is met. This review shows how farm-
ing practice and management programs, HTP, genomics, pangenomics and gene editing
technology have influenced the production and security of Brassica oilseed and mustard
crops. Only through continued improvement and innovation of these resources can yield
increase and be secured.
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