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Abstract: Curcuma longa (C. longa), an herbaceous plant used for medicinal purposes by the indigenous
people of Easter Island, has been overexploited in its natural habitat, leading to its conservation
status being designated as a vulnerable species. We have recently reported on the use of light-
emitting diodes (LEDs) to improve the productivity of C. longa in vitro cultures under a temporary
immersion system (TIS), but the effects of light quality on plant growth, phytochemical composition,
and antioxidant capacity remained unexplored. Here, we set out to study these three aspects as
observed at the end of TIS culture (day 0) and after 30 days of greenhouse acclimation (day 30).
Thus, we evaluated plant morphological characteristics, phytochemical profile (polyphenols, tannins,
flavonoids, reducing sugars, and curcumin), and radical scavenging activity by DPPH, ORAC, and
FRAP assays. The results showed that, during in vitro cultivation under TIS, the red:blue (RB)
LED light spectrum promoted C. longa shoot proliferation, with the resulting seedlings exhibiting
greater fresh weight and no signs of etiolation. In the acclimation phase, the RB spectrum increased
phytochemicals, such as polyphenols, flavonoids, and reducing sugars, and boosted curcumin
synthesis. Nevertheless, the antioxidant activity of the plants under the RB light spectrum did not
intensify. We surmise that this may be due to the premature intraplant allocation of metabolites to
alternative pathways (e.g., curcumin synthesis) under RB light.

Keywords: turmeric; LED lighting; Rapa Nui; medicinal plants; secondary metabolites; radical
scavenging activity

1. Introduction

Curcuma longa L. (C. longa) is an herbaceous plant widely used in traditional medicine,
especially in China and India. In Chile, C. longa is mainly cultivated on Easter Island (also
known as Rapa Nui), where it is used to make medicinal extracts to treat cancer, diabetes,
muscle pain, etc. A characteristic of the ecotype of C. longa from Rapa Nui is its high
concentration of polyphenols and curcumin. Therefore, it has been shown to have attractive
biological activity properties, such as antioxidant, antimicrobial, anti-inflammatory, and
anticancer activities [1,2]. However, C. longa (leaves and rhizomes) is overexploited, which
has led to its conservation status being designated as a vulnerable species.

We recently reported a study on the in vitro micropropagation of C. longa using a tem-
porary immersion system (TIS). In that study, we created experimental culture conditions
with the goal of increasing in vitro production of C. longa under TIS. We demonstrated
that factors such as the number of explants per flask, flask volume, and light quality all
affected the in vitro growth of C. longa. The use of 30 explants per 2 L flask under LEDs
with a red:blue ratio of 2:1 resulted in the highest number of seedlings (highest proliferation
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rate) [3]. However, the effect of light quality on the development, antioxidant capacity, and
phytochemical profile of C. longa remained unclear.

Multiple plant growth factors, such as cytokinins, temperature, water, nutrients, and
light quality, are responsible for the development, yield, and accumulation of phytochemical
compounds in medicinal plants [4]. Environmental control by means of light-emitting
diodes (LEDs) has been reported to have many advantages, including plant growth control,
efficient energy conversion, long service life of lighting fixtures, low thermal energy output,
and wavelength selectivity. Furthermore, recent studies have shown that the use of LEDs
in seedling cultivation increases the concentration of bioactive compounds [5–7].

Light is an important environmental factor affecting phenological characteristics of
plant development, such as growth rate, biomass production, and vigor. Several color
wavelengths that make up visible light, in particular, red, blue, and green, have been found
to have specific effects on plant growth rate, developmental characteristics, and production
of bioactive compounds [8,9].

Illumination with LEDs offers great potential for in vitro seedling propagation and
proliferation. The long service life, low thermal radiation, and energy efficiency of diodes
make them ideal for in vitro cultivation [10]. The most important factor, however, is that
they offer the possibility to fine-tune spectral compositions and tailor them to the spe-
cific needs of plants. The proper ratio of blue, red, and green wavelengths is the most
important factor in plant growth, including plant morphogenesis and metabolism [11].
In addition, spectral tuning makes it possible to modify the synthesis pathways of pri-
mary and secondary metabolites in plants, and thus, to influence the accumulation of
functional molecules [12]. Many studies have shown that total phenolic compounds and
flavonoids increase when plants are exposed to the appropriate light spectrum during
in vitro propagation [13,14]. However, the specific spectral composition required to enhance
C. longa growth in vitro and boost metabolite production and accumulation has not yet been
fully elucidated.

The purpose of this study was, therefore, to determine the effects of two different LED
light qualities on the growth rate, phytochemical composition, and antioxidant activity of
C. longa. The three parameters were first evaluated when the shoot growth of C. longa
in vitro under TIS had terminated (day 0) and the seedlings were transferred to the green-
house. The same parameters were then analyzed one month after the initiation of green-
house acclimation (day 30) to determine whether the effects persisted over time.

2. Results
2.1. Effect of Light Quality on In Vitro Growth and Development of C. longa

Plants produced in this study were propagated in vitro using TIS in mainland Chile,
prior to shipment to Easter Island. Plants were fully acclimated in a greenhouse prior to
shipment [3]. After 45 days of growth and rooting in vitro, C. longa plants were extracted,
and their morphological characteristics were analyzed. A total of 284 C. longa plants were
obtained from the white light treatment, and 311 from the RB light treatment. Plants from
the white light treatment showed elongated leaves, fewer leaves per unit stem length,
and larger pale and oxidized areas characteristic of etiolation. In addition, thin and short
roots were observed (Figure 1a). In contrast, plants exposed to the RB light spectrum had
uniform green pigmentation, less oxidation, and thicker and longer roots.

Furthermore, measurements of plant length and fresh weight at the end of TIS culture
(Figure 2) revealed significant differences in both parameters: plants exposed to white light
had greater height, but lower fresh weight compared to RB light-treated plants.
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Figure 1. Effect of light quality on the development of C. longa after 45 days of in vitro culture. Plants 
irradiated with (a) white LED light and (b) RB LED light. The bar corresponds to 1 cm. 

Furthermore, measurements of plant length and fresh weight at the end of TIS culture 
(Figure 2) revealed significant differences in both parameters: plants exposed to white 
light had greater height, but lower fresh weight compared to RB light-treated plants. 
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Figure 2. Effect of light quality on the length and fresh weight of C. longa plants at the end of TIS 
culture (day 0). (a) Plant length; (b) fresh weight per plant. cm: centimeter, g: gram. Mean ± SD were 
plotted for all replicates analyzed. Tukey’s multiple comparison tests were performed at a 95% con-
fidence level in order to compare the differences. **** indicates a significant difference at p < 0.0001. 

C. longa plants obtained by in vitro propagation using TIS under white and RB light 
wavelengths were subsequently acclimatized in a greenhouse under the same respective 
light spectra. Figure 3 shows the plants in the greenhouse after 30 days of acclimation. No 
morphological differences were observed in plants exposed to the two light qualities. No-
tably, plants exposed to RB light were shorter after TIS culture, but by the end of acclima-
tion, were able to reach the same height as plants exposed to white light. 

Figure 1. Effect of light quality on the development of C. longa after 45 days of in vitro culture. Plants
irradiated with (a) white LED light and (b) RB LED light. The bar corresponds to 1 cm.
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Figure 2. Effect of light quality on the length and fresh weight of C. longa plants at the end of TIS
culture (day 0). (a) Plant length; (b) fresh weight per plant. cm: centimeter, g: gram. Mean ± SD
were plotted for all replicates analyzed. Tukey’s multiple comparison tests were performed at
a 95% confidence level in order to compare the differences. **** indicates a significant difference
at p < 0.0001.

C. longa plants obtained by in vitro propagation using TIS under white and RB light
wavelengths were subsequently acclimatized in a greenhouse under the same respective
light spectra. Figure 3 shows the plants in the greenhouse after 30 days of acclimation.
No morphological differences were observed in plants exposed to the two light qualities.
Notably, plants exposed to RB light were shorter after TIS culture, but by the end of
acclimation, were able to reach the same height as plants exposed to white light.
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Figure 3. C. longa plants after 30 days of greenhouse acclimation. The upper part (A) shows plants
exposed to RB LED light in in vitro propagation under TIS. The lower part (B) shows plants exposed
to white LED light in in vitro propagation under TIS.

2.2. Effects of Light Quality on the Phytochemical Profile of C. longa

Concentrations of phytochemicals such as polyphenols, tannins, flavonoids, reducing
sugars, and curcumin in C. longa plants were determined and compared for both treatments
at the end of in vitro TIS culture (day 0) and at day 30 of subsequent greenhouse acclimation
(Figure 4). The analysis showed that the phytochemical profiles of plants exposed to the
two treatments were different, with plants under white light treatment initially having
higher mg levels of extract per gram of plant matter compared to the RB light treatment.
However, after 30 days of greenhouse acclimation under the same respective light spectra
and in similar environmental conditions (Figure 4a), the difference disappeared.

At day 0, plants illuminated with white light had half the quantity of polyphenols,
flavonoids, and reducing sugars as plants exposed to RB light. However, at day 30, plants
in the white light treatment had significantly greater total tannins, reducing sugars, and
curcumin, but fewer polyphenols.

Meanwhile, plants in the RB light treatment exhibited a significant decrease in polyphe-
nols, flavonoids, and reducing sugars after 30 days in the greenhouse.

At the end of the TIS culture period, curcumin was not detected in plants grown
under either treatment. However, after 30 days of greenhouse acclimation, both treatments
produced curcumin, with RB light-treated plants having higher levels than plants grown
under white light (Figure 4f). At the same time, no statistically significant differences were
found with respect to total tannin content (Figure 4c).

2.3. Effect of Light Spectra on C. longa Radical Scavenging Activity

The radical scavenging activity of C. longa plant extracts from the two treatments was
determined by three separate methods: free radical scavenging activity of 2,2-diphenyl-1-
picrylhydrazyl (DPPH), Oxygen Radical Absorbance Capacity (ORAC), and Ferric Reduc-
ing Ability of Plasma (FRAP). These are conventional methods for measuring the radical
scavenging activity of various substances. Vitamin C (VIT C), Trolox, and gallic acid (GA)
were used as positive controls in the DPPH, ORAC, and FRAP assays, respectively.
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Figure 4. Phytochemical profiles of C. longa plants grown under different light spectra. Parameters
were determined at the beginning of acclimation (0) and 30 days later (30). (a) Biomass (milligrams of
extract per gram of plant matter); (b) polyphenols; (c) total tannins; (d) flavonoids; (e) reducing sugars;
(f) curcumin. mg: milligrams, g: grams, GAE: gallic acid equivalents, KE: kaempferol equivalents,
ND: not detected. Mean ± SD were plotted for all replicates analyzed. Tukey’s multiple comparison
tests were performed at a 95% confidence level to compare the differences. Bars with different letters
indicate significant differences at p < 0.05 for each parameter studied.

Figure 5 shows the results of the DPPH, ORAC, and FRAP assays, as well as mea-
surements of the radical scavenging capacity of the extracts evaluated. At the beginning
of greenhouse acclimation (day 0), plants exposed to RB light showed higher DPPH scav-
enging activity compared to plants exposed to white light. After 30 days, the trend was
reversed (Figure 5a).

According to the ORAC assay, plants in both treatments initially showed similar
radical scavenging activity, but after 30 days in the greenhouse, the activity of white
light-treated plants was slightly higher (Figure 5b).

The largest difference was observed in the FRAP assay, however, where white light-
treated plants showed greater ferric reducing capacity both at the start of acclimation and
after 30 days in the greenhouse (Figure 5c).
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beginning of acclimation (0) and after 30 days (30) in the greenhouse. (a) DPPH assay; (b) ORAC
assay; (c) FRAP assay. Mean ± SD were plotted for all replicates analyzed. Vitamin C (VIT C),
Trolox, and gallic acid (GA) were used as positive controls in the DPPH, ORAC, and FRAP assays,
respectively. Tukey’s multiple comparison tests were performed at a 95% confidence level to compare
the differences between treatments, for each parameter analyzed. Bars with different letters indicate
significant differences at p < 0.05.

3. Discussion

We have previously reported experimental conditions for in vitro propagation in TIS
culture that would increase production of the Easter Island C. longa ecotype [3]. However,
improving the quality of the resulting seedlings would also be very important. Light plays
a key role in the processes of photosynthesis and energy conversion in plants. Analysis of
the spectral composition of LED luminaires used in this study revealed that the RB and
white light spectra differed in their proportions of red, green, blue, and far-red photons
(Table 1). The most significant differences were observed in the percentages of green and
red photons: 40.7% and 26.2% in white light compared to 0.5% and 68.4% in RB light,
respectively. Furthermore, RB light provided higher daily photosynthetically active irradi-
ance (daily light integral, DLI). These differences affected the growth rate, phytochemical
composition, and antioxidant activity of C. longa propagated in vitro.

Table 1. Spectral distribution of light used in the experiment. RB: red:blue, m: meter, DLI: daily
light integral.

Parameter
Spectral Fraction of Light Source (%)

White RB

Photon flux (380–780 nm) 100 a 100 a

Ultraviolet light (380–399 nm) 0.1 0.1
Blue light (400–499 nm) 32.3 30.9

Green light (500–599 nm) 40.7 0.5
Red light (600–700 nm) 26.2 68.4

Far-red light (701–780 nm) 0.7 0.1
DLI (mol m−2) 0.86 3.80

R:B ratio b 0.63 1.74
R:FR ratio c 8.41 113.20
Light source White LED light LED with red and blue chips

a Data are fractions of YPDF ranging from 380 to 780 nm in ultraviolet, blue, green, red, and far-red light.
b R:B ratio is an abbreviation for the ratio of red light to blue light. c R:FR ratio is an abbreviation for the ratio of
red light to far-red light.
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We first evaluated in vitro growth of C. longa shoots under two different light spectra.
Red and blue wavelengths provide energy to activate photoreceptors and trigger a series
of metabolic processes during plant growth, including stem elongation, leaf expansion,
stomatal opening, circadian clock, and flowering [15,16]. The RB LED light increased
the production of phytochemicals that are used during the growth of C. longa. However,
we found that RB LED light promoted the development of more compact seedlings with
greater fresh weight, and with leaves without signs of etiolation or chlorosis.

In contrast, seedlings exposed to white light exhibited etiolation, a phenomenon
in which morphological changes (elongation of leaves and stems) are activated by the
inadequate spectral composition of light [17]. The white light spectrum used in this study
had a high proportion of green and far-red photons. This combination has been reported to
trigger more shade-induced traits than green or far-red wavelengths alone [18]. In addition,
signs of chlorosis (low chlorophyll production) were observed in the leaves, leading to lower
synthesis of reducing sugars and other carbohydrates in white light-treated plants [19].

Specific light spectra can alter phytochemical profiles and metabolite accumulation
rates in different plant parts (e.g., leaves, rhizomes, and stems). Several authors have
shown that certain proportions of red, blue, and green wavelengths in LED luminaires
improve growth and development, nutrient levels, and the production and accumulation of
bioactive compounds [8,9,20]. Appropriately selected spectral compositions have indirect
regulatory effects on gene expression related to metabolite synthesis that help plants adapt
to changes in lighting [15].

During in vitro propagation, shoot concentrations of polyphenols, flavonoids, and
reducing sugars were found to be higher under RB illumination compared to white light.
However, after 30 days in the greenhouse, these analytes decreased in RB light-treated
plants, while curcumin levels increased compared to the white light-treated plants. Thus,
the proportion of red photons in RB light seems to be the key to gene expression associated
with the synthesis of flavonoids and other antioxidants [21,22].

Indeed, similar results were obtained in other species, where exposure to LED lighting
with different red:blue ratios increased both antioxidant capacity and polyphenols [23].
Klimek-Szczykutowicz [24] obtained results consistent with the results of the present study
when biomass, reducing sugars, and polyphenols, as well as DPPH and FRAP radical
scavenging activity, were determined in Nasturtium officinale samples exposed in vitro to
LED lighting with different spectral compositions. The concentration of polyphenols and
reducing sugars was observed to increase under illumination dominated by blue and
red photons [24]. Thus, further studies on the expression of genes related to metabolite
production under different light stimuli, as well as its dynamics over time, would be
very informative.

Finally, extracts of C. longa from the two treatments were evaluated for their antioxidant
activity. Different light spectra can affect the production of reactive oxygen species (ROS),
induce oxidative damage, and inhibit the synthesis of secondary metabolites [25]. Studies
show that exposure to blue light increases the radical scavenging activity of plant extracts
through enhanced synthesis of secondary metabolites, such as anthocyanins, flavonoids,
and polyphenols [8,26–28].

Another important observation was the contrasts between the three antioxidant activ-
ity assays. White light-treated plants showed higher radical scavenging activity than plants
treated with RB light, even though the latter had a higher concentration of polyphenols
and accumulated more curcumin. Curcumin is a potent radical scavenger [29], but it accu-
mulated within the rhizomes during the greenhouse acclimation phase and was diluted
with components from other parts of the plant during extraction.

In addition, the efficiency of phenolics extraction depends on the method used, as the
composition and antioxidant capacity of the obtained components may vary [30]. At the
end of TIS culture, RB light-treated plants showed higher antioxidant capacity in DPPH
and ORAC assays compared to white light-treated plants. However, after 30 days in the
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greenhouse, white light-treated seedlings exhibited greater antioxidant capacity in DPPH
and FRAP assays, even exceeding that of various positive controls.

The red:blue light treatment in TIS culture increased the synthesis of antioxidant
compounds, such as polyphenols and flavonoids, as well as reducing sugars, which be-
came readily available to plants for use in curcumin synthesis during the acclimation
phase [31,32]. Premature intraplant allocation of these compounds to alternative metabolic
pathways during greenhouse acclimation may be responsible for the reduced antioxidant
activity and exaggerated curcumin accumulation in RB light-treated plants.

4. Materials and Methods
4.1. Explant Collection, Disinfection, and Establishment of Rhizome Cultures

C. longa rhizomes were harvested from the Mataveri Otai nursery on Easter Island
(geographical coordinates: 27◦09′50.17” S–109◦26′24.63” W). The excised long creeping
rhizomes were thoroughly washed with water and Tween-20 for 10 min. The rhizomes
were then cut into 2–3 cm pieces and placed under running water for 30 min. Subsequently,
the rhizomes were immersed in the Phyton solution (3 mL/L) under gentle agitation for
15 min. Next, the rhizomes were cut into 1 cm pieces, and active buds were separated and
washed with 1.5% sodium hypochlorite solution, 0.5 g/L citric acid, and 0.5 g/L ascorbic
acid for 15 min under constant agitation. The pieces were transferred to a laminar flow
hood and washed four times with a sterile solution of 400 mg/L citric acid and 400 mg/L
ascorbic acid. Finally, the pieces were placed in a Murashige and Skoog (MS) culture
medium supplemented with 0.1 mg/L thiamine, 200 mg/L glycine, 170 mg/L NaH2PO4,
2.5 mL/L plant preservative mixture (PPM), 6.5 g/L agar, and 30 g/L sucrose at pH 5.8.
The flasks were incubated in vitro in the dark at 25 ◦C for 10 days, and then placed under
1R/1B LED light (50% red (peak at 660 nm) + 50% blue (420–460 nm), PARALED system,
Ciencia Pura SpA, Santiago, Chile) for one month.

4.2. In Vitro Growth of Explants

The shoot rhizomes were transferred to the MS growth medium, supplemented with
0.1 mg/L thiamine, 200 mg/L glycine, 170 mg/L NaH2PO4, 1 mg/L 1-Naphthaleneacetic
acid (NAA), 2 mg/L N6-Benzylaminopurine (BAP), 6.5 g/L agar, and 30 g/L sucrose at
pH 5.8. The plant material was subcultured three times (30 days each time) to obtain more
shoots for TIS. The initial explants used for TIS were 1–2 cm long, rootless, and showed no
symptoms of vitrification (hyperhydricity) or oxidation.

4.3. In Vitro Proliferation of Curcuma longa by TIS

A temporary immersion system was used for the proliferation and rooting of
C. longa shoots. Proliferation was performed in an MS culture medium, supplemented with
200 mg/L glycine, 0.1 mg/L thiamine, 0.5 mg/L nicotinic acid, 0.5 mg/L pyridoxine,
100 mg/L myoinositol, 170 mg/L NaH2PO4, 3 mg/L BAP, and 30 g/L sucrose at pH 5.8.
For the rooting stage, the same medium was used, and BAP was replaced with 1 mg/L
NAA. Twenty-one flasks for each set of conditions were used. Flasks were maintained
under the following conditions during proliferation and rooting: 30 explants and 450 mL
of culture medium (proliferation or rooting) per flask, immersion of 4 min each time in
a 4 h cycle, and a temperature of 23 ± 1 ◦C for 16 h/day. After the proliferation stage,
the flask of the proliferation medium was replaced with the flask of the rooting medium
under a laminar flow hood, while the explants were not disturbed by handling. After both
stages, all shoots were placed in a greenhouse to acclimate. The light and environmental
conditions were the same for all the conditions studied.

4.4. Spectral Light Conditions

To explore the effects of LED light on the growth and phytochemical composition
of C. longa, two treatments were set up as follows: (i) white LED light as control; and
(ii) RB LED light (PARALED system, Ciencia Pura SpA, Santiago, Chile). Photon fluxes
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were measured using a compact spectrophotometer (Lighting Passport Standard Pro model,
Allied Scientific ProTM, Gatineau, QC, Canada). To avoid light contamination, all assays
were separated from each other by white screens made by a local manufacturer. The
characteristics of experimental illumination are shown in Table 1.

4.5. Phytochemical Composition

Samples of C. longa plants were collected at the end of TIS culture and on day 30
after the initiation of acclimation. Samples were processed and analyzed to determine the
amounts of the following metabolites: polyphenols, tannins, flavonoids, reducing sugars,
and curcumin. Samples were dried at 40 ◦C for two weeks, and lipids were extracted using
hexane solvent with a Soxhlet system.

4.5.1. Polyphenols

To obtain polyphenol-rich extracts, dry samples were mixed with 95% ethanol under
agitation for 48 h. The ethanol was removed with a rotary evaporator and the extracts
were resuspended in DMSO. A modified Folin–Ciocalteu method was used to quantify the
total content of polyphenols [33]. The results were expressed in mg gallic acid equivalent
(GAE)/g extract.

4.5.2. Total Tannins

A modified Folin–Ciocalteu method was used for the quantification of tannins [33].
Briefly, 100 µL extract and 500 µL water were mixed with 250 µL Folin–Ciocalteu 1N reagent
under vigorous shaking. Then, 35% Na2CO3 was added, and the sample was shaken again
for 30 min. The absorbance was measured at 725 nm and the data were interpolated on
the gallic acid calibration curve. The results were expressed in mg gallic acid equivalent
(GAE)/g extract.

4.5.3. Flavonoids

Flavonoids were determined by the method of Liu [34], with modifications. The
reaction mixture contained 30 µL sodium nitrite (10% w/v), 60 µL aluminum chloride
hexahydrate (20% w/v), 200 µL NaOH (1M), 400 µL distilled water, and a 100 µL sample for
analysis. The absorbance was measured after 5 min of reaction at 415 nm, and the values
were interpolated on a kaempferol calibration curve. The results were expressed as mg
kaempferol (KE) per gram of dry extract. The experiments were performed in triplicate.

4.5.4. Reducing Sugars

Reducing sugars were quantified by the modified DNS method [35], whereby 100 µL
extract and 1000 µL DNS reagent were mixed with vortex; the mixture was heated in boiling
water for 5 min; then, 8 mL water was added, and the absorbance was measured at 540 nm.
The results were expressed in mg glucose/L.

4.5.5. Determination of Curcumin

A calibration curve of 1 to 25 µg/mL curcumin was made, and the absorbance was
measured at 421 nm. Dilutions of the original extract were made and measured at 421 nm,
according to the modified protocol of Hazra et al. [36].

4.6. Radical Scavenging Capacity
4.6.1. DPPH Assay

The radical scavenging activity of the extracts was evaluated by the DPPH (1,1-
diphenyl-2-picrylhydrazyl) assay [37]. Briefly, 1 mL of 0.1 mM DPPH radical solution
in ethanol was mixed with 50 µL leaf, rhizome extracts, gallic acid, or vitamin C at
a concentration of 20 µg/mL. The antioxidant activity of the extracts was evaluated by the
DPPH assay. DPPH was reduced and the color change was measured at 518 nm after 20 min
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of reaction time using an Epoch ELISA reader (ELx800, BioTek®, Winooski, VT, USA). The
percentage of DPPH inhibition was calculated using the following equation:

% Inhibition =

(
Abs control−Abs sample

Abs control

)
× 100 (1)

where “Abs control” is the absorbance of DPPH in the absence of a sample, and “Abs
sample” is the absorbance of DPPH in the presence of either a sample or the standard
(gallic acid). The experiments were performed in triplicate.

4.6.2. ORAC-FL Assay

The ORAC value was measured according to the method described by Ou [38], with
modifications [39]. The reaction was conducted in sodium phosphate buffer (75 mM, pH
7.4) using black-walled 96-well plates with a final volume of 200 µL. Twenty µL each of
extract or Trolox (20 µg/mL) and fluorescein solutions (120 µL; 70 nM, final concentration)
were placed in each microplate well. The mixture was pre-incubated for 15 min at 37 ◦C. The
AAPH solution (60 µL; 12 mM final concentration) was added rapidly, and the microplate
was read immediately with a fluorescence reader (Synergy HT multi-detection microplate
reader; BioTek® Instruments, Inc., Winooski, VT, USA). Fluorescence was recorded every
minute for 80 min from normalized curves, and the area under the fluorescence decay
curve (AUC) was calculated as follows:

AUC = 1 +
i=80

∑
i=1

fi
f0

(2)

where f 0 is the initial fluorescence reading at 0 min and fi is the fluorescence reading at
time i. The AUC of a sample was calculated by subtracting the AUC of the blank space.
Regression equations between net AUC and antioxidant concentration were calculated for
all samples. ORAC-FL values were expressed as Trolox equivalents using the standard
curve calculated for each assay. Results were expressed in µmol of Trolox equivalent/µmol
of extract. The experiments were performed in triplicate.

4.6.3. FRAP Assay

The iron reducing power of each fraction was determined as described by Dudonné [40],
with modifications. A functional FRAP reagent was prepared freshly by mixing 10 volumes
of 300 mM acetate buffer, pH 3.6, 1.0 volume of 10 mM TPTZ (2,4,6-tri(2-pyridyl)-s-triazine)
in 40 mM hydrochloric acid, and 1.0 volume of 20 mM ferric chloride; 100 µL sample
solution (1 mg/mL) and 300 µL deionized water were added to 3 mL of the freshly prepared
FRAP reagent. The reaction mixture was incubated for 30 min at 37 ◦C in a water bath. The
absorbance of the samples was then measured at 593 nm, and FRAP values were expressed
as mmol Fe2+/g sample. All measurements were performed in triplicate.

4.7. Statistical Analysis

A two-way ANOVA, along with Tukey’s multiple comparison tests, was used for
comparisons; p < 0.05 was considered a statistically significant difference. All statistical
analyses were calculated using the GraphPad Prism 9 computer software (GraphPad
Software, San Diego, CA, USA).

5. Conclusions

Red:blue LED light enhanced the proliferation of C. longa shoots in vitro by TIS. In addi-
tion, the resulting plantlets had greater fresh weight and no signs of etiolation. Plants under
RB light also exhibited higher levels of phytochemicals such as polyphenols, flavonoids,
and reducing sugars, which stimulated curcumin synthesis in the acclimation phase. Never-
theless, RB light-treated plants did not exhibit better antioxidant activity, possibly due to the
premature intraplant allocation of metabolites to alternative pathways, such as curcumin
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synthesis. The molecular mechanism underlying these regulatory processes is unclear and
warrants further investigation.

Author Contributions: Conceptualization, M.J.M. and M.C.; methodology, M.C., L.G., C.B., P.M.
and M.M.; investigation, P.M., M.M. and M.J.M.; resources, M.C. and L.G.; writing—original draft
preparation, M.J.M. and M.C.; writing—review and editing, M.J.M., M.C., L.G. and C.B.; funding
acquisition, M.C., L.G. and C.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by ANID-FONDEF IT18I0015 “Massive propagation for the
sustainable development of medicinal species in Rapa Nui”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Sharifi-Rad, J.; El Rayess, Y.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.;
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