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Abstract: Trees and herbs that produce fruits represent the most valuable agricultural food com-
modities in the world. However, the yield of these crops is not fully achieved due to biotic factors
such as bacteria, fungi, and viruses. Viruses are capable of causing alterations in plant growth and
development, thereby impacting the yield of their hosts significantly. In this work, we first compiled
the world′s most comprehensive list of known edible fruits that fits our definition. Then, plant
viruses infecting those trees and herbs that produce fruits with commercial importance in the global
market were identified. The identified plant viruses belong to 30 families, most of them containing
single-stranded RNA genomes. Importantly, we show the overall picture of the host range for some
virus families following an evolutionary approach. Further, the current knowledge about plant-virus
interactions, focusing on the main disorders they cause, as well as yield losses, is summarized. Addi-
tionally, since accurate diagnosis methods are of pivotal importance for viral diseases control, the
current and emerging technologies for the detection of these plant pathogens are described. Finally,
the most promising strategies employed to control viral diseases in the field are presented, focusing
on solutions that are long-lasting.

Keywords: crop; fruit; pathogen; disease; plants; eudicots; monocots; magnoliids; yield; diagnosis; virus

1. Introduction

Since the appearance of agriculture, far earlier than previously thought, a few places
around the world were sites of origin for the modern crops we see today [1–3]. In a
process that took thousands of years, cultivated plants suffered the displacement of wild
characteristics and enrichment of suitable traits such as yield, disease resistance, abiotic
stress tolerance, and/or quality [4,5]. Among the total plant species on earth, around 10%
of them have a documented use, from which ~5000 plant species are a source for human
food [6–9]. In the case of fruit trees and herbs, edible fruits were harvested from the wild
and constituted the earliest source of food for humans [10,11]. Nowadays, more than 2000
species are used as food in the tropics, but only a fraction of them have been domesticated,
and a very tiny number are of significant commercial importance in the global market [12].

Although everyone is familiar with the traits of fruits, such as increased size of the
pericarp tissue and high sugar concentrations, these traits evolved initially for dispersing
seeds by means of megafaunal species [11–14]. Therefore, Spengler argues that fleshy fruits
were evolutionary adaptations that facilitated a stronger mutualistic bond between plants
and humans during domestication of the former [15]. In any case, a wide range of fruits
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is consumed around the world; bananas, watermelons, apples, oranges, and grapes, to
mention some of them, are the most popular [16,17]. More importantly, fruits are known as
amazing natural medicines, preventing many chronic diseases [18–20]. Therefore, WHO
and FAO have made efforts to promote fruit and vegetable consumption around the
world [21].

Putting aside the shortage of fruits and, consequently, higher prices caused by the
COVID-19 pandemic, the biggest challenge faced by fruit crops has always been the
range of pathogens that can cause disease [22–24]. Among the plant pathogens, which
include fungi, bacteria, and viruses, the major group causing reduction of fruit quality,
premature fruit drop, and yield loss is viruses [25,26]. Harmful plant virus diseases are
of considerable concern for humanity since they are capable of decreasing food supplies
and, therefore, threatening food security. The situation is becoming worse because the
human population is growing, soil fertility is declining, and global warming is changing
the weather patterns [27–30].

2. Edible Fruits of the World: Which of Them Feed the World?

Although technically nuts and grains are also fruits, we have restricted our review
to trees or herbs that produce fleshy seed-associated structures that typically are sweet or
sour and edible when raw [31]. Taking into account that definition of fruit, an extensive
search by combining multiple data sources allowed us to identify those trees and herbs
that produce edible fleshy fruits (EFFs) [8,11,12,32–40]. Accordingly, more than 2000 plant
species that produce EFFs were identified (Supplementary Table S1). These EFFs were
classified into 140 plant families and 47 orders. It is worth mentioning that some EFFs are
borderline because their fleshy tissue is in a limited amount; however, they were included
since their consumption has been reported to some extent. The classification of EFFs into
higher ranks showed that they mostly belong to eudicots (2119), followed by monocots (74)
and magnoliids (42) (Table 1).

Table 1. Classification of all EFFs of the world.

Species Genera Families Orders Clade %

2119 438 119 38 Eudicots 94.8

74 32 16 7 Monocots 3.3

42 15 5 2 Magnoliids 1.8

EEFs classified as eudicots corresponded to 438 genera, 119 families, and 38 orders,
whereas monocots and magnoliids were classified into 32, 16, and 7 and 15, 5, and 2, re-
spectively (Supplementary Figure S1). Until recently, the relationship between magnoliids,
monocots, and eudicots had not been conclusively resolved [41]. For instance, members
of magnoliids are dicotyledonous plants that retain some primitive anatomic and mor-
phological characteristics when compared to eudicots and monocots [42]. Therefore, from
an evolutionary point of view, magnoliids correspond to early-diverging angiosperms,
followed by monocots and eudicots [41,43,44].

Figure 1 shows the genera, families, and orders to which EFFs mostly belong within
the three clades. As observed, the vast amount of EFF species correspond to eudicots;
specifically, plant species of the genera Rubus (161), Prunus (112) and Crataegus (74), consti-
tuted the largest family of Rosaceae (575), order Rosales (685) (Figure 1). EFFs belonging
to families Ericaceae (135) and Solanaceae (92) were also numerous, in which the genera
Vaccinium (56) and Solanum (36) were highly represented, respectively (Figure 1; Supple-
mentary Table S1). In fact, numerous EFFs within the family Rosaceae are well known
(cultivated), including apples (Malus sp.), pears (Pyrus sp.), plums, and cherries (Prunus
sp.), among others. However, many more EFFs within the family Rosaceae are found in
the wild such as Ghingaroo (Pyracantha crenulata), Mehul (Pyrus pashia), and Rubus niveus.
In the case of EFFs classified within the clades of monocots and magnoliids (Figure 1), the
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same situation is true; namely, some of them have been domesticated (i.e., Musa acuminata
and Annona muricata), whereas others remain in the wild (i.e., Musa dasycarpa and Annona
glabra, respectively) (Supplementary Table S1).

Figure 1. Taxonomy of all EFFs in the world. Classification of more than 2000 EFFs shows the most
representative orders, families, and genera to which they belong. Note the increasing inclusivity
of the higher taxonomic ranks such as families, orders, and finally clades (eudicots, monocots, and
magnoliids). Complete information is found in Supplementary Table S1.

Despite the wide range of options for EFFs, only a tiny fraction of them is consumed
by the world [41–47]. For example, although tomatoes and bananas do not grow in
every corner of the world, they are ubiquitous. This is due to advances in transportation,
agreements and consumer preferences. In this regard, we have identified 64 species of EFFs
that constitute valuable products in the international marketplace (Supplementary Table S2).
Out of the 64 EFFs, 58 correspond to eudicots, whereas only four and two correspond to
monocots and magnoliids, respectively (Supplementary Table S2). Such commercially
important EFFs are classified into 35 genera, several species being conspicuous that belong
to Prunus, Citrus, Capsicum, Ribes, and Solanum, mainly (Figure 2A). Specifically, 20 out of
the 64 EFFs have a prominent value in the world market; tomato (Solanum lycopersicum),
banana (M. acuminata), apple (Malus domestica), and grapes (Vitis vinifera) standing out as
the most traded EFFs (Figure 2B) [16,17].
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Figure 2. Commercially important EFFs. (A) Genera in which the 64 EFFs with a prominent role in
the global market belong. The number of species in each genus is indicated. (B) The top 20 most
important EFFs are shown as a pyramid, which is divided into layers. The top layer represents the
most traded EFF and the bottom layer the less traded, respectively.

Although there is a recommendation of consuming at least 400 g of fruits and veg-
etables daily [21], insufficient fruit intake is observed worldwide. On the other hand,
fruits have diversity in their consumption because there are factors influencing consumer
behavior and preferences. Some people prefer strawberries or grapes, whereas others like
oranges, cherries, watermelons, or pineapples. Additionally, depending on availability,
regional climate, and other factors, fruit production and consumption vary greatly from
one country to the next, but on a global scale, there is one fruit that stands above all the rest:
tomato (Table 2). In Table 2, besides showing the global production of the most popular
EFFs in the world, it comes along with their market worth. As observed, tomatoes, bananas,
watermelons, and apples are among the most consumed fruits in the world (Table 2).

Table 2. The most-traded EFFs in the world.

Fruit
Global Production
(Million Tons per

Year)

Market Worth (USD
per Year) References

Tomatoes 186 9.4 billion [45–47]

Bananas 116 14.45 billion [46,48,49]

Watermelons 104 3.74 billion [46,50]

Apples 86 7.3 billion [46,51]

Grapes 79 10.9 billion [46,51]

Oranges 76 14.2 billion [46,51]

The economic importance of EFFs is reflected by the fastest growth rates of exportation
in recent years [52]. Although this is encouraging, the genetic potential of crops yield
is constrained by abiotic and biotic factors, reaching at best only 20 percent of the full
potential [53,54]. Moreover, out of the actual total capacity for annual food production,
up to 40 percent is lost due to biotic factors, which are often more severe in developing
countries than in developed countries [23,55]. Such declines in yield caused by plant
pathogens are projected to increase under higher temperatures because of global warm-
ing. Therefore, EFF production continues to be the main challenge in tropical and semi-
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tropical areas around the world, particularly those expenses related to disease prevention
and control.

3. A Co-Evolutionary Arms′ Race between Plants and Viruses: Major Families of Plant
Viruses Affecting EFF Crops

Among the plant pathogens, viruses (and viroids), which are transmitted by a living
organism called a vector, are the major infectious agents that cause plant disease [56–58].
Once a plant virus infects a susceptible host, it can spread to another plant by means of
vector-mediated transmission (horizontally) or from parents to offspring (vertically) [59].
Although the aforementioned modes of transmission are the pathways by which most
plant viruses spread in nature, other modes of transmission should be considered, such as
wounds or abrasions in the plant surface caused by wind, contaminated soil, and water, as
well as chewing by herbivores [60,61].

Plant systemic infection starts from the initial areas of virus inoculation, from which
virions move through the plasmodesmata of plant cells until they reach the vascular
bundles, resulting in the long-distance transport of the viral particles [61–64]. At each step of
this process, there must be a basic level of molecular communication between the virus and
its host [64,65]. Thus, the outcome of plant–virus interactions depends on the effectiveness
of plant defense mechanisms and on the ability of the virus to counteract these host defense
responses. Under this scenario, for millions of years, plants have evolved a series of
mechanisms to cope with the invading virus; the first as based on the detection of pathogen-
associated molecular patterns (PAMPs) that activates PAMP-triggered immunity (PTI) [66].
PTI, which is a non-specific response to a broad range of pathogens, may occasionally
result in a hypersensitive response (HR), thereby restricting the proliferation of the virus.
However, some viruses have circumvented this response by developing effector proteins
encoded by avirulence (Avr) genes that interfere or suppress PTI [67]. In response, plants
have evolved intracellular nucleotide-binding leucine-rich repeat (NLR) receptors, which
recognize the Avr effectors in a highly specific manner to trigger the second mechanism of
defense called effector-triggered immunity (ETI) [68]. Thus, the so-called co-evolutionary
“arms race” between plants and viruses results in transcriptional and biochemical changes
of the host either lead to a proper plant defense response (incompatible) or its colonization
(compatible) [69–72]. In that sense, compatible plant–virus interactions may or may not
show the main symptoms of viral diseases, including growth suppression, discoloration,
deformations, necrosis, and impaired reproduction. These visible symptoms appear as a
result of changes in starch metabolism, nitrogen metabolism, hormone metabolism, and
water content, among others [73–81].

As described above, there is a cascade of mutual and complex interactions between
the plant host and the virus [80,81]. Most viruses infecting plants are composed of
RNA genomes, whereas a minority have DNA genomes [58]. Plant viruses can be fur-
ther classified as positive-sense single-stranded RNA (+ssRNA), negative-sense single-
stranded RNA (−ssRNA), single-stranded RNA viruses that Reverse Transcribe (ssRNA-
RT), single-stranded DNA (ssDNA), double-stranded RNA (dsRNA), and double-stranded
DNA viruses that Reverse Transcribe (dsDNA-RT) [82–85]. According to the International
Committee for Taxonomy of Viruses (ICTV), classification is as follows: orders, families,
subfamilies, genera, and species [84,85]. Currently, 1744 species of plant viruses are listed
in the ICTV (2021) report, belonging to 31 families [84–86].

A decade ago, Scholthof and co-workers published the top ten viruses based on their
scientific/economic importance [87]. However, Rybicki questioned their approach since
it did not accurately reflect the most economically important viral crop pathogens [88].
More recently, Jones and Naidu revisited the global impact of virus diseases, noting that
members of the begomoviruses, tospoviruses, and potyviruses endanger food security by
causing devastating diseases in tropical and subtropical food crops [25]. Some of these crops
belong to EFFs, such as tomato (S. lycopersicum), watermelon (Citrullus lanatus), zucchini
(Cucurbita pepo), and cucumber (Cucumis sativus) [25]; however, a comprehensive picture
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of all viruses infecting trees or herbs that produce EFFs with economic importance in the
world is scarce or lacking [87–92].

Here, we have identified all viruses that infect trees and herbs that produce EFFs
with an important role in the international marketplace. Rather than taking into account
the total number of virus records (~1500), we focused on identifying unique virus species
infecting the 64 EFFs (Supplementary Table S3). In that sense, 617 virus species were
identified, which belong to 89 genera and 30 virus families (Figure 3A; Supplementary
Table S3). According to the number of virus species identified, the most prominent fam-
ilies infecting EFFs were Geminiviridae (178), followed by Betaflexiviridae (62), Secoviri-
dae (46), Potyviridae (44), and Closteroviridae (36) (Figure 3A; Supplementary Figure S2).
On the other hand, taking into account the nature of their genomes, the classification of
the 617 viruses showed that slightly more than half of them possess +ssRNA genomes
(Figure 3B). Such viruses with +ssRNA genomes belong to 14 families: Betaflexiviridae,
Secoviridae, Potyviridae, Closteroviridae, Virgaviridae, Bromoviridae, Tombusviridae, Tymoviridae,
Alphaflexiviridae, Luteoviridae, Kitaviridae, Solemoviridae, Botournaviridae, and Benyaviridae
(Figure 3A). Additionally, viruses with ssDNA genomes were found in a significant propor-
tion, represented by members belonging to the families Geminiviridae and Nanoviridae (Fig-
ure 3B). Other forms of nucleic acid genomes were represented in minor proportions; viroids
with ssRNA genomes constituted a significant proportion among this group (Figure 3B).

Figure 3. Classification of 617 plant viruses infecting EFFs. (A) The number of virus species identified
in each family is shown. Virus families are indicated by color code according to the nature of their
genomes (above each bar). (B) Percentage of viruses containing RNA (+ssRNA,−ssRNA, +/−ssRNA,
ssRNA, and dsRNA) or DNA (ssDNA and dsDNA-RT) genomes.

Even though 80 percent of the identified viruses infecting EFFs corresponded to either
+ssRNA or ssDNA genomes (Figure 3B), these proportions did not correlate necessarily
with their prevalence among the 64 EFFs. A clear example was the family Geminiviridae, in
which 128 out of 174 virus species were identified in a single plant species, S. lycopersicum.
This encouraged us to examine the host range of virus families among the 64 commercially
important EFFs. The approach followed was according to an evolutionary perspective,
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namely, taking into account the divergence times of EFFs [41,43,44,93]. Thus, we organized
the 64 economically important EFFs as follows: magnoliids first, then monocots, and fi-
nally eudicots (Supplementary Table S4). Within the magnoliids clade, for example, Persea
americana (avocado) and Annona muricata (soursop) belong to Lauraceae (order Laurales)
and Annonaceae (order Magnoliales) families, whereas monocot species such as Phoenix
dactylifera, Ananas comosus, and Musa sp. belong to Arecaceae (order Arecales), Bromeliaceae
(order Poales) and Musaceae (order Zingiberales) families. In the case of eudicot species
(58), these EFFs were classified into 17 families and 12 orders (Supplementary Table S4).
All this information is summarized in Figure 4, with an attempt to offer a full picture
of virus families infecting the 64 EFF species. As shown in Figure 4A, even though the
number of virus families infecting each of the 64 EFF species differed in general, it was
conspicuous that eudicot species contained the highest number of virus families com-
pared to monocots and magnoliids (Figure 4A). Specifically, EFFs belonging to eudicots
showed to be infected by eight virus families on average, whereas monocots and magno-
liids were infected by 3.75 and 2 virus families, respectively (Figure 4A). Eudicot species
such as tomato (S. lycopersicum), pepper (Capsicum annuum), and grape (V. vinifera) were
found to be infected by the highest number of plant viruses, whereas mango (Mangifera
indica) and guava (Psidium guajava) were found to be infected by a single virus species.
Specifically, in the cases of S. lycopersicum and C. annuum, 207 and 118 different virus species
were identified, respectively (Supplementary Table S4).

Figure 4. Virus families infecting the 64 commercially important EFFs. (A) Classification
of EFFs according to plant divergence times [93], and references therein], as well as the
number of virus families infecting them. The average number of virus families infecting
EFFs classified into magnoliids, monocots, and eudicots is indicated with a red dashed line.
(B) The host range for the first 15 virus families is exemplified with thin rectangles (filled). Complete
information is found in Supplementary Table S4.
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The higher number of virus families found among EFFs belonging to eudicots could
be the result of host range expansion during plant evolution, namely, an increase in the
number of potential hosts or also by host shifts. Therefore, the overall host range distribu-
tion of major virus families infecting the 64 EFF species was performed (Supplementary
Table S4). As observed in Figure 4B, the host range distribution of 15 out of 30 virus fami-
lies, encompassing 92.4% of all viruses found in this study, is extensive among eudicots.
Families such as Bromoviridae, Betaflexiviridae, Secoviridae, and Closteroviridae showed the
widest host range distribution (Figure 4B). The numbers of plant species infected by these
families were 46, 43, 40, and 36, respectively (Supplementary Figure S3). Examples of virus
species representative of virus families with a wide range of hosts within eudicot EFFs are
cucumber mosaic virus (CMV; Cucumovirus, Bromoviridae), apple stem pitting virus (ASPV;
Foveavirus, Betaflexiviridae), tomato ringspot virus (ToRSV; Nepovirus, Secoviridae), and citrus
tristeza virus (CTV; Closterovirus, Closteroviridae). Indeed, CMV and ToRSV were found
widely distributed among EFFs, infecting 38 and 24 species, respectively (Supplementary
Table S4). In addition to eudicots, 8 out of 15 virus families also infect monocot species
(Figure 4B). Strikingly, members of four families (Pospiviroidae, Avsunviroidae, Rhabdoviridae
and Endornaviridae) were the only ones infecting all clades of EFFs; it is worth noting
that two families (Pospiviroidae and Avsunviroidae) were constituted by viroids (Figure 4B;
Supplementary Table S4; Supplementary Figure S3). Twenty EFFs, for example, were hosts
for Hop stunt viroid (HpSVD; Hostuviroid, Pospiviroidae); most of these plant species belong
to Rosales and Sapindales (Supplementary Table S4).

A striking observation is that EFFs species belonging to magnoliids are only infected
by a minor number of virus families (Figure 4B). For instance, P. americana (avocado) was
found to be the host for persea americana alphaendornavirus 1 (PaEV 1; Alphaendornavirus,
Endornaviridae) and two viroids belonging to the families Pospiviroidae and Avsunviroidae,
whereas A. muricata (soursop) is only infected by soursop yellow blotch virus (Rhabdoviridae)
(Supplementary Table S4). Although the reasons behind this interesting observation are
far beyond the scope of this work, the molecular determinants should be addressed. It is
likely that viral movement proteins and the differences in plasmodesmata biology among
the three plant clades could be implicated in the expansion or narrowing of the virus host
range [94–97]. Since the number of plant species analyzed in the present study is biased in
favor of EFF species, the application of our approach to all plant species infected by viruses
could offer more insights regarding the molecular determinants of host range expansion or
shrinking. It is important to note that those gaps along the EFFs in which virus families
seem to be absent (Figure 4B) quite likely represent compatible or incompatible plant-virus
interactions with no apparent symptoms and, therefore, have not been addressed yet.
A high throughput sequencing approach toward detecting exogenous and endogenous
viral elements in the aforementioned hosts could offer a full picture of the viral metagenome
for these EFFs [98–102].

Aside from the molecular mechanisms governing the observed virus host range
distribution, the number and diversity of virus families infecting EFFs offer a picture
regarding the future emergence of novel viruses [26,27,102–107]. For example, EFFs such
as V. vinifera, Cucumis sp., Citrus sp., Capsicum sp., and Solanum sp., which showed to be
infected by the highest number of virus families (Figure 4), could potentially promote
virus encounters that might result in recombination and, thereby generate novel and
emerging viral diseases. In this regard, grapevine leafroll disease is an excellent example of
a multiple viral infection, as it is caused by the association of up to 11 grapevine leafroll-
associated viruses [108]. In fact, an extensive survey of five major grapevine viruses
indicated a putative recombination event for the grapevine leafroll-associated virus 3
(GLRaV-3; Ampelovirus, Closteroviridae) [109]. On the other hand, Hanssen et al. found that
PepMV recombinants frequently occur in mixed infections under natural conditions [110],
showing that coexistence of viruses is a prerequisite for recombination events. In this matter,
banana mild mosaic virus (BanMMV), an unassigned genus within the Betaflexiviridae
family, is often detected in mixed infection with CMV, banana streak virus (BSV; Badnavirus,
Caulimoviridae), and banana bract mosaic virus (BBrMV; Potyvirus, Potyviridae) [111,112].
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Additionally, Xu and co-workers identified a total of eight viruses and one viroid in a
single peach tree [101]. All of these examples mentioned, together with the knowledge
that plants are mostly infected by multipartite viruses [113], represent a high potential
risk for the emergence of new strains by recombination events. This raises the need for a
holistic approach to address the virome of important crops such as EFFs. Such an approach
could offer not only an overall perspective regarding the interactome of plant viruses in
mixed infections (synergistic or antagonistic) but also valuable information in forecasting
recombination events in the future. Thus, the information gathered in this review regarding
virus families with a wide host range coverage could be helpful for virologists in general,
but mostly for epidemiologists who deal with incidence, distribution, and possible control
of viral diseases. In the latter case, the efficiency of virus detection could be improved by
taking into account the total number of virus families that could infect a determined EFF
species, thereby implementing proper disease control strategies for that species.

4. Beyond the Visible Symptoms Caused by Plant Viruses: Biochemical, Cellular, and
Physiological Changes

Virus infections can be classified as systemic or local. Local infection refers to con-
finement of virus within and nearby the site of infection, whereas the systemic infection is
progressive and starts from the site of infection and then spreads throughout the whole
plant using the host vasculature [114,115]. The infected plant can exhibit a variety of
symptoms, highly characteristic ones being the induction of colorful patterns (mosaic,
chlorosis, necrosis, local necrotic, or chlorotic spots) and distortions (twisting, curling) on
leaves, as well as malformation on the branches and discoloration and streaks on the flower
petals [60]. In addition, viruses can affect the size, shape, and quality of the fruit, displaying
visible symptoms on the fruit such as ringspots, pits, mottling, or line patterns that dimin-
ish its appearance and/or organoleptic properties [116]. It is worth mentioning, however,
that even though the same virus can infect different plant species, the symptomatology
and severity will not be the same [117–124]. This is because the appearance or severity
of symptoms depends on the type of virus, the cultivar of the plant, and the host–virus
combination [125]. Other factors that can mask or trigger the appearance of symptoms are
changes in temperature, light, and/or plant nutrition [126].

Among the common viral symptoms, leaf chlorosis is the consequence of an altered
production of pigments within the chloroplasts [127–129]. Accordingly, a plethora of
changes has been observed in these organelles, such as decrease or clustering of chloroplasts,
swelling or atypical shape (amoeboid or globular), formation of vesicles at the periphery,
rupture of the envelope, changes in the chloroplast content, disappearance of stroma
or dilation of the thylakoid, and disorganized grana, among others [130]. In the case
of viral influence on chlorophyll, chlorophyllase was identified as responsible for the
emergence of chlorotic spots, ringspots, and mosaic in cucumber [131]. Such a decrease in
chlorophyll content was the consequence of increased enzymatic activity of chlorophyllase
during infection with CMV. This has also been observed in pumpkin (Cucurbita pepo
cv Eskandarani) leaves infected with zucchini yellow mosaic virus (ZYMV; Potyvirus,
Potyviridae) [60,125,130,132]. Another symptom related to pigment loss is variegation or
breaking, in which flower petals show specks, lines, or sections of tissue with different
colorations [60]. Yellowing in leaves, for example, is a characteristic symptom caused
by tomato yellow leaf curl virus (TYLCV; Begomovirus, Geminiviridae) or CTV in tomato
and citrus plants, respectively [133–135], whereas irregular light/dark green patterns
are common symptoms of apple mosaic virus (ApMV; Ilavirus, Bromoviridae) in apple
plants [136,137]. Viral factors such as the coat protein (CP) have been identified as triggering
symptoms by interfering with chloroplast development [138–142]. For example, binding
of the tobacco mosaic virus (TMV; Tobamovirus, Virgaviridae) CP to Ferredoxin I causes
chlorosis and mosaic in leaves [142,143], whereas the association of the Potato virus Y
(PVY; Potyvirus, Potyviridae) CP with subunits of the RuBisCo enzyme (RbCL) promotes
mosaic and chlorosis [144]. Altogether, the viral influence on chloroplasts usually leads to
a decrease in photosynthetic activity. A diminished photosynthetic activity during viral
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infection is the result of a decrease in the synthesis of chloroplast proteins involved in the
electron transport chain and in the Calvin–Benson cycle, reducing photosynthesis by up to
50% [125,132,145–148].

Decrease in photosynthetic activity triggers issued in the development, growth, and/or
reproduction of infected plants. A clear example of this is the induced dwarfism in leaves
and stems, as well as little or no fruit production, caused by the Banana bunchy top virus
(BBTV; Babuvirus, Nanoviridae) in banana trees [149,150]. However, it is worth mentioning
that even though the decrease in plant vigor, yield, and fruit quality caused by virus
infections has been attributed to reduced photosynthesis, the causes of this physiological
effect are not yet well clarified and should be addressed [125,145,151–153]. On the other
hand, at the physiological level, viruses interfere in the synthesis, accumulation, storage,
and distribution of carbohydrates, which can cause a lack of maturity or flavor in fruits [118].
This is well exemplified in the cases of Cabernet Franc and Cabernet Sauvignon cultivars
(V. vinifera) infected with grapevine leafroll-associated virus 2 (GLRaV-2; Closterovirus,
Closteroviridae) and grapevine rupestris stem pitting-associated virus (GRSPaV; Foveavirus,
Betaflexiviridae), in which grapes have low taste quality due to poor ripening [118,154,155].
On the other hand, infection of Merlot grape plants with GLRaV-3 caused an accumulation
of soluble sugars, leading to feedback inhibition of photosynthesis [153]. Similarly, in the
phloem sap of CMV-infected melon (Cucumis melo) leaves, high sucrose concentrations
and low starch levels were detected, which caused an increase in plant respiration and
low photosynthetic rate [156]. Other compounds that contribute to the taste and quality of
fruits are organic acids, which decrease by 10% when plants are infected with CTV [157].
Thus, juice volume and ascorbic acid content are considered parameters for establishing
the quality of citrus fruits in the industry. In the case of melon plants infected by squash
vein yellowing virus (SqVYV; Ipomovirus, Potyviridae), the content of malic acid increased in
fruits, along with changes in the concentration of minerals such as Mg, B, Zn, and K [158].
Some studies have also shown that virus infections increase the protein content of plants,
specifically in leaves. For example, Doria et al. [159] used a proteomic approach in Citrus
sinensis infected with CTV, finding that at least 33 proteins were increased, whereas seven
decreased due to infection. Proteins such as superoxide dismutase (SOD), catalase (CAT),
guaiacol peroxidase (GPX), and ascorbate peroxidase (APX) were found at high levels,
suggesting that CTV induces increased oxidative stress. In addition to SOD, CAT, GPX,
and APX, accumulation of amino acids, ascorbate, vitamin E, and phenolic compounds has
been found and may contribute to preventing cell death due to oxidative stress caused by
CTV [116,160].

Physiologically, virus infections impact plant hormones, which are central regulators of
plant growth and development [161]. The two most studied defense pathways are jasmonic
acid (JA) and salicylic acid (SA) [162]. For instance, studies by Chivasa et al. [163] detail that
exogenous application of SA to TMV-infected tobacco plants reduces virus replication. On
the contrary, overexpression of viral proteins reduces the expression of SA-responsive genes
in Arabidopsis thaliana plants infected with TMV, resulting in the suppression or amelioration
of defense signaling pathways, and it favors a systemic infection [164]. The same effect
was found by Sade et al. [78], in which tomato plants resistant to TYLCV show higher
SA concentration. On the other hand, Huang et al. [165] mention that the application
of JA and SA in TYLCV-infected plants can increase virus resistance compared to the
application of a single hormone. Other hormones, such as cytokines (CK), can decrease viral
concentration, diminishing viral symptoms [166,167]. Thus, how viral infections disturb
hormone homeostasis and trigger alterations in the plant remains unknown [125,167]. Such
complexity of the role of hormones during viral infection is due to the cross-talk between
hormones and sugars such as glucose, sucrose, and fructose [78,168].

In summary, the severity of viral diseases depends on several factors, including
the type of virus, the cultivar, as well as the host-virus–interaction and environmental
conditions. The emerging field of systems biology is expected to reveal not only host
components that are important for the virus life cycle but also general patterns about the
way in which different viruses manipulate host processes for their own benefit and possible
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mechanisms by which viruses evade host defenses [97,125,169–173]. Full comprehension
of mechanisms underlying events of the plant-virus interaction will be crucial to devise
novel plant resistance strategies.

5. EFF Yield Losses Caused by Viral Diseases

Agriculture is a very important activity since it provides the primary food supply of
more than 7.6 billion people in the world. Its impact is not only restricted to economic and
social levels, but agriculture also has a role in mitigating climate change. At the social level,
agriculture generates employment worldwide. For example, 34.6% of the population in
the world depends economically on agriculture [45]. In terms of economy, the value of
global agricultural production in 2019 was estimated at USD 3813 billion, from which EFFs
contribute USD 617 billion (16%) [45]. In fact, worldwide production of fruits has increased
in the last 5 years, reaching 883 million tons in 2019, which means an increase of 1.4% per
year on average [45].

As stated before, the genetic potential of crops yield is not achieved due to abiotic and
biotic factors [23,53–55]. In the case of viral diseases, they are responsible for important
losses, which in terms of economic impact has been estimated at more than USD 30
billion per year [25,26,174,175]. Such impact is scaling rapidly due to agriculture practices
(monoculture), changes in vector populations caused by global warming, and direct human
intervention in virus spread [25,27,175–181]. In that sense, nearly half of emerging and
re-emerging plant diseases are caused by viruses, forecasting an amplified global economic
impact in the near future due to altered temperature and weather patterns. In any case,
when viral diseases occur in staple food crops, they are capable of threatening food security,
causing famine [182–186].

Although the severity of individual viral diseases may vary with the locality and the
EFF variety and from one season to the next [187], the truth is viral diseases represent a
major issue in EFF production. Therefore, we expose below the economic losses of some
EFFs that have a prominent economic role in the global market (Table 2; Supplementary
Tables S2–S4).

5.1. Tomato

The scientific name of tomato is S. lycopersicum; it is a herbaceous species native
to America. Tomato is the most consumed fruit in the world as a vegetable (Table 2;
Figure 2B), and it is used to generate multiple products such as paste, soup, juices, and
tomato concentrates [188]. The main producing countries of tomato are China, India,
Turkey, United States, Egypt, Italy, Iran, Spain, Mexico, and Brazil [45], with yields of
around 59.1 t/ha [45].

This plant species is the host for viruses belonging to 15 genera and 12 families
(Figure 4A; Supplementary Table S4). Some of them, such as TYLCV, tomato leaf curl

virus (ToLCV; Begomovirus, Geminiviridae), tomato bushy stunt virus (TBSV; Tombosvirus,
Tombusviridae), and beet curly top virus (BCTV; Curtovirus, Geminiviridae), have caused
significant losses in production yields from 18 to 100% [187,189,190]. Members of the
Geminiviridae family are of great concern because several cases of recombination have been
reported [191–195]. In the case of TYLCV, a member of the Geminiviridae family has been
identified in many parts around the world and is considered a serious threat to tomato
production [135,137,189]. TYLCV and its recombinants are transmitted by whitefly called
Bemisia tabaci and attack both field-grown and greenhouse-grown tomato plants, causing
short internodes, small leaves with yellowish edges, and upward curving of the leaf that
resembles a spoon [135].

The percentage of tomato production losses worldwide is from 50% to 82%, depending
on the growth stage at which the viral infection occurs. On the other hand, the estimated
economic impact ranges from USD 46 and 75 billion per year [196]. Other important viruses
infecting tomatoes are TMV and Pepino mosaic virus (PepMV; Potexvirus, Alphaflexiviri-
dae), which cause losses of 19–33% and 20–40%, respectively [197–200]. Tomato leaf curl
New Delhi virus (ToLCNDV) is another begomovirus (family Geminiviridae) causing losses
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in the range of 18–99%, mainly in India and other countries around the world [201–204].
It has spread to countries such as Spain and Italy, affecting the cultivation of
cucurbits [202,205,206]. Therefore, the spread of ToLCNDV to other areas can cause heavy
losses not only in tomato or cucurbits but also in up to 43 plant species [125,205]. Finally,
another potentially dangerous virus for tomato and sweet pepper is the tomato brown
rugose fruit virus (TBRFV; Tobamovirus, Virgaviridae). TBRFV is transmitted mainly by
contact between contaminated plants, as well as by contaminated tools. Currently, TBRFV
has been reported in North America (Mexico and the United States), Europe (Germany,
Italy, Spain, Greece, France, United Kingdom, and Holland), and Asia (Jordan, Palestine,
and China). The symptoms caused by TBRFV are not only yellowing and deformation of
young leaves but also discoloration and marbling of the fruits [207].

5.2. Bananas and Plantains

Bananas and plantains belong to the genus Musa [150]. Their presence in the market
does not depend on the season and represents the major source of carbohydrates for
more than 400 million people around the world. Bananas and plantains are cultivated
in more than 125 countries [208], with the Democratic Republic of Congo, Philippines,
Peru, Colombia, Myanmar and the Dominican Republic being among the main producing
countries [45].

The source of banana plant reproduction is from young banana suckers, which are
removed from the old plantations to establish new fields. It is this practice responsible
for virus spread [150], with about 20 virus species from five families infecting banana
and plantain crops (Figure 4A; Supplementary Table S4). Among these viruses, the most
important in economic terms are BBTV, several species of banana streak viruses (Badnavirus,
Caulimoviridae), and BBrMV [150,209]. The most characteristic symptoms of BBTV are
noticed on the leaf and consist of a few dark green stripes or spots on the lower part of
the leaf blade. Additionally, smaller leaves with a brittle texture are observed, presenting
chlorotic edges and rolled upwards. In younger plants, stunting is observed, and they
usually do not produce fruits; however, if fruits are produced, they are twisted [150,209].
BBTV can infect both banana and plantain plants, reducing yields by up to 100% and
is therefore considered an economically important disease. This virus is transmitted by
the aphid Pentalonia nigronervosa or by the use of contaminated plants for propagation.
The disease caused by BBTV was first identified in the Fiji Islands and then spread to
other countries as a result of human movement and trade [208,210,211]. Until now, its
presence has been reported in Australia, Africa, Asia (Malaysia and India), and the Pacific
Islands (Polynesia), but it is not found in the Americas [137]. In Australia, BBTV was
reported in 1913 and caused a great impact on the banana industry (up to 90% of loss).
In Africa, there are no precise estimates of losses, but it is estimated to affect 30–95%
plant yield [210,212]. Although banana and plantain producers in the Americas are free of
the disease, climate change and the spread of contaminated vegetative material could be
catastrophic for country producers in this part of the world.

5.3. Cucurbitaceae

The most cultivated and consumed cucurbits worldwide are watermelon (C. lanatus),
melon (C. melo), cucumber (C. sativus), and squash (Cucurbita sp.) [45]. All these EFFs
belong to the Cucurbitaceae family and are the second most economically important family
after Solanaceae [124]. World cucurbit production in 2019 was about 152.8 million tons,
with a gross production value of USD 84.3 billion. The main cucurbit producing country is
China [45]. In developing countries, cucurbit crops are affected by at least 39 viruses from
eight families; however, the severity of infection will depend on climatic and agricultural
management conditions for the vectors to transmit the virus [198]. Potyviruses cause great
economic losses in developing countries, and their transmission by different aphid species
is in a non-persistent manner [213–215]. Among the viruses infecting cucurbits are the
watermelon mosaic virus (WMV; Potyvirus, Potyviridae), CMV, and cucumber green mottle
mosaic virus (CGMMV; Tobamovirus, Virgaviridae) (Supplementary Table S4). These viruses
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cause yield losses in watermelon, melon, squash, and cucumber production [216,217].
WMV is responsible for yield and quality losses in watermelon, cucumber, and squash.
Rao and Reedy [187] reported yield losses of 18–73% in watermelon, less than 2% in cucum-
bers, and 9–49% in squash. The symptoms that occur can vary according to the host; usually,
WMV causes dark green mosaic along the veins and leaf blade deformation [218,219].
WMV is distributed worldwide in tropical and subtropical zones; in some countries,
such as Mexico, Egypt, Bahrain, and Jordan, WMV is considered a pest [137,213,218].
Another virus with a worldwide distribution is CMV, especially affecting melon, cucum-
ber, and squash crops. This virus induces plant growth retardation, mosaic and leaf
distortion, fruit discoloration, and deformation. Losses registered in melon by CMV are
up to 2.5% in the United States alone [183]; however, Lecoq et al. [220] reported that
almost 100% of the late crop showed symptoms derived from CMV in France, causing
considerable yield losses. Finally, CGMMV is a virus that has gained economic impor-
tance due to its rapid spread from greenhouse crops to open field crops and to different
parts of the world. It was first reported in England in 1935 and is currently found in vir-
tually all of Europe, Asia, some African countries, the United States of America, and
Australia [216,221]. Rao and Reddy [183] mention that losses in cucumber crops in
England due to viruses such as CMV and WMV, including CGMMV, are up to 15%.
Symptoms may vary depending on the cucurbit and occur on leaves, stems and fruits.
In the case of melon and watermelon, symptoms on leaves are characterized by mottling,
mosaic, brown necrotic lesions (watermelon), and if symptoms are severe, leaf whitening
and subsequent wilting of the plant occurs. In watermelon and melon fruits, there are
deformations of different degrees. Internally, there are sponginess, yellowing, or rotting,
and in the specific case of melon, there are mottling and superficial netting [198]. For squash
and zucchini, no symptoms are seen on the plant or fruit surface, but internally there is
pulp discoloration or necrosis [206]. At the Lea Valley experimental center, for example,
CGMMV decreased the yield of cucumber plants by 15% [222], but losses in the field are
greater than 50% [223]. On average, yield losses due to CGMMV are estimated at 40% in
melon, watermelon, cucumber, and squash; thus, it is important to promote its control and
avoid its spread in virus-free regions.

5.4. Apples

Apples (M. domestica) belong to the Rosaceae family and are one of the most traded fruits
in the world (Table 2; Figure 2B). The world production in 2019 was around
87.2 million tons, with a gross production value of USD 50.9 billion. The main producers
in the world are China, United States, Japan, Italy, and Chile [45]. Twenty viruses have
been reported infecting apple (Figure 4A; Supplementary Table S4), including ApMV,
apple stem grooving virus (ASGV; Capillovirus, Betaflexiviridae), apple chlorotic leaf spot
virus (ACLSV; Trichovirus, Betaflexiviridae), and apple scar skin viroid (ASSVd; Apscaviroid,
Pospiviroidae) [224–226].

Infection by ApMV initially starts with yellow spots along the main leaf veins. How-
ever, as the disease becomes more severe, leaves may drop prematurely and cause a delay
in the apple tree growth. If fruits are produced by these infected trees, they are colorless
with a sour taste [227]. Studies conducted by Svoboda and Polák [136] showed that symp-
toms are more pronounced in spring, so they consider that the virus spreads easily in cold
climates. ApMV is mainly distributed in Europe, Oceania, America, and some countries
in Africa and Asia [137]. Among the apple cultivars, ‘Golden Delicious′, ‘Granny Smith′,
and ‘Jonathan′ are the most susceptible, with losses up to 50% [227–229]. Moreover, in
a study carried out by Kumar et al. [194], it was found that ApMV, ASGV, ASPV, and
ASSVd can generate mixed infections in apple trees, complicating the scenario for disease
control strategies.

5.5. Grapes

V. vinifera, the scientific name of grapes, produces delicious fruits consumed fresh
or dried (raisins). Grapes are also the main ingredient for wines, jellies, vinegar, oils, or
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juices [230]. In 2019, grape production reached 77.1 million tons, which means a gross
production value of USD 73.9 billion. China, France, United States, Spain, and Chile are
the main countries with grapevine producing areas [45]. V. vinifera is a host for at least
90 viruses (Figure 4A; Supplementary Table S4), but only a few of them are of economic
importance in the world, such as grapevine fanleaf virus (GFLV; Nepovirus, Secoviridae) and
several species within the Closteroviridae family designated as grapevine leafroll-associated
viruses (Supplementary Table S4) [108,109,121,122]. GFLV is transmitted by Xiphinera
index, an ectoparasite that feeds on plant roots and can resist long periods in the soil.
Typical symptoms of GFLV appear early in the growing season and include yellow mottling
of leaves, fan-like distortion of leaves, double nodes, short and malformed internodes, as
well as poor fruit taste quality and reduced shelf life [117,121,155,231]. This virus is mainly
distributed in the wine-growing areas of Europe, America, Africa, and Asia [137], causing
losses that range from 10% to more than 80% [117,122]. On the other hand, grapevine
leafroll-associated viruses can be transmitted by grafting or mealybugs [155,232]. The first
symptoms in adult plants appear on mature leaves, always from the base of the canes,
moving progressively upwards to the youngest leaves, which are more pronounced at
the end of the growing season, whereas young tissues are usually asymptomatic [121].
Altogether, these viruses can cause yield losses of up to 40% [117]. However, losses in
cultivars such as Merlot, Chasselas, and Pinot Noir are up 98% in France, whereas in Italy,
losses range between 55 and 65% [117,233].

5.6. Citrus

Citrus fruits are among the most commercialized fruits in the world due to their
organoleptic, nutritional, and functional properties, both fresh and processed.
Among citrus fruits are oranges, lemons, grapefruits, tangerines, and mandarins. The world
production of citrus fruits was estimated at 138 million tons in 2019, with a production
value of USD 47.7 billion. The main countries with citrus-producing areas are China,
France, United States, Spain, and Chile [45,116]. The major problem in the production of
citrus fruits is CTV, which infects plants of the Rutaceae family but mainly the genus Citrus
(Figure 4B; Supplementary Table S4) [159]. CTV is transmitted by the spread of plants
contaminated with the virus or by aphids such as Toxoptera citricida, Toxoptera aurantii, and
Aphis spiraecola [133,159,234]. This virus is widely distributed in the world, and symptoms
caused by CTV may vary depending on the genotype of the host [137]. In combinations of
grafts and rootstocks such as lemon (C. macrophylla), sweet orange (C. sinensis), grapefruit
(Citrus x paradisi), or mandarin (C. reticulata) grafted onto sour orange (C. auramtium), the
virus causes yellowing of leaves, rotting of roots, and even death of the plant in two or
three years [133,159,235]. On the other hand, citrus plants tolerant to CTV, such as trifoli-
ate orange (Poncirus trifoliate), rangpur lime (C. limonia), Cleopatra mandarin (C. reshni),
and rough lemon (C. jambhiri), are used as rootstocks to generate resistant hybrids [236].
Despite these efforts, more than half of the world′s cultivated plants are lost due to the
virus [237]. For example, since the appearance of CTV in the 20th century, more than 100
million citrus trees have been lost in the following countries: Argentina, Brazil, United
States (California and Florida, mainly), Spain, Israel, Venezuela, Cyprus, Cuba, Mexico, the
Dominican Republic, and Italy [133,238]. In Spain alone, one of the main producing coun-
tries in the world, it has been estimated that 40 million trees have been lost since 1935 [234].
Recent studies indicate that in Brazil, the yield of Halminton orange (C. sinensis) was
reduced up to 87%. Similarly, it has been reported that the yield of each plant of Kagzi lime
(C. aurantifolia) decreases up to 12%. Finally, the yield of oranges and other cultivars (Young
Frost Lisbon lemons, tangelos, Frost Washington Navel oranges, tangerines, and Valencia
oranges) are lost in California in the range of 40–98% [187].

6. Diagnosis of Plant Virus Diseases

Viruses can cause huge economic losses by affecting the quality and productiv-
ity of various fruit plant crops like banana, apple, grapevine, citrus, and others [92].
Once infected, plants harbor the virus throughout their life, and visible symptoms of
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viral diseases appear. So far, it is very difficult to prevent the spread of viruses and their
vectors into new territories through international trade, mainly given by the exchange of
plant materials across borders [239]. Therefore, early diagnosis of viral diseases is a key
factor that determines the timely use of protective measures to confine the viruses, thereby
preventing yield losses and a decrease in the quality of fruit products.

The first way to detect viral infections was according to the symptoms they produced.
Such an approach was based on biological indexing tests, which were time-consuming and
unreliable, especially in cases in which the virus infection was latent or plants exhibited
virus-like symptoms unrelated to virus etiology [239,240]. Then, virus detection at the
microscopic level began in the late 1930s with electron microscopy; however, this tech-
nique cannot be applied for large-scale detection due to the dimensions and costs of the
equipment, as well as the operating conditions. Subsequently, the application of serological
assay like enzyme-linked immunosorbent assay (ELISA) [241] and nucleic acid-based assay
for in vitro DNA amplification called polymerase chain reaction (PCR) [242] represented
important advances in plant viral diagnosis. With the progress in molecular biology, nucleic
acid-based techniques evolved significantly from conventional PCR to reverse transcription
PCR (RT-PCR), nested PCR, multiplex PCR, real-time PCR, immunocapture-PCR (IC-PCR),
loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification
(RPA), rolling circle amplification (RCA), and microarray and next-generation sequencing
(NGS) to improve specificity, sensitivity, and multi-sample processing [239].

Extensive reviews and chapters covering diverse diagnostic methods of viruses in-
fecting plants have been described in the literature [243–247]; therefore, we only provide
serological-based and nucleic acid-based approaches that have or could be applied for
EFF crops.

6.1. Serological Assays
6.1.1. ELISA

ELISA is a cost-effective and robust assay for the routine detection of plant viruses,
especially those present in crude extracts, due to its simplicity, detection limit 1–10 ng/mL,
ability to analyze a large number of samples, easy interpretation, and semi-quantitative
results [248,249]. For virus diagnosis, it is based on the detection of viral antigens, mainly
the components of viral particles such as coat protein (CP) subunits, with enzyme-labeled
antibodies. The amount of virus present is proportional to the amount of enzyme-labeled an-
tibody, and it is detected by a colorimetric reaction with the enzyme substrate [241]. The di-
rect and indirect ELISA are the most used methods for the diagnosis of plant viruses [250].
Compared to the direct antigen-coated ELISA (DAC-ELISA), the double antibody sandwich
ELISA (DAS-ELISA) is the most used test as it is more virus-specific. Currently, DAS-ELISA-
based diagnostic kits are used in accredited testing laboratories for routine virus indexing
and certification programs for most horticultural crops, including EFFs [251]. A further
improvement in the ELISA introduced the use of monoclonal antibodies (MAbs), which
specifically detect a particular virus [251]. However, the main limitation of ELISA is the
good quality and quantity of antibodies. For example, mixed infections are common in
crops of grapevines and citrus [252,253], making it impossible to isolate individual viruses
and thereby hindering the obtention of specific antibodies from detecting a particular
virus [254]. Recombinant proteins, on the other hand, are an alternative approach for
immunogen preparation, especially for viruses in low concentrations. The recombinant
approach is fast, economical, and overcomes the problems associated with conventional
antigen purification [255]. Additionally, the expression plasmids can be stored for long peri-
ods of time, and the recombinant viral proteins are uniform, therefore reducing non-specific
antibody recognition. These recombinant proteins are used successfully for polyclonal
antibodies (PAbs) production against viruses infecting papaya, bananas, and grapes and
to develop immunodiagnostics for routine testing [256–258]. In this regard, an impor-
tant advance was made by producing cocktails of PAbs against the recombinant fusion
CP of two and three viruses infecting vegetable crops [259]. Dual and triple cocktails of
PAbs were generated for DAC-ELISA toward the detection of CMV and papaya ringspot
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virus (PRSV; Potyvirus, Potyviridae) or CMV, PRSV, and groundnut bud necrosis virus
(GBNV; Orthotospovirus, Tospoviridae) simultaneously in Cucurbitaceae, Solanaceae, and
other hosts [259].

6.1.2. Lateral Flow Assay (LFA)

LFA is an ELISA variant that simplified virus identification [260]. LFA can be done
anywhere, with a simple device operated by personnel with little or no training, and
results are obtained within minutes [261]. This membrane-based assay involves the use of
specific MAbs and PAbs in an immunochromatographic format, incorporating antibody-
coated gold or latex particles. A lateral-flow strip consists of a sample application pad,
a conjugate or reagent pad, a reaction membrane, and an absorbent pad [262]. There are
two types of LFA, the double antibody sandwich format and the competitive format [263].
The sandwich format contains a virus-specific antibody that is immobilized on a membrane,
as the test line that captures the viral protein, and a detection antibody-specific antibody is
deposited in the control line, capturing the unbound conjugated antibodies. The appearance
of the test line indicates the presence or absence of the virus in the sample, and the
control line is an internal control to ensure proper functionality of the test [262]. In the
competitive format, on the other hand, the detection signal correlates negatively to the
antigen concentration. Additionally, these tests have been combined with a novel extraction
procedure to allow disease diagnosis in the field. The LFA was successfully applied for
the onsite rapid detection of CTV infecting citrus, satsuma dwarf virus (SDV; Sadwavirus,
Secoviridae), and plum pox virus (PPV; Potyvirus, Potyviridae) infecting apricot, plum, and
peach [261,264,265]. LFA has also been useful for the diagnosis of CMV infecting pepper,
cucumber, and melon crops, tomato spotted wilt virus (TSWV; Orthotospovirus, Tospoviridae)
infecting pepper and tomato plants [266,267], and PepMV infecting tomato and sweet
cucumber [268]. Finally, the development of lateral flow strips has allowed the onsite
detection of TBRFV, squash mosaic virus (SqMV; Comovirus, Comoviridae), tobacco etch virus
(TEV; Potyvirus, Potyviridae), TMV, tobacco ringspot virus (TRSV; Nepovirus, Secoviridae),
tobacco streak virus (TSV; Ilarvirus, Bromoviridae), ToLCNDV, ToRSV, ZYMV, CGMMV,
melon necrotic spot virus (MNSV; Gammacarmovirus, Tombusviridae), melon severe mosaic
virus (MSMV; Orthotospovirus, Tospoviridae), PepMV, pepper mild mottle virus (PMMoV;
Tobamovirus, Virgaviridae), potato virus X (PVX; Potexvirus, Alphaflexiviridae), and PVY,
among others [269].

6.1.3. Dot Immunobinding Assays

Serological assays such as dot immunobinding assay (DIBA) and tissue blot immunoas-
say (TBIA) also allow simultaneous screening of large numbers of samples [270]. In these
assays, the sap from infected plants is blotted on nitrocellulose or nylon membrane, and
the virus is detected by enzyme-labeled secondary antibodies or chemiluminescent probes.
DIBA is considered to be simple, rapid, and often more sensitive than ELISA-based tech-
niques [271]. DIBA was adapted for detection of CTV and compared with DAS-ELISA and
DAS-indirect ELISA; this assay was easier to perform and as sensitive as either ELISA pro-
cedure for CTV diagnosis [272]. This technique was also able to detect the infection with
ACLSV and ASGV [273]. Moreover, TBIA was useful for the detection of CMV [274,275].

6.1.4. Computer-Assisted Epitope Identification to Improve Antibody Production

New approaches are emerging in order to improve serological diagnosis. Some involve
the identification of epitopes in the viral CP by computer simulation or functionally by
epitope mapping and its subsequent artificial synthesis [257]. According to the second
approach, two putative CP coding regions (p48 and p37) of banana streak MY virus (BSMYV;
Badnavirus, Caulimoviridae) were identified in silico by comparison with caulimoviruses,
retroviruses, and rice tungro bacilliform virus. A purified fusion protein p37 was injected in
rabbits as an antigen for raising polyclonal antiserum. The antiserum was successfully used
in antigen-coated plate-ELISA for specific detection of BSMYV in banana fields and tissue
cultures raised. On the other hand, the antiserum was also utilized in immuno-capture PCR
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(IC-PCR) for indexing of episomal BSMYV infection [257]. This bioinformatic approach can
be useful for the precise location of CP coding sequences that are not available in any virus.

6.2. Nucleic Acid-Based Assays
6.2.1. PCR

Molecular diagnostics began in the mid-1980s with the introduction of PCR, and
the first PCR method for virus detection was published ten years later [276]. PCR-based
diagnostics can be used for the detection of viruses with DNA and RNA genomes. In the
case of RNA viruses, RNA is first reverse transcribed into complementary DNA (cDNA) in
a process known as reverse transcription (RT), followed by conventional PCR, involving
the amplification of target nucleic acid sequences with primers [277]. Primers can be easily
designed using the viral sequence information in databases. Another crucial component
for successful PCR is the isolation of good quality DNA, free of endogenous polyphenols,
polysaccharides, and nucleases. Some crops, such as bananas, contain very high levels
of polyphenols and other secondary metabolites that interfere with PCR amplification.
Therefore, an efficient method adapted for nucleic acid isolation is important [239].

Many commercial nucleic acid extraction kits (e.g., RNeasy and DNeasy) have replaced
complicated and time-consuming conventional nucleic acid extraction protocols [278–280].
PCR-based methods allow the precise detection and characterization of plant viruses, as
the amplified products can be sequenced directly or cloned into a suitable vector. Besides
reverse transcription PCR, there are other diagnostic techniques based on PCR [281]. Nested
PCR is useful when the virus titer is very low, the target gene is unstable, and it cannot be
checked by electrophoresis due to low amplification product. The product from primary
PCR amplification is used for second PCR amplification. Several viruses, including prunus
necrotic ringspot virus (PNRSV; Ilarvirus, Bromoviridae), prune dwarf virus (PDV; Ilarvirus,
Bromoviridae), PPV, and CTV, were detected by this technique. Co-operational PCR also
requires four primers; however, one is external, and three are internal primers instead of
two external and two internal primers associated with nested PCR. This technique shows
similar sensitivity to nested PCR, detection in real-time, capability of coupling with dot
blot hybridization, it can avoid false-positive results shown at nested PCR, and it also
can be applied to capillary air thermal cyclers. This technique has been useful to detect
cherry leaf roll virus (CLRV; Nepovirus, Secoviridae) with higher sensitivity than RT-PCR.
Digital PCR does not require any reference standards for nucleic acid quantification but
rather produces an accurate quantification. The PCR sample is divided into thousands
of nanodrops, and after amplification, the drops containing the sequence of the target
DNA are detected by fluorescence as positive and those without fluorescence as negative.
Then, the statistical analysis of the number of nanodrops gives an exact count of the target
DNA, and this helps count the viral charge. Reverse transcriptase droplet digital PCR
detected PMMoV in the presence of qPCR inhibitors [282]. Finally, Multiplex PCR, Real-time
PCR, and Immunocapture-PCR are described in the following sections. Importantly, PCR
has been used successfully for the detection of several viruses that infect citrus in India,
including CTV, citrus yellow mosaic virus (CYMV; Badnavirus, Caulimoviridae), and Indian
citrus ringspot virus (ICRSV; Mandarivirus, Alphaflexiviridae) [283]. PCR-based diagnostics
are also available for viruses that infect bananas, such as BBTV and BSV [284,285] as well
as for GLRaV-3 infecting grapevines [286].

6.2.2. Multiplex PCR

Multiplex PCR is a technique for simultaneous and sensitive detection of different
DNA fragments in one single PCR reaction [287], and it allows to save reagents and time.
Most of the fruit plant crops are infected by more than one virus (Figure 4) containing
DNA or RNA genomes that can be detected by multiplex PCR [288–290]. Multiple detection
is achieved by combining multiple pairs of oligonucleotide primers, each designed to
amplify the desired target. Multiplexing requires to design primers that do not show self-
complementarity and that exhibit very similar annealing temperatures. Then, PCR products
are distinguished by their size or fluorescent tag [290–292]. For the purpose of detecting
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pathogenic microorganisms, multiplex PCR can be performed in various modalities [290].
Reverse transcription-multiplex PCR can simultaneously detect various target RNA. After
reverse transcription of target RNA, cDNAs are simultaneously amplified with a set of
specific primers in a single tube by multiplex PCR. In order to quantify viral load, this
technique can be performed in real-time mode, known as reverse transcription-real-time
multiplex PCR. Real-time multiplex PCR uses a set of species-specific primers and probe
that is labeled with different fluorescent dyes for each target species so that approximately
2–5 species (depending on the experimental conditions) can be detected simultaneously
in a single real-time PCR reaction. Compared to real-time single PCR, real-time multiplex
PCR shortens the processing time and reduces the use of reagents. Multiplex RT-PCR has
been successfully applied for aphid-borne viruses infecting strawberry, such as strawberry
crinkle virus (SCV; Cytorhabdovirus, Rhabdoviridae), strawberry mild yellow edge virus
(SMYEV; Potexvirus, Alphaflexiviridae), strawberry mottle virus (SMoV; unassigned genus,
Secoviridae), and strawberry vein banding virus (SVBV; Caulimovirus, Caulimoviridae) [293].
Furthermore, this technique has been used for simultaneous detection of several viroids
within the family Pospiviroidae and the ASGV infecting citrus plants [291]. Another example
of simultaneous detection by multiplex RT-PCR is the case of viruses infecting grapevines,
apples, bananas, and pome fruits [294–297], as well as for the combination of several
viruses and greening bacterium infecting citrus plants [298]. One of the major limitations
of multiplexing is the long time taken for optimization of the annealing temperature of the
multiple primer sets and the decrease in sensitivity of detection. Additionally, different
targets can compete with each other in the reaction in such a way that targets in very low
amounts will be hindered by those in high abundance.

6.2.3. Real-Time PCR

One of the limitations of PCR and RT-PCR for virus detection is that PCR products
require agarose gel staining with fluorescent dyes such as ethidium bromide, SYBR Green,
SYBR Gold, SYBR Safe, Eva Green, GelRed, EZ-Vision, among others [299], which is not
convenient for high throughput applications. Additionally, the amount of PCR product
is not proportional to the amount of target DNA, and contamination due to the open-
ing of tubes can lead to false-positive results. The real-time quantitative PCR assay is
a tool for the detection and quantification of plant viruses. Real-time PCR eliminates
agarose gel electrophoresis usage and allows to determine the increase in the amount of
amplified DNA through a fluorescent signal [300,301]. It requires the use of nonspecific
fluorescent dyes (e.g., SYBR green, LUX, etc.) or specific probes labeled with fluorescent
dyes (e.g., TaqMan, Molecular beacon, etc.). The SYBR green dye binds nonspecifically to
dsDNA molecules; therefore, the fluorescence generated could be due to specific or nonspe-
cific amplicons or primer dimers. In such cases, melting profiles are used to discriminate
primer dimers from actual amplification [251]. On the other hand, probes labeled with
fluorescence are specific because more than two independent oligonucleotides need to bind
to the target to generate the signal. In contrast to the development of antibodies required
for serological tests, real-time PCR has been successfully used for the specific and sensitive
detection of viruses [251]. Even though real-time PCR requires very expensive equipment,
the overall cost for antibody development is much higher. Reverse transcription-real-time
multiplex PCR allows detection of various target RNA through simultaneous amplification
of cDNAs, produced by reverse transcription, with a set of specific primers in a single tube
by multiplex PCR, producing quantitative results [281]. On the other hand, nested real-time
reverse transcription PCR is a simple and sensitive method for the detection of pathogenic
microorganisms. This technique involves a previous reverse transcription step to synthe-
size cDNA and the use of two external and two internal primers that are complementary
to the target sequence, which increases sensitivity, providing quantitative results [281].
In summary, the main advantages of real-time PCR assay are the specificity and speed, high
throughput testing, detection of low viral titer, and lesser risk of contamination. For in-
stance, real-time RT-PCR has been successfully used for quantitative detection of CTV
and citrus yellow vein clearing virus (CYVCV; Mandarivirus, Alphaflexiviridae) [301–303].
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Finally, simplex and duplex real-time PCR assays have been developed for the rapid
and sensitive detection of GLRaV-3 and grapevine red blotch virus (GRBV; Grablovirus,
Geminiviridae) in grapevines [304].

6.2.4. Immunocapture-PCR (IC-PCR)

In this technique, viral particles are captured with virus-specific antibodies, followed
by the release of viral nucleic acid for PCR amplification. This is very convenient for
the detection of plant viruses in which inhibitory plant compounds or low viral titer
hinder PCR amplification [305,306]. It has been successfully applied for the detection of
BSMYV, which otherwise might lead to false positives with conventional PCR since there
are integrated virus sequences in the host genome [307]. In addition to the ability to amplify
the episomal viral sequences, IC-PCR also has the ability to concentrate virus particles
from crude sap, thus making it more sensitive. IC-PCR is used for routine indexing of
BSV worldwide [307,308]. It has also been useful for PRSV detection in leaf extracts of
papaya and various cucurbits up to 1/10,000 dilution [309], and especially IC-PCR has
been developed for GLRaV-3 detection in grapevines [310].

6.2.5. Loop-Mediated Isothermal Amplification (LAMP)

The PCR has been the main tool for viral detection; however, because of tempera-
ture cycling, it is time-consuming and less useful than isothermal methods. The LAMP
technique has been developed for specific, sensitive, and rapid nucleic acid amplification.
This assay uses a group of 4–6 special primers, which together with the strand-displacement
activity of Bacillus subtilis-derived (Bst) NA polymerase, produce amplicons containing
loop regions to which further primers bind, allowing amplification to proceed without
thermal cycling [311]. The whole process can be carried out in 1 h at 60–65 ◦C in a heating
block or water bath. Additionally, a pair of loop primers may or may not be used in the
reaction. This assay is very useful in high throughput reactions with increased sensitivity
and reduced amplification time [251]. LAMP products can be detected by conventional
agarose gel electrophoresis or visual observation to estimate turbidity or color changes [312].
There are different LAMP methods for pathogenic microorganisms [313]. Real-time LAMP
is a constant temperature amplification method carried out at 60–65 ◦C, for which only
a simple water bath is required. This technique eliminates reverse transcription steps, as
well as PCR instrument cooling time, which shortens the amplification time. Adding a
fluorescent DNA intercalating dye into the reaction enables monitoring of a fluorescence
amplification curve. Compared to conventional LAMP assays, this method avoids visi-
ble error, enables quantitative detection, and is more suitable for multi-sample analysis.
Reverse transcription LAMP can synthesize cDNA from template RNA and apply LAMP
technology to amplify and detect them. As the template is an RNA sample, in addition to
the reagents of DNA amplification, reverse transcriptase is added to the reaction mixture.
After mixing and incubating at a constant temperature between 60–65 ◦C, amplification
and detection can be carried out in a single step. Multiplex LAMP consists in simultaneous
detection of multiple target genes in LAMP reaction, which increases diagnosis specificity.
In addition, reverse transcription LAMP in a single tube can be coupled to multiplex LAMP
for detection. Electric LAMP is based on an electronic simulation that provides fast and inex-
pensive putative tests of LAMP primers on target sequences compatibility. This aids to de-
termine the opportunity of existing primers to detect recently discovered sequence variants.
Finally, in-disc LAMP is an integrated device composed of micro-reactors embedded onto
compact discs for real-time targeted DNA determination. This method requires similar
reagents used in conventional LAMP, and it is performed in a micro-reactor placed in a
65 ◦C oven. During incubation, the disc is cyclically scanned and optically read to obtain
quantitative results. LAMP has been developed and standardized for some of the viruses
infecting bananas (BSV, CMV, BBTV and BBrMV), citrus (CYMV), grapevines (GLRaV-3),
and apples (ASGV) [314–321]. The LAMP primers can be easily designed using software
programs available, such as the PrimerExplorer V5 program [322]. This program is based
on six regions in the target sequence, located on the right from the 5′ end and named F3, F2,
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F1, B1, B2, and B3. The program picks four LAMP primers: forward inner primer (FIP),
backward inner primer (BIP), F3, and B3 primers. If needed, loop primer forward (LF)
and backward (LB) are designed using the primer information file of the selected LAMP
primers. The FIP consists of the F2 sequence at its 3′ end and the same sequence of the F1c
region at its 5′ end. The BIP consists of the B2 sequence at its 3′ end and the B1c sequence
at its 5′ end. Furthermore, the LF is designed using the complementary strand between F1
and F2 regions, while the LB is designed using the complementary strand between B1 and
B2. In addition, the program takes into account four key factors: Tm, stability at the end of
each primer, GC content, and secondary structures.

6.2.6. Recombinase Polymerase Amplification (RPA)

In this technique, the isothermal amplification of specific DNA targets is achieved by
the combination of proteins and enzymes, such as recombinase, single-stranded binding
proteins, and the strand-displacing activity of the polymerase. In combination, all these
proteins produce amplicons in 10–15 min at a constant low temperature. There is no need
for initial denaturation of the dsDNA target. RPA amplicons can be visualized on gel or
by fluorescence and/or hybridization [323,324]. Compared to conventional PCR, which
takes ~3 h for analysis, RPA analysis can be completed in just 1 h. Even though the cost
of RPA reagents is much higher than in conventional PCR, the overall cost of the assay is
reduced because PCR requires expensive thermal cyclers and purification of DNA using
commercial kits. RPA is superior to other amplification techniques such as LAMP, which
requires larger sets of primers, higher incubation temperature, purified DNA template, and
longer incubation time [325], as RPA does not require a purified DNA template and can be
easily performed using a very small amount of crude sap extract. Because of its simplicity,
sensitivity, and quickness, it is an ideal technique for large scale plant virus indexing.
Thus, RPA has been useful for BBTV diagnosis [325], as well as several other viruses such as
little cherry virus 2 (LChV-2; Ampelovirus, Closteroviridae), PPV, tomato mottle virus (ToMoV;
Begomovirus, Geminiviridae), and TYLCV, infecting fruit plant crops [323,324,326].

6.2.7. Rolling Circle Amplification (RCA)

RCA is another isothermal amplification method for viral detection in fruit plants.
It uses exo-resistant random hexamer primers and the strand displacement activity of
Phi29 DNA polymerase [327] to amplify circular nucleic acids. This technique was first
applied for papillomaviruses diagnosis [328] and shortly after for geminivirus infections
in tomatoes [329]. RCA is a sequence-independent amplification method carried out at
isothermal temperature (30 ◦C). As random hexamers are employed, the prior sequence
information of the viral genomes is not required, and it has the potential to amplify
novel circular viral genomes. RCA followed by restriction fragment length polymorphism
analysis has been used for the diagnosis of geminiviruses, which have small single-stranded
circular DNA genomes [330]. However, the RCA product needs to be sequenced for
confirmation of viral origin. RCA has been used even to amplify the bigger viral genomes of
badnaviruses infecting bananas, which typically amplify the episomal viral genomes [331].
By employing this strategy, novel badnaviruses associated with the leaf streak disease of
bananas have been identified, such as banana streak UA virus, banana streak UI virus,
banana streak UL virus, banana streak UM virus, and banana streak IM virus (BSUAV,
BSUIV, BSULV, BSUMV; Badnavirus, Caulimoviridae) [332]. Furthermore, random primed
RCA has also been employed to identify the shorter banana streak OL virus (BSOLV;
Badnavirus, Caulimoviridae) variants causing the leaf streak disease of bananas in India [333].
RCA, however, has some limitations: the amplification efficiency decreases with the length
of the DNA template, and it is not suitable for larger genomes. Additionally, the probability
of strand breaks increases with the length of the DNA molecule, resulting in the termination
of the RCA. Furthermore, products generated from complex samples have to be analyzed
further to exclude non-specific amplification [327]. RCA had primarily been used to detect
plant viruses with small genomes (<3 kb) belonging to the families Geminiviridae and
Nanoviridae [330,334]. However, by using a mixture of degenerate primers during the RCA,
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it was possible to detect plant viruses with larger genomes such as the Badnaviruses, BSV
and sugarcane bacilliform virus (SCBV; Badnavirus, Caulimoviridae), and the Caulimovirus,
cauliflower mosaic virus (CaMV; Caulimoviridae) [332].

6.2.8. Microarray

Some fruit plant crops are infected by a large number of viruses, as is the case of
grapevine infected with more than 80 viruses (Supplementary Table S4). In such cases,
techniques like ELISA and PCR are limited. In that sense, the development and application
of DNA microarrays offer a convenient solution. Although microarrays were originally
designed for simultaneous analysis of large-scale gene expression based on complementary
base-pairing between the fluorescently labeled target sequences and the spotted probes
on a solid surface [335,336], now they are used to detect thousands of plant and ani-
mal viruses in a single assay [337,338]. Initially, arrays for plant viruses were developed
for the detection of viruses infecting a single crop or few families of plant viruses and
viroids [339–343]. Moreover, since synthetic oligonucleotide probes provide greater sen-
sitivity in detection, microarrays containing such probes enabled differentiation among
different subgroups (or variants) of CMV and six potato viruses [340,344]. Another microar-
ray containing 150 probes detected 49 viruses, including CMV and other viruses infecting
non-fruit plants [345]. Additionally, three Closteroviridae members, including GLRaV-4,
GLRaV-7, and GLRaV-9, were detected for the first time in Chilean grapevines using an
oligonucleotide microarray [343]. A large-scale oligonucleotide microarray developed to
identify 538 plant viruses detected CMV, TBSV, TSWV, and MNSV [346]. Besides, it was
reported the largest published crop-specific macroarray for the detection of 38 of the most
prevalent or emergent viruses infecting grapevine [347]. This array contains 1578 virus-
specific 60–70-mer oligonucleotide probes. In a survey of 99 grapevines from the United
States and Europe, virus infections were detected in 46 selections of V. vinifera, V. labrusca,
and interspecific hybrids. The majority of infected vines was singly infected, while some
were mixed-infected with viruses from two or more families. Representatives of the four
main virus families including Betaflexiviridae, Closteroviridae, Secoviridae, and Tymoviridae
were found alone and in combination [347]. The main limitations of this technique are
the high cost of spotting, need for labeled nucleotides, need for dust-free rooms, and little
flexibility for use in differentiating strains, as well as the time for processing data [348].

6.2.9. Next-Generation Sequencing (NGS)

NGS technologies, developed in 2005, are massively parallel sequencing platforms that
have allowed the rapid identification of viruses and viroids. Today, Illumina technology
is the most widely used for sequencing. The process begins with DNA fragmentation
and incorporation of adapters that contain segments acting as reference points during
amplification, sequencing, and analysis [349]. With this technology, thousands of places
throughout the genome are sequenced at once via massive parallel sequencing. NGS tech-
nology has made possible the direct identification of viruses and discovery of novel viruses
in plants without antibodies or prior knowledge of viral sequences [350–353]. In response
to viral infection, the plant produces small interfering RNAs (siRNAs), complementary to
the viral genomic sequences that trigger degradation of viral RNAs in a process known
as silencing [354]. Deep sequencing of siRNAs isolated from infected samples allows
the recovery of either full or partial genomic viral sequences [351]. These methods have
been useful to detect and discover viral infections in many horticultural crops [251,355].
NGS, in addition to its applications in resolving the etiology of viral diseases, characteri-
zation, and population genetics, has potential in the high-throughput diagnosis of plant
viruses in plant crops [352,355]. The siRNA-based NGS parallel sequencing of symptomatic
and asymptomatic samples followed by de novo assembly of long reads has the potential
to identify the novel uncharacterized RNA, ssDNA, reverse-transcribing dsDNA viruses,
and viroids without prior knowledge of the sequence [351,356]. In addition, conserved
domains of viral groups have been identified for different genera or families, which enables
designing primers targeting the regions that have the potential to identify different variants
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and new viruses [356,357]. Several methods to enrich the viral/viroid sequences in a total
RNA pool [358], as well as algorithms for the identification of virus/viroid specific nucleic
acids, have been developed [359]. In a short period of time, analysis of plant samples by
NGS and homology-dependent computational algorithms have identified two new viroids
and 49 new viruses from 20 known families [359]. More importantly, the development
of user-friendly algorithms for handling voluminous NGS data for viral identification
is challenging; however, once optimized to analyze a large number of samples, NGS di-
agnostics can be used as a reliable tool for certification of horticultural plants destined
for exportation. Finally, indexing of the mother plant by NGS, which is used for in vitro
large-scale multiplication of crops, can avoid vertical propagation of viral diseases that are
a major problem in bananas, citrus and passion fruits.

6.3. Biosensors

Biosensors are portable diagnostic devices based on antigen–antibody interactions
(immunosensors) or nucleic acid hybridization coupled to a physicochemical transducer
microsystem [360]. A biosensor is made up of a receptor, a transducer, and a proces-
sor, thereby making this technology economic and highly sensitive for immediate viral
detection from leaf extracts. Transducers are classified according to the parameters of
measurement as optical (detecting changes in light transmission), thermometric (measuring
temperature changes), potentiometric (measuring potential at constant current), ampero-
metric (measuring current at constant potential), cyclic voltametric (measuring current at
variable potential), magnetic, or piezoelectric (measuring changes in mass) microsystems.
These transducers convert the biological signals into electrical signals of intensity directly
proportional to the concentration of a specific analyte [361]. Because of their large surface
area, high biocompatibility, and high electron transfer potential, the gold nanoparticles
(GNPs) are used to immobilize various biomolecules.

The biosensor based on the bioelectric recognition assay (BERA) is an intelligent
system for the detection of plant viruses, combining the principle of artificial neural
networks and biosensors. For example, BERA biosensors detect the electric response
produced by the interaction of a cell culture suspended in a gel matrix with the CG-
MMV [362]. This response was indirectly generated, taking into consideration the sig-
nal produced by antibody recognition of CGMMV CP. A biosensor based on magnetic
immunoassay was developed for the detection and quantification of GFLV, which was
achieved through a double-antibody sandwich immunofiltration approach [363]. Addi-
tionally, an amperometric biosensor was developed for capsicum chlorosis virus (CaCV;
Orthotospovirus, Tospoviridae) diagnosis, which showed ~1000 times more sensitivity than
DAC-ELISA [364]. The antigen sample was placed onto the surface of GNP/multiwalled
carbon nanotube screen-printed electrodes in order to interact with polyclonal antibodies
specific for CaCV and GBNV. The quartz crystal microbalance (QCM) is a sensitive mass-
measuring device consisting of a quartz crystal wafer sandwiched between two metal elec-
trodes connected to an external oscillator circuit that records the resonance frequency [365].
Piezoelectric immunosensors based on artificial or natural antibodies and QCM are able to
detect TMV and maize chlorotic mottle virus (MCMV; Machlomovirus, Tombusviridae), and
they could be useful to detect viruses infecting fruit plants [366,367].

An optical miniaturized paper-based DNA sensor identified the early infection caused
by BBTV. Some DNA biosensors are based on nucleic acid hybridization and QCM detec-
tion of DNA molecules [368,369]. In this regard, the nucleic acid-based QCM biosensors
developed to detect cymbidium mosaic virus (CymMV; Potexvirus, Alphaflexiviridae) and
odontoglossum ringspot virus (ORSV; Tobamovirus, Virgaviridae) infections in orchids are
more sensitive than those based on antibody recognition [370]. Compared to antibodies
binding to CP in QCM immunosensors, QCM DNA biosensors possess immobilized nu-
cleic acid sequences that bind more efficiently with their complementary virus CP gene
sequences [370]. A potentiometric biosensor was used for the detection of DNA sequences
from PPV in plant extracts [371]. Additionally, a cyclic voltametric biosensor was able
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to differentiate sugarcane white leaf phytoplasma and sugarcane mosaic virus (SCMV;
Potyvirus, Potyviridae) infections [372].

7. Disease Management
7.1. Horticultural Practices
7.1.1. Use of Disease-Free Propagating Materials and Seeds

Pathogen-free planting material and seeds are fundamental for the fruit industry.
Disease-free nurseries should be raised by taking propagative materials from disease-
free healthy plants that are identified by making tests of various fruit orchards [373–375].
This disease-free material has to be identified and preserved for mass multiplication and
distribution of healthy saplings for fruit orchards. Fruit plants such as mango, citrus,
guava, grapes, pome and stone fruits, banana, pomegranate, and strawberry, among others,
are mostly multiplied by budding, grafting, cuttings, suckers, rhizomes, etc. Thus, if the
mother plant carries a transmissible disease, it is passed to the offspring by vegetative
propagation [375,376]. Such infected nursery plants serve as one of the important reser-
voirs for the introduction and spread of diseases and new pathogens into disease-free
territories. Citrus, pineapple, plum, and peach viruses are readily transmitted through
the use of infected planting material, such as scions or rootstocks, and tools used for
nursery production [377–379]. These diseases can spread especially long distance and
internationally by the importation and use of infected bud wood and its propagation in
nurseries. For example, the latent infection in banana suckers results in the introduction
of banana bunchy top and mosaic viruses in new plantations [380,381]. Therefore, the
production of disease-free bud wood and sapling is very important to manage vegetative
transmitted diseases. Virus-free bud wood for citrus nursery propagation and certified
planting material has been recommended to control the spread of citrus viruses such as
tristeza, greening, ring spot, exocortis, mosaic, witches′ broom, etc. [382]. In that sense,
the use of disease-free seeds is convenient for managing PRSV, citrus psorosis virus (CPV;
Ophiovirus, Aspiviridae), and mulberry ringspot virus (MRSV; Nepovirus, Secoviridae) [383].

7.1.2. Nutrition

Nutrition is an environmental factor affecting plant survival and resistance to diseases,
pathogen virulence, and presence of biocontrol agents. Proper nutrition is a preventive
measure for fruit plant disease, whereas wrong or excessive nutrient applications can bring
problems [384–386]. In addition to C, H and O, thirteen mineral nutrients are generally
essential for plant growth, development and production of good yield [384,387]. In general,
high nitrogen levels increase susceptibility to many diseases, whereas potassium increases
resistance, and the role of phosphorus is variable [388]. For instance, the application of
various concentrations of NPK results in a difference in the incidence of pineapple mealybug
wilt-associated virus 2 (PMWaV-2; Ampelovirus, Closteroviridae) [389]. Certain TMV isolates
can cause blotchy ripening of tomatoes [390]. In a greenhouse experiment with pot cultures
in nutrient solutions, a significant inverse correlation between potassium levels and blotchy
ripening was found. The total percentage of blotched tomatoes was highest at the lowest
potassium concentration and progressively decreased as the potassium concentration was
increased [391]. Tomato internal browning, a chlorotic and necrotic ripening disorder of
tomatoes, is also caused by a strain of TMV [390]; however, the severity is influenced by
certain environmental factors. When plants were exposed to this virus, potassium produced
significantly less internal browning than other treatments exposed to the virus, including
phosphorous and phosphorous plus potassium. The infection percentage was not different
between fertility treatments and control without virus exposure [392].

7.1.3. Intercropping

Intercropping of certain crops helps in reducing the inoculum of the diseases or
population of root-knot nematodes in the fruit crops. These crops produce chemical
compounds that inhibit the microorganism population, protecting the main crop from
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disease. The antagonistic plants release toxic substances in soil that help in reducing the
population of plant-parasitic nematodes [393]. The percentage of zucchini plants showing
virus symptoms caused by PRV was significantly lower in dicultures of zucchini and
buckwheat, white clover, okra, or sunn hemp than zucchini monoculture during three
years [394]. In contrast, cucurbits as intercrop of bananas should be avoided in order
to avoid mosaic disease caused by CMV [395]. Additionally, it has been observed that
susceptible weed flora and inter-cultivation of cucurbits should be stopped to reduce the
incidence of papaya mosaic virus (PapMV; Potexvirus, Alphaflexiviridae) [396,397].

7.1.4. Nucellar Embryony

Nucellar embryony is a form of seed reproduction that occurs in certain plant species,
such as citrus trees. Nucellar embryos are produced asexually from somatic cells of
seed parents [398]. Since citrus viruses are normally restricted to the vascular tissues,
virus particles are eliminated in the seedling offspring because there is no direct vascular
link between the parent and the nucellar embryos [399–401]. Thus, nucellar embryony
is an important method for controlling viral diseases. Nevertheless, nucellar seedlings
have certain limitations, e.g., they have more thorns, bear late and produce poor quality
fruits, but these limitations can be overcome by using apical parts or bud wood from
old nuclear limes [402]. Additionally, recovery of mango somatic embryos, particularly
in monoembryonic cultivars, eliminates viral pathogens and avoids catastrophic losses
frequently occurring in clonally propagated cultivars [403,404]. Finally, advances in nucellar
embryogenesis and in vitro culture of apple seed parts could be also helpful in the control
of viral diseases affecting apple orchards [405].

7.1.5. Orchard Roguing

Orchard roguing is another important strategy for controlling viral diseases in fruit
crops. This method is a cost-effective and environmentally safe disease management
practice to identify and eradicate infected fruit plant sources in order to avoid the spread
of the disease [406,407]. Once any tree is infected with a virus and viroids, there is no
convenient method to eliminate them. The only remedy is to uproot and destroy the
infected plants and replant them with certified healthy plants. The removal and destruction
of unproductive trees infected by citrus viruses (tristeza, greening, exocortis, ring spot,
mosaic, and psorosis, among others) and replanting with certified virus-free planting
materials or tolerant rootstocks have worked very well to control viral spread [381,408].
Additionally, other viral diseases of banana, grapes, papaya, pome and stone fruits can
be controlled by removing the source of infection and replanting with healthy nursery
plants [409–412]. Banana crops infected with BBTV must be removed from the field to
avoid further spread by aphids [413]. Remarkably, the eradication campaign of BBTV had
been successful in controlling the disease. In the case of herbaceous crops, such as tomato
and pepper, it is also important to maintain good sanitation throughout production and
handling [414,415]. This includes the use of clean water, personnel cleanliness, animal
exclusion, removing rotten fruit from the fields, cleaning all bins and work surfaces at the
end of the day, and maintaining low storage and transport temperatures. An extra benefit
of good sanitation to growers and shippers is that it retards infection and reduces decay
during shipping and storage.

7.1.6. Destruction and Avoidance of Reservoir Plants

Wild plants and weeds may also serve as reservoirs of both virus and vector [416].
Several crops are short-lived and absent from the field during dry summers, winters or
crop rotations. At these times, wild plants frequently harbor viral infections and serve as
alternate hosts instead of their usual perennial crops. The destruction of these hosts helps
to eliminate the inoculum source. Meyor lemon and Evodia hupehensis are symptomless
carriers of CTV, and they should be eradicated from the orchards as they act as foci for
the secondary spread of the virus [417–419]. Additionally, elimination of hosts for cherry
rasp leaf virus (CRLV; genus Cheravirus, family Secoviridae), such as balsamroot, dandelion,
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and plantain, reduces the virus incidence [420]. For example, CRLV and peach rosette
mosaic virus (PRMV; Nepovirus, Secoviridae) are seed-borne of Chenopodium quinoa, and
their removal helps in controlling the disease [421]. Aside from harboring crop viruses and
other pathogens, wild plants act as important reservoirs of insects, mites, and nematodes.
Avoidance in the cultivation of tobacco, tomato, cape berry, Zinnia, and various weeds
near papaya crops helps in reducing the spread of PLCV by its vector, the whitefly B. tabaci.
In addition, the cultivation of papaya near cucurbits should be avoided in order to reduce
the incidence of PRSV [389]. Therefore, it is highly recommended that the papaya nursery
should be raised in an isolated place free from whiteflies.

7.2. Vector Control

Insect vectors are the main pathway for the dispersal of plant viruses. The injuries
caused by insects at the time of virus transmission may also serve as entry points for the
penetration of other pathogens. In this regard, the successful control of these diseases relies
on the proper management of insect vectors. The BBTV could be reduced by eliminating
the aphid Pentalonia nigronervosa with insecticidal sprays, dust, injection, or encapsulation
in situ [422]. Additionally, the application of insecticides supplemented with weedicide
(2,4-D) is highly effective in killing the aphid and diseased plants [423]. Similarly, the
incidence and spread of CTV and PPV can be reduced by controlling the population of
their aphid vectors [424,425]. Cherry mottle leaf virus (CMLV; Trichovirus, Betaflexiviridae)
and peach mosaic virus (PcMV; Trichovirus, Betaflexiviridae) are transmitted by bud mite
Eriophyes inequalis, and control of the mite reduces the disease incidence [426]. In the case of
CRLV and PRMV, which are transmitted by a nematode, the use of fumigants for the control
of nematodes helps in reducing the viruses in the orchard [427,428]. On the other hand, the
incidence of PRSV can be reduced by planting new plants at least 375 feet away from the
main orchard, using physical barriers to avoid contact between winged aphids and papaya
seedlings [429]. In addition, papaya crops should be grown in an isolated area with limited
cucurbits or old papaya trees, so that plants are subjected to low viral load. Red lady
variety of papaya can be successfully grown under protected conditions, and plants remain
completely free from papaya leaf curl virus (PaLCuV; Begomovirus, Geminiviridae) due to
protection from whitefly transmission. On the other hand, the spray of fosmite for whitefly
control was effective in reducing the disease incidence [430]. Spraying suitable insecticides
for the control of mealy bug vectors and ants could reduce the incidence of PMWaV-2 and
little cherry virus 1, 2 and 3 (LChV-1, -2, -3; Closteroviridae) [431]. Finally, sticky yellow
polyethylene sheets are used around the main crop for attracting and sticking to airborne
vectors such as aphids and whiteflies. It helps in reducing the incoming population of
vectors, as well as disease inoculum reaching the main crop [430].

7.3. Thermotherapy

Heat treatments such as sterilization and solarization have been used for reducing or
eliminating the inoculum in propagative plant parts, their products and in the soil [432,433].
Soil can be sterilized in a container by passing steam under pressure. Most pathogens are
usually killed at a temperature between 60 to 72 ◦C [434]. Thermo therapeutic treatments
are given through steam under pressure, hot water, hot air, and moist hot air. For instance,
ASGV and ACLSV can be controlled by thermo therapeutic treatment at 37 ◦C for four
weeks or more [435]. Exposure of infected bud wood at 50 ◦C for 10 min helps in controlling
American plum line pattern virus (APLPV; Ilarvirus, Bromoviridae) [436]. Heat therapy
followed by the isolation and in vitro culture of apical meristems is a suitable procedure
to produce virus-free plants. Heat therapy of in vitro shoots at 25–40 ◦C, increasing 1 ◦C
per day for 18 days, with posterior isolation and culture of apical meristems produced
apple and pear plants free from ApMV [437]. Banana mosaic disease caused by BSV can
be controlled by exposing infected suckers to heat therapy at 38–40◦C for 14 days prior
to meristem culture [438]. Additionally, dry heat treatment at 40 ◦C for one day was
effective in curing the infected suckers [439]. Water bath and moist hot air exposure at
50 ◦C for 120 min contributed to eliminating the ICRSV from the Kinnow mandarin infected
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buds [440]. Finally, the pineapple wilt virus could be eradicated from infected planting
material by treatment with hot water (50 ◦C for one hour) or dry heat (55 ◦C for one hour)
treatments [441].

7.4. Biological Control

Biological control involves the usage of microorganisms for the control of harm-
ful pathogens causing plant diseases without disturbing the ecological balance [442,443].
Usually, parasites and predators are used as biocontrol agents to cope with vectors trans-
mitting viruses and can reduce or eliminate the viral disease [444,445]. Releases of the
red-lipped green lacewing Chrysoperla rufilabris in caged watermelon contributed to a de-
crease in the populations of Bemisia tabaci, the vector silverleaf whitefly of geminiviruses, in
Texas [446]. The greenhouse whitefly Trialeurodes vaporariorum is the vector of criniviruses
(genus Crinivirus) such as strawberry pallidosis associated virus (SPaV; Crinivirus, Clos-
teroviridae), tomato chlorosis virus (ToCV Crinivirus, Closteroviridae), and tomato infectious
chlorosis virus (TICV; Crinivirus, Closteroviridae), among others [447]. A biocontrol study
showed that the predatory mites Amblydromalus limonicus and Amblyseius swirskii signifi-
cantly reduced greenhouse whiteflies densities on greenhouse-grown strawberries [448].
On the other hand, cross protection, in which plants are deliberately infected with a mild
strain of a virus, serves as a pre-immunization against a more severe strain of the same
virus [449]. Cross protection has been successfully used for the control of CTV, PRSV, and
BBTV. In the case of CTV, the virus was controlled using this approach on Pera sweet
orange in Brazil, grapefruit in Australia, as well as in grapefruit and sweet orange in South
Africa and Japan [450]. In India, acid limes are cross-protected against the severe strain
of CTV and gave more yield than uninoculated control [451–453]. In Northern India, the
existence of mild strain might be giving cross protection against severe and devastating
strains. Moreover, the Citrus Improvement Program in South Africa supplies to the growers
the high-quality cross protected trees of grapefruit and sweet orange under bud wood
certification, thereby avoiding devastation to the citrus industry [454]. Likely, the mild
strain of BBTV is widespread in Fiji and has probably been the greatest salvation of banana
industry [455].

7.5. Chemical Control

The application of chemicals is still the principal method for controlling various plant
diseases. An ideal pesticide should be foolproof, highly toxic to pathogens at lower con-
centrations but safer for human beings or animals. In addition, these chemicals should be
cheap, easily available, persistent, easy to spread, easy to handle and apply, stable, and sim-
ple to prepare [456]. The chemicals used in crop protection against viral infections are called
viricides. Some viricides are currently on the market for PRSV treatment or prevention,
such as Virus Stop (Fagro S.A., Mexico), Q 2000 VI (Quimcasa, Mexico), Antivirus (Ferti-
nosa, Mexico) and Ekologik (Bioaga Cellular Biology Lab, USA) [457]. Additionally, a new
viricide called Inhibitovir can prevent and reduce disease caused by PRSV, comparable to
Q-2000VI, with satisfactory protection until harvest [457]. On the other hand, the common
broad-spectrum disinfectants Lactoferrin, Virocid, Clorox, and Virkon showed activities
against the tobamoviruses TBRFV and CGMMV, with an efficacy of 90–100% [458]. In ad-
dition, SP2700 generated a significant effect against CGMMV but poorly against TBRFV.
Furthremore, four different chemical-based treatments were able to eradicate ToBRFV from
tomato seeds without affecting the ability to germinate [459]: 10% trisodium phosphate
solution for 180 min, 4% hydrogen peroxide for 30 min, 2% hydrochloric acid +1.5% sodium
hypochlorite for 24 h, and 2.5% sodium hypochlorite solution for 15 min. Additionally,
effective treatments for reducing the concentration of ToMV, TMV, and CMV infecting
tomato, pepper, melon, and squash seeds were HCl, heated water (65 ◦C), and ozone (10
g m−3) [460]. These treatments reduced viral concentration in ranges of 51%, 42%, and
32%, respectively. HCl and ozone did not have a negative effect on seed germination.
In addition to viricides, homeopathic drugs such as Thuja and cedron have been used to
control the papaya viruses PapMV, PRSV and papaya leaf distortion mosaic virus (PLDMV;
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Potyvirus, Potyviridae), and TMV, infecting tomatoes [461]. Thuja is also effective in the
control of tomato mosaic virus (ToMV; Tobamovirus, Virgaviridae) [462]. On the other hand,
the sorghum extract was effective in the control of SCMV, and could be useful to control
viral infections caused by other potyviruses [461].

7.6. Use of Disease Resistant Varieties

The use of resistant varieties is the most effective and safest means of controlling crop
diseases. Several diseases resistant varieties have been developed in fruit crops; however,
there is a lot to be achieved against many important diseases [463,464]. Any gene from wild
or unrelated plant species which confers resistance to the pathogen can be transferred to cul-
tivars through traditional means or by genetic engineering [465,466]. By using traditional
methods, trifoliate orange and its hybrids, such as Rough lemon, Rangpur lime, Tangelos,
Troyer, Yuma citrange, and Volkameriana, have resistance to tristeza disease [466,467].
On the other hand, through overexpression of PRSV CP gene in transgenic papaya plants
have been generated papaya plant lines resistant to the virus [468]. Tolerance to TYLCV
infection is also associated with single dominant genes in wild tomato species and was
successfully introgressed into cultivated tomato [469,470]. In peach, tolerance to PPV (a
potyvirus) was mapped to three loci [471]. One of these loci included a candidate gene
with similarities to the A. thaliana RTM-2 gene, which is implicated in the restriction of
the systemic movement of other potyviruses [471]. However, functional validation will
be required to confirm whether the RTM-2-like gene is indeed responsible for the toler-
ance. Well-characterized exceptions to the NBS-LRR (nucleotide-binding site leucine-rich
repeat) configuration of resistance proteins include the non-NBS-LRR-encoding RTM genes.
These genes confer dominant resistance to PPV and other two viruses that do not infect
EEF plants [472] and the tomato Tm-1 gene, which encodes a protein with a TIM-barrel-like
structure that confers dominant resistance to TMV. The Tm-1 protein interacts directly
with the viral replicase, impairing viral genome replication [473]. Additionally, to generate
fruit plants resistant to viral infections, viral silencing through RNAi has been useful to
repress the expression of genes encoding CP or replicase domain gene from PRV [474,475],
CP from PPV [476], CP from CMV, ZYMV, and WMV [477]. eIF4E translation initiation
factors are essential to plant proteins allowing most +ssRNA viruses to infect plants [478].
Consequently, they are crucial targets for developing genetic resistance. Although often
available from crop wild relatives, eIF4E-based resistance may be engineered through
TILLING, CRISPR/Cas9, and RNAi. The strategies have relied on knocking out or down
the main eIF4E susceptibility factors to generate resistance to PVY and TEV in Lycopersicum
and Capsicum spp., resistance to ZYMV, MNSV, and cucumber vein yellowing virus (CVYV;
Ipomovirus, Potyviridae) in Cucumis melo, and resistance to ZYMV and PRSV in Cucumis
sativus. However, redundancy among eIF4E genes can restrict the efficient use of knockout
alleles in breeding. Similar strategies can be extended to other plant factors required by
viruses, such as small GTP binding proteins (AtARL8a/b/c), required for ToMV replication,
DNA binding protein phosphatase (AtDBP1), and DEAD-box RNA helicase-like protein
(AtRH8/PpDDXL), required for PPV and turnip mosaic virus (TuMV; Potyvirus, Potyviridae)
replication in
A. thaliana and peach [479].

Finally, the generation of virus-resistant varieties also needs to consider the specific
climatic conditions for each growing area in order to increase the yield of crops [480,481].

7.7. Quarantine and Legislations

Quarantine is the legal restriction on the introduction, movement, and spread of
a new pathogen to the disease-free area. With the purpose of preventing the diseases
spread to the new unaffected areas, mandatory measures such as bud wood certifica-
tion, crop inspection, and establishing orchards in regions unfavorable for pathogen are
taken [482–484]. The plant quarantine can be defined as “the utilization of knowledge by
an authority constituted by law, to prevent the entry or spread of injurious plant pests
as a service in the public interest” [483]. Therefore, without quarantine measures, new
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pathogens, diseases, or weeds enter a new country and can spread to become dangerous to
the crops. Many fruit diseases like the bunchy top of banana from Sri Lanka to India have
been introduced from one region to other causing serious damage to the fruit industry [485].
However, BBTV dissemination has been controlled by quarantine measures and is the most
successful example of fruit virus control by this approach [486,487]. Similarly, the prohi-
bition on the importation of infected ornamental cherries, as well as the use of virus-free
planting material, has greatly reduced the spread of LChV-2 in British Columbia [488,489].

8. Concluding Remarks and Perspectives

EFFs are among the most valuable agricultural food commodities, and the world seems
unable to get enough of them, as is reflected by their fastest growth rates of exportation in
recent years. However, fruit trees and herbs pass through a series of growth steps or stages
before fruits fully ripen, which not only demand continuous nutrient supply across all their
growth but also make them susceptible to be infected by plant viruses during this time.
To our knowledge, here we have compiled the world′s most comprehensive list of known
edible fruits that fit our definition. Moreover, EFFs have been classified taxonomically
according to the major clades within the plant kingdom. Additionally, plant viruses
infecting the tiny number of EFFs with significant commercial importance in the global
market were addressed according to an evolutionary perspective of plant evolution, finding
that EFFs belonging to eudicots were hosts for the major number of plant virus families.
In addition, the genome composition of virus species infecting commercially important
EFFs was mostly represented by ssRNA molecules, whereas other forms of nucleic acid
genomes were represented in minor proportions. Remarkably, the host range for some plant
virus families showed a wide distribution such as Bromoviridae, Betaflexiviridae, Secoviridae
and Closteroviridae families. This wide host range distribution, together with the potential
co-existence of several viruses in the same host, could lead to the emergence of novel
viruses that can threaten the fruit industry in the future. Further, we also have presented
the most important approaches for the diagnosis of plant viruses as they are of pivotal
importance for the timely use of preventive and protective measures to confine the virus(es)
and prevent yield losses. This is particularly important for farmers in developing countries,
in which, besides facing policy-related and structural barriers, losses caused by plant
viruses are of considerable concern.

Currently, food security is of great concern because the human population is grow-
ing, soil fertility is declining, and global warming is changing the weather patterns.
Thus, agriculture in general, including EFFs, has to face challenging times in the near
future. For instance, COVID-19 outbreaks among workers have challenged the fruit in-
dustry by idling processing plants, disrupting supply chains, and farmers have to cope
with unprecedented threats to fulfill the demand of EFFs. However, in the age of artificial
intelligence, robots and computer vision, the aforementioned issues could be solved by
automation. This is what AgTech companies are trying to address with innovative ideas.
Therefore, by combining science and technology with agriculture, indoor farming is gaining
adherents around the world. Smart farming is not free of challenges, but it could be the
solution for humanity because conventional agriculture contributes significantly to the
greenhouse gas emissions that are causing climate change. In the case of plant viruses,
indoor farming could avoid the impact of these plant pathogens significantly, increasing the
yield of crops for an ever-increasing human population. Finally, current fruit tree domesti-
cation attempts must consider not only early fructification and high rates of productivity
but also the molecular determinants that could confer resistance to viruses.
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