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Abstract: In the field of oncology, the plant kingdom has an inexhaustible supply of bioactive
compounds. Phytochemical compounds isolated from Helleborus species have been found to be
useful in various chronic diseases. This has brought Helleborus to the attention of medical researchers.
H. purpurascens is a plant characteristic of the Carpathian area, known since ancient times for its
beneficial effects. The aim of the study was to evaluate the flavonoids composition of a hydroalcoholic
extract of H. purpurascens, as well as to assess its antioxidant activity and antitumor potential at the
level of two healthy cell lines and four tumor cell lines. In addition, the expression of the genes
involved in the apoptotic process (Bcl-2, Bad, and Bax) were evaluated. The results indicated that the
extract has a high concentration of flavonoids, such as epicatechin, quercetin, and kaempferol. The
extract has an increased antioxidant activity, very similar to that of the standard, ascorbic acid and
cytotoxic effects predominantly in the breast cancer cell line, being free of cytotoxic effects in healthy cell
lines. Underlying the cytotoxic effect is the induction of the process of apoptosis, which in the present
study was highlighted by decreasing the expression of anti-apoptotic genes (Bcl-2) and increasing
the expression of pro-apoptotic genes (Bad and Bax). In conclusion, the hydroalcoholic extract of
H. purpurascens can be considered an important source for future medical applications in cancer therapy.
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1. Introduction

The threat of cancer continues despite scientific advancements in the medical field.
According to data provided by the World Health Organization, cancer was the leading cause
of death globally in 2020. The main types of cancer diagnosed, except skin cancer, are breast,
lung, and colorectal cancers [1]. Skin cancer, including melanoma and nonmelanoma, has
increased sharply in incidence among Caucasians, making them the most common types of
neoplasms among this group of people [2].

In recent years, remarkable progress has been made in the field of oncology. Thus,
the neoplastic process has been more closely studied and understood and, implicitly, the
antitumor treatment has shown considerable improvements. Conventional cancer therapy
consists of chemotherapy, radiation therapy, and surgery. However, the main disadvantage
of classical antineoplastic therapy is the non-selective mode of action which results in
the appearance of toxic reactions at the systemic level, as well as the low response rate
to treatment [3]. For this reason, special attention has been paid to the plant kingdom
which offers an infinite source of compounds with antitumor activity. Phytocompounds
have been studied since ancient times, which is why the first antineoplastic drugs have a
natural origin. These compounds are characterized by a low toxicological profile and a
complex, but selective mechanism of action at the level of the oncogenic signal transduction
pathways [4].

Recent research in the field of phytocompounds has shown that Helleborus species
represent a new treatment opportunity. The genus Helleborus is part of the Ranunculaceae
family and includes over 20 different species with a predominant distribution in Europe
and West Asia [5]. Numerous Helleborus plants have been documented for their antitumor,
immunomodulating, antioxidant, and cytotoxic potential [6]. In the spontaneous flora of
Romania there are mainly two species of Helleborus, namely, H. purpurascens and H. odorus.
Although H. purpurascens has a high toxic potential, it has been used since ancient times to
treat various diseases such as psychiatric and cardiovascular disorders or various pains [7].
Multifaceted therapeutic effects of H. purpurascens include muscle relaxation and analgesic
properties. However, the exact phytocomponents responsible for these biological activities
are not known [7]. Additionally, H. purpurascens root extract caused an immunostimulatory
effect in vivo by stimulating lymphocytes and neutrophils, [8]. Following the analysis of
the composition in phytocompounds contained by H. purpurascens, it was determined that
this plant has a rich composition of natural compounds with biological effects, such as
polyphenols, tannins, and glycosides [9,10]. In light of complex composition of phytocom-
pounds, many studies have investigated the biological effects and mechanisms of action
associated with H. purpurascens extracts [11]. Regarding the antitumor, antiproliferative,
and cytotoxic potential, the studies revealed that this species has an increased potential
for use in the cancer therapy and prophylaxis, but the mechanism of action is not yet fully
elucidated [10,12].

One of the modern directions of antitumor therapy is based on the elimination of
cancer cells through the process of apoptosis [13]. Apoptosis is the programmed cell death
that in physiological conditions contributes to the maintenance of homeostasis and the
elimination of unwanted cells [14]. In terms of cancer, apoptosis plays an important role
in preventing the formation of tumors. By losing apoptotic control, cancer cells become
more resistant to treatment, and therefore survive longer by becoming more invasive and
aggressive. An example of a mechanism that tumor cells use to prevent apoptosis is to
increase the expression of the anti-apoptotic protein (Bcl-2) and decrease the expression of
the pro-apoptotic protein genes (Bax and Bad). Thus, overexpression of Bcl-2 is common in
most cancers, being one of the therapeutic targets of oncology [15].

For this reason, the present study focused primarily on evaluating the composition of a
hydroalcoholic extract of H. purpurascens (HPex) in terms of the composition of polyphenols.
In addition, the antioxidant activity of the extract was determined and the potential cyto-
toxic effect were assessed on four different cancer cell lines: squamous carcinoma—A431;
murine melanoma—B164A5; and breast cancer—MCF-7 and MDA-MB-231. For a complete
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evaluation of the cytotoxic effect, two healthy cells line were selected: human keratinocyte
cell lines (HaCaT) and murine epidermal cells (JB6). Finally, the expression of the main
genes involved in the apoptosis process was determined, thus providing a possible expla-
nation for the cytotoxic effect of H. purpurascens extract.

2. Results
2.1. Liquid Chromatography–Mass Spectrometry (LC-MS) Assessment of Extract

The extract obtained was subjected to LC-MS quantification and in Table 1 are pre-
sented the polyphenols with a concentration greater than 0.5 µg/g d.m

Table 1. Individual phenolic compounds quantification by LC-MS in Helleborus purpurescens extract.

Standard Phenolic
Compound Rt (min) Monoisotopic

Mass (Da) m/z Conc (µg/g d.m.)

Gallic acid 4.74 170.02152329 169 3.075
Proto catechuic acid 11.104 154.02660867 153 0.496

Caffeic acid 20.896 180.04225873 179 3.168
Epicatechin 23.265 290.07903816 289 33.557

p-Coumaric acid 24.310 164.047344113 163 0.879
Ferulic acid 23.457 194.05790880 193 1.893

Rutin 25.925 610.15338487 609 5.546
Rosmarinic acid 29.001 360.08451746 359 21.301

Resveratrol 30.238 228.078644241 227 13.223
Quercetin 31.488 302.04265265 301 46.710

Kaempferol 34.870 286.04773803 285 67.761

2.2. Antioxidant Activity Evaluation

The (Total Antioxidant Activity) TAOxA of the four different extract concentrations
was evaluated by DPPH radical scavenging assay. Ascorbic acid, positive control, exerts
a TAOxA of 97.79% as can be observed in Figure 1. The extract samples exhibited an
increased TAOxA, in a time-dependent manner over 900 s: 53.83% (10 µg/mL), 69.98%
(25 µg/mL), 74.88% (50 µg/mL), and 77.68% (100 µg/mL).
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Figure 1. Time-dependent antioxidant activity of the Helleborus purpurescens extract.

2.3. HPex Exerts a Selective Cytotoxic Effect

Cell viability was determined by the Alamar blue method and expressed as a percent-
age of viable cells compared to control cells.

According to Figure 2, stimulation of healthy cells (HaCaT and JB6) with HPex, for
a period of 24 h, did not cause significant changes in cell proliferation. Furthermore,
HaCaT cells exhibit an increase in viability of approximately 113% for the lowest tested
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concentration (50 µg/mL), while at the highest tested concentration (1000 µg/mL), the
cell viability was similar to that of control cells (approximately 99%). Regarding the JB6
cell line, treatment with HPex resulted in a slight decrease in cell viability. Therefore, the
lowest tested concentration held a cell viability value of about 97%, and the highest tested
concentration held a cell viability value of about 91% (Figure 2).
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Figure 2. In vitro evaluation of the effect of HPex (50, 100, 250, 500, and 1000 µg/mL) on cell viability
on HaCaT and JB6, after 24 h of treatment. The results are presented as cell viability percentage
(%) normalized to control (unstimulated) cells and are expressed as mean values ± SD of three
independent experiments performed in triplicate. For statistical analysis and comparison between
the control and the treated group, one-way ANOVA analysis was applied, followed by Dunnett’s
multiple post-test comparisons (* p < 0.1, ** p <0.01, *** p <0.001, and **** p <0.0001).

To determine the in vitro cytotoxicity effect, four tumor cell lines were chosen: MCF-7,
MDA-MB-231, B164A5 and A43, at which the five concentrations previously tested on
healthy cell lines were evaluated.

In Figure 3, it is observed that the most affected cells were those of breast adeno-
carcinoma—MCF-7. In this case, a decrease in cell viability was recorded starting with
the lowest concentration tested (50 µg/mL). A concentration of 1000 µg/mL produced
the most noticeable cytotoxic effect, where cell viability was about 24% compared to
control cells. The second breast cancer cell line, MDA-MB-231, showed a decrease in cell
viability in a concentration-dependent manner, but the effect of HPex was not as severe as
that of MCF-7 cells. The lowest value of cell viability recorded in MDA-MB-231 cells was
observed at a concentration of 1000 µg/mL, approximately 73%.

At the first four concentrations tested, the viability of the murine melanoma cells,
B164A5, showed a slight decrease, being around 89%. However, at the highest concentra-
tion, cell viability dropped to about 68%. A plateau value of cell viability was also recorded
in the case of squamous cell carcinoma, A431, where at the lowest concentration tested
cell viability was similar to that of control cells, and at concentrations of 250, 500, and
1000 µg/mL, the values of cell viability were similar, approximately 85%, 84%, and 83%,
respectively (Figure 3).
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Figure 3. In vitro evaluation of the effect of HPex (50, 100, 250, 500, and 1000 µg/mL) on cell viability
on MCF-7, MDA-MB-231, B164A5, and A43, after 24 h of treatment. The results are presented as
cell viability percentage (%) normalized to control (unstimulated) cells and are expressed as mean
values ± SD of three independent experiments performed in triplicate. For statistical analysis and
comparison between the control and the treated group, one-way ANOVA analysis was applied,
followed by Dunnett’s multiple post-test comparisons (** p < 0.01, *** p < 0.001, and **** p < 0.0001).

2.4. HPex Induces Changes in the Expression of Apoptotic Markers

Following the results obtained in the cell viability test, it was observed that HPex
causes a marked decrease in the cell viability of breast cancer cells—MCF-7. In order to
provide a more detailed picture of the mode of action of HPex at the level of this cell line, it
was decided to determine the expression of the genes involved in the apoptosis process,
namely: Bax and Bad—pro-apoptotic genes; Bcl-2—anti-apoptotic gene. Figure 4 shows the
effect induced by the sub-cytotoxic concentration of 100 µg/mL HPex. HPex determines
upregulation of messenger ribonucleic acid (mRNA) expression for all pro-apoptotic genes
analyzed (Bax and Bad), concomitantly with downregulation of mRNA expression of the
anti-apoptotic gene (Bcl-2).
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Figure 4. Relative fold change expression of mRNA of pro-apoptotic (Bax and Bad) and anti-apoptotic
(Bcl-2) markers in breast adenocarcinoma (MCF-7)—24 h after exposure to HPex 100 µg/mL. mRNA
expression levels normalized to 18 S expression, mean values ± SD of three independent experi-
ments presented, one-way ANOVA with Tukey’s post-test used to identify the statistical differences
(** p < 0.01 and **** p < 0.0001).

3. Discussion

H. purpurascens is a widespread plant in Eastern Europe, especially in the Carpathian
Mountains. Although the plant has a high toxic potential, it is used in traditional medicine
for a wide range of pathologies [16]. Due to its rich content of phytoconstituents, many
Helleborus species are currently being considered a promising antitumor therapy [17].
Regarding the potential antitumor effect of plants of the Rannuculaceae family, including the
species of H. purpurascens, they were studied for their content rich in active compounds and
for antitumor activity [18]. In addition, H. purpurascens has been studied for its antitumor
effect in vitro, but the biological mechanisms associated with this therapeutic activity have
not been fully elucidated [8].

Based on existing scientific considerations, the present study aimed to provide in-
novative information on the potential antitumor effect of a hydroalcoholic extract of
H. purpurascens. This therapeutic effect has been studied in conjunction with the evaluation
of phytocomposite content, as well as with the evaluation of the beneficial antioxidant
effect in antitumor therapy.

To elucidate the cytotoxic effect of HPex, four tumor cell lines were chosen, two
of breast cancer (MCF-7 and MDA-MB-231) and two of skin cancer (B164A5 and A431).
Additionally, the effects exerted by HPex were studied in two healthy cell lines (HaCaT
and JB6), to provide a more accurate picture of the cytotoxic effect. Cell viability was
determined using the Alamar blue method, after 24 h of stimulation. Results of the study
indicated that HPex has a selective cytotoxic effect, meaning healthy cells are not affected
by its use. In contrast, in tumor cells there was a decrease in cell viability depending on the
concentration tested. The most visible cytotoxic effects were observed in the breast cancer
cell line (MCF-7), where cell viability decreased by up to 24%. The cytotoxic effects were
also observed in the other cells studied, but the effect on cell viability was moderate.

Many Helleborus species have been tested for their antitumor potential. In the pre-
liminary study by Lindholm et al. [6], more than 100 plant extracts were tested. Of these,
H. cyclophyllus extract showed antitumor effects, but the mechanism of action has not been
fully elucidated. Another example is represented by H. caucasicus which has proven its
cytotoxic effects on various tumor cell lines such as lung cancer (A549) or colorectal cancer
(DLD-1) [19]. A similar study by Felenda et al. evaluated the antitumor effect of H. niger
on several tumor cell lines, including melanoma and breast cancer. The results revealed
that H. niger has a concentration-dependent cytotoxic and antiproliferative effect on all
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cell lines used [20]. In addition, Schink and colleagues highlighted the cytotoxic effect of
H. niger extract on the melanoma cell line due to its ability to induce cell apoptosis [21].
Other species such as H. odorus, H. multifidus, and H. hercegovinus have been tested in vitro
on Burkitt’s lymphoma B cells (BJAB). The results revealed that the strongest antiprolif-
erative effect was observed in H. multifidus [22]. Regarding the antiproliferative effects
of H. purpurascens species, previous studies have shown that the alcoholic extract has an
antiproliferative effect on the tumor cell line of cervical cancer (HeLa), causing a decrease
in the number of mitoses [7]. Voichita et al. also evaluated the effect of two extracts of
H. purpurascens, an aqueous extract and a hydroalcoholic extract. They determined that
both extracts have cytotoxic effects on the HeLa tumor cell line, but the hydroalcoholic
extract has a significantly more intense activity than the aqueous extract [10]. Thus, the
results obtained in this study support the results presented above and complement them
with additional information on the in vitro cytotoxic effect of the hydroalcoholic extract of
H. purpurascens.

The B-cell CLL/lymphoma 2 (Bcl-2) family plays a major role in the process of
mitochondrial-mediated apoptosis in breast cancer. This family of proteins is divided
into two categories: anti-apoptotic members such as Bcl-2 and pro-apoptotic members such
as Bax and Bad [23]. A feature of tumor cells is that they avoid the processes of initiating
cell death by upregulating members of the Bcl-2 anti-apoptotic family, such as Bcl-2, and
decreasing the expression of pro-apoptotic genes, as well as Bax and Bad [24]. Bcl-2 family
members also play a major role in resistance to chemotherapy. Due to the fact that they
play a crucial role in the regulation of apoptosis, the increased expression of anti-apoptotic
genes is correlated with increased resistance to induction of apoptosis and, finally, with
resistance to chemotherapy, which underlines the important role played by Bcl- 2 in breast
tumors in response to treatment [25]. The present study found that treatment with HPex
100 µg/mL decreased Bcl-2 gene expression, while increased expression of pro-apoptotic
Bax and Bad genes. Thus, by decreasing Bcl-2 expression simultaneously with increasing
Bax and Bad gene expression, HPex increases the susceptibility of tumor cells to the process
of apoptosis. Jesse et al. evaluated the effect of an extract of H. niger on the effect on
genes involved in apoptosis, mainly the Bcl-2 gene, noting that it induces Bcl-2-dependent
cellular apoptosis [26]. Regarding the species H. cyclophyllus, Yfanti and collaborators
determined that it has pronounced cytotoxic effects in the lung adenocarcinoma cell line,
A549. In addition, the group of researchers observed that H. cyclophyllus extract induces
morphological changes characteristic of the apoptosis process, and in addition, causes a
decrease in procaspase-3 levels and cleavage of PARP1 [27].

As a means of better understanding the cytotoxic effect, this study used the LC-MS
method to quantitatively determine the phenolic composition of the HP extract. Thus, it
was found that the hydroalcoholic extract has a high content of epicatechin, rosmarinic
acid, quercetin, and kaempferol, the latter having the highest concentration (approximately
68 µg/g). A wide range of evidence suggested that polyphenolic compounds could be
therapeutic in diseases such as cardiovascular disease [28–30] and cancer [31–33]. Various
studies have emphasized polyphenols’ beneficial effects in the treatment of cancer, owing
to their antioxidant properties [34,35], pro-apoptotic properties [36,37], anti-proliferative
effects [38,39], and interference with the immune system and cell signaling [40,41]. The
antitumor effects of polyphenols were first demonstrated by in vitro studies. Such studies
have demonstrated the cytotoxic effects of polyphenols in various types of cancer, such
as breast cancer [42] and skin cancer [43]. Regarding the extract of H. purpurascens, the
studies showed a correlation between its polyphenol content and the antitumor effect
exerted at the level of different tumor cell lines [8]. The predominant polyphenols in
H. purpurascens extract, namely epicatechin, rosmarinic acid, quercetin, and kaempferol,
have also been studied for their potentially beneficial role in the treatment of cancer.
Epicatechin has previously been studied for its effect in the treatment of triple negative
breast cancer using a murine model. It has been found to have strong antitumor activity
in combination with doxycycline, inhibiting cell proliferation by modulating adenosine
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monophosphate-activated protein kinase-mediated pathways [44]. Similarly, the effect of
epicatechin in the treatment of melanoma was studied, using the melanoma cell line B16F10
and it was observed that it decreases melanin synthesis and inhibits tyrosinase activity,
thus participating in the melanogenesis process [45]. An in-depth study of the effect of
rosmarinic acid on breast cancer cells, MDA-MB-231, by Messeha et al., elucidated that
it had a concentration-dependent cytotoxic and antiproliferative effect, causing increased
expression of the Karakiri gene, tumor necrosis factor receptor superfamily 25, and BCL-2
interacting protein to be expressed [46]. Rosmarinic acid also inhibits cell proliferation in the
human melanoma cell line A375 through the downregulation of metalloproteinases 17 as
well as causing a decrease in melanin [47]. The beneficial role of quercetin in the treatment
of breast cancer has been studied in the literature. It seems that this type of flavonoid acts on
tumor cells due to its antioxidant activity, causing decreased proliferation and inflammation,
stimulating apoptosis and inhibiting angiogenesis and metastasis. Moreover, in the MDA-
MB-231 cell line, the cytotoxic effect of quercetin has been linked to increased expression
of the p53 gene, known as a tumor suppressor protein [48]. Additionally, due to the
increased expression of the p53 gene, quercetin has found its utility in the treatment of skin
cancer. In addition to this mechanism, quercetin also increases the activity of the tyrosine
kinase enzyme, thus causing the antioxidant effect [49]. Kaempferol has an antitumor
potential previously discussed in the literature. Its effects have been documented in a
variety of cancers, including skin and breast cancer. Among the mechanisms underlying its
therapeutic activity are the pro-apoptotic effect, downregulation of epithelial–mesenchymal
transition-related markers, and phosphoinositide 3-kinase/protein kinase B signaling
pathways [50].

However, in addition to its rich flavonoid composition, studies have shown that
H. purpurascens has many phytoconstants that underlie its antitumor activity. Thus, Franz
et al. discussed the composition of aqueous and organic extracts of H. purpurascens. Thus,
they identified the fact that in terms of aqueous extract, it has a high amount of amino acids,
especially asparagine [16]. Similarly, Kumar and co-workers analyzed H. purpurascens
extract in more detail, providing information on its rich composition in carbohydrates,
glycosides, saponins, and tannins [51]. Probably one of the most important cardiotonic
glycosides found in the composition of Helleborus species is hellebrin, which is found in
the largest amount in the species of H. purpurascens [17]. Studies on the antitumor effect of
natural compounds, highlighted the role played by hellebrin and its deglycosylated form,
hellebrigenin, possesses cytotoxic activity on melanoma [52], pancreatic cancer [53], breast
cancer [54], and others. The successful use of these compounds in antitumor treatment
is due to the inhibitory activity of the Na+/K+-ATPase complex, which prevents the
development of cancer cells’ resistance to treatment [52]. In addition to this mechanism of
action, hellebrigenin appears to possess antitumor activity based on its ability to induce
apoptosis and autophagy of tumor cells [53], but also by inducing an increase in the
amount of reactive oxygen species that result in apoptosis [55]. Regarding the steroid-
rich composition of H. caucasicus, studies have shown that these natural compounds are
involved in reducing the viability of tumor cells by inducing apoptosis due to decreased
expression of the GRP78 gene [56]. Similarly, by performing a spectroscopic analysis of the
whole plant of H. niger, it was determined that due to the composition of bufadienolide
and ecdysteroid, the extract has antitumor capacity by inducing apoptosis [57].

As for the MCF-7 breast cell line, it differs from the other MDA-MB-231 breast cancer
cell line, mainly due to the fact that MCF-7 is hormone dependent, having positive estrogen
and progesterone receptors, while MDA-MB-231 is triple negative. For this reason, MDA-
MB-231 does not respond to antiestrogen therapy [58]. Over time, it has been shown
that the inclusion of polyphenol-rich foods in the diet of breast cancer patients has been
beneficial for the diagnosis and treatment of this type of cancer [59]. Regarding kaempferol,
one of the most widespread polyphenolic compounds in the plant kingdom, but also the
compound found most in HPex, studies have shown that it has estrogenic activity via
ER-mediated pathway causing inhibition of proliferation of MCF-7 cell line [60]. Similarly,
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quercetin is classified as a phytoestrogen, having an affinity for the type-II estrogen binding
site, thereby inhibiting estrogen-mediated cell proliferation and growth [61]. In addition,
Meeuwen and colleagues have shown that quercetin is able to inhibit aromatase, thus
helping to inhibit the proliferation of MCF-7 breast cancer cells [62]. Accordingly, HPex’s
antiestrogen properties might explain the results obtained in the present study, which
primarily targeted the MCF-7 breast cancer cell line. Figure 5 shows a possible mechanism
of action of Hpex.
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In light of the fact that flavonoids are antioxidant compounds [63] and that reactive
oxygen species contribute to the development of cancer [64] and other chronic patholo-
gies, such as cardiovascular disease [65,66], diabetes mellitus [67,68], endothelial dysfunc-
tion [69,70], or neurological pathologies [71], this study examined the antioxidant activity
of the hydroalcoholic extract of H. purpurascens. A 2,2-diphenyl-1-picrylhydrazyl (DPPH)
radical scavenging assay was applied to evaluate the antioxidant activity of four extract
concentrations (10, 25, 50, and 100 µg/mL). The results obtained were related to the antioxi-
dant activity exerted by ascorbic acid and considered 100%. Consequently, the antioxidant
activity was higher than 50% in all concentrations, while the most intense antioxidant activ-
ity was recorded at the concentration of 100 µg/mL, approximately 78%. Its remarkable
antioxidant properties are due to the compounds that were found in H. purpurascens extract,
which have been associated with the neutralization of oxygen-free species [72]. The antioxi-
dant activity of flavonoids is mainly based on five mechanisms of action, as follows: (i) due
to the -OH group in the structure of flavonoids, they interact directly with the reactive part
of oxygen radicals; (ii) interaction with the enzyme nitric oxide synthase; (iii) inhibition of
xanthine oxidase activity; (iv) preventing the immobilization and adhesion of leukocytes at
the endothelial wall and (v) interfering with other key enzymes in the formation of reactive
oxygen species such as peroxidase and lipoxygenase [73]. Similarly, the antioxidant activity
of two H. purpurascens extracts, one aqueous and one alcoholic, were tested. The obtained
results showed that the alcoholic extract has a higher antioxidant activity than the aqueous
one, with a value of 78% [9]. These results are in agreement with the results obtained in
the present study. Similar studies have been performed on other Helleborus species. Thus,
Öztürk et al. evaluated the flavonoid content and antioxidant activity of an H. orientalis
extract. They determined that the extract has a significant antioxidant activity, observing
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an increase in the antioxidant activity and the protective effect against oxidative alterations
with increasing concentration of the tested extract [74]. Mohammed and colleagues studied
the antioxidant activity of another species of Helleborus, namely H. vesicarius. In this
study it was determined that this species has an intense antioxidant activity as well as
an increased oxidizing potential [75]. Čakar et al. evaluated the antioxidant activity of
three species of Helleborus, H. odorus, H. multifidus, and H. hercegovinus. In this study, it was
determined that the extract made from the leaves has a more intense antioxidant activity
than that obtained from the root [22].

4. Materials and Methods
4.1. Preparation of Extract

The plant material (Helleborus purpurescens) used in this study, was harvested from
Timis County, Western Romania, and certified at Pharmaceutical Botany Department
(voucher herbarium specimen no. HP/S12/2020), Faculty of Pharmacy, “Victor Babes”
University of Medicine and Pharmacy. The plant was prepared for extraction according to
European Pharmacopoeia (Ph. Eur.) 10th Edition.

To obtain Helleborus purpurescens extract (HPex) the maceration method was used.
Plant material (5 g), crushed and homogenized, was placed in the flask and 25 mL of ethanol
(EtOH) 70% were used to sequentially extraction for seven days. The final extract was
filtered through filter paper, the solvent was removed by a rotary evaporator (Heidolph Hei-
VAP Advantage Rotary Evaporator package) under vacuum, the pellet being lyophilized
and stored in a dark glass tube at 2–8 ◦C until further analysis.

4.2. Liquid Chromatography–Mass Spectrometry Analysis

The hydro-alcoholic hellebore extract, was subjected to a LC-MS analysis, and the
following steps were accomplished: (i) extract homogenization (using a WisdVM-10 vortex
mixer, Witeg Labortechnik, Wertheim, Baden-Württemberg, Germany) and centrifugation
for 120 s at 10,000 rpm (using a ThermoMicro CL17 micro-centrifuge, Thermo Fisher Scien-
tific, Waltham, MA, USA); (ii) LC-MS analysis on a Shimadzu chromatograph (2010 EV, Ky-
oto, Japan); (iii) chromatographic conditions, extraction time 60 min, room temperature, EC
150/2 NUCLEODUR C18 Gravity SB 150 mm × 2.0 mm × 5 µm column (Macherey-Nagel
GmbH & Co. KG, Düren, Germany), flow rate 0.2 mL/min, two mobile phases (mobile
phase A—aqueous formic acid; mobile phase B—acidified acetonitrile), wavelengths 280
and 320 nm; (iv) gradient elution—0–20 min 5% B, 20–50 min 40% B, and 50–60 min 95% B;
(v) calibration curves between 10 and 50 µg/mL and limit of quantification 0.3 µg/mL.

4.3. DPPH Assay

DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical scavenging assay was selected to
evaluate the total antioxidant activity (TAOxA) of hydro-alcoholic HP extract, according to
the method described in the literature [76,77]. Briefly, the following steps were realized:
(i) a fresh solution of DPPH (10−4 M) was prepared in ethanol and 103 µL was added
to 3 × 103 µL of hydro-alcoholic HP extracts, at four different concentrations: 10, 25, 50,
and 100 µg/mL; (ii) the absorbance was measured continuously for 15 min at 516 nm
T70 UV/VIS Spectrophotometer, PG Instruments Ltd., UK); (iii) ascorbic acid was used as
positive control, while distilled water as negative control. The final TAOxA was presented
as percentage obtained after applying the formula presented in our previous studies [76,77].

4.4. Cell Culture

The tumor cell lines selected in the present study were squamous cell carcinoma cell
line—A431 (ATCC®, Manassas, VA, USA, CRL-1555™); murine melanoma cell line—B164A5
(94042254; ECACC); breast cancer cell lines—MCF-7 (ATCC®, Manassas, VA, USA, HTB-
22™) and MDA-MB-231 (ATCC®, Manassas, VA, USA, CRM-HTB-26™). Healthy cell lines
were represented by human keratinocyte cell lines—HaCaT (300493; CLS Cell Lines Service
GmbH, Eppelheim, Germania); murine epidermal cells—JB6Cl41-5a (ATCC®, Manassas,
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VA, USA, CRL-2010™). HaCaT, B164A5, A431, and MDA-MB-231 were cultured in the
specific culture medium represented by Dulbecco’s Modified Eagle’s Medium high glucose
in which were added 10% fetal bovine serum (FBS, Sigma-Aldrich, Bucharest, Romania)
and 1% penicillin/streptomycin solution (Pen/Strep 10,000 U/mL; Gibco, Waltham, MA,
USA). JB6Cl41-5a and MCF-7 were cultured in Eagle’s Minimum Essential Medium, which
was supplemented with 5% fetal bovine serum (FBS, Sigma-Aldrich, Bucharest, Romania)
and 0.1% non-essential amino acids for JB6Cl41-5a and 10% fetal bovine serum (FBS,
Sigma-Aldrich, Bucharest, Romania) for MCF-7. To prevent microbial contamination, 1%
penicillin/streptomycin solution mixture (Pen/Strep 10,000 U/mL; Gibco) was added.
During the experiments, the cells were maintained in constant conditions of temperature
and humidity (5% CO2 and 37 ◦C). Countess II Automated Cell Counter (Thermo Fisher
Scientific, Inc., Waltham, MA, USA), was used to determine the number of cells in the
presence of Trypan blue.

4.5. Cell Viability Assessment

In order to determine the cell viability following the treatment with the hydroalcoholic
extract of H. purpurascens the cells were cultured in 96-well plates in 1 × 104 cells/well.
After reaching a confluence of approximately 90%, the culture medium was removed and
replaced with 100 µL of fresh medium containing five concentrations of hydroalcoholic
extract (50, 100, 250, 500, and 1000 µg/mL). The treated cells were incubated for 24 h.
After this interval, cell viability was determined using the Alamar Blue method using
the protocol described above [78]. Thus, a volume of 10 µL/well of Alamar Blue was
added, and the cells were incubated for three hours. After this interval, the absorbents
were determined spectrophotometrically at 570 and 600 nM using the xMark ™ Microplate
spectrophotometer (Bio-Rad). Results expressed as percentages of viable cells (%) were
calculated using the formula described in one of our previous studies [79].

4.6. Gene Expression

Given that, following the cell viability test, the most affected cell line was breast
cancer MCF-7, it was decided that the influence of HPex on gene expression should be
established by applying the reverse transcription–polymerase chain reaction (RT-PCR)
method to this cell line. To determine the expression of the Bax, Bcl-2 (Thermo Fisher
Scientific, Inc., Waltham, MA, USA) and Bad (Eurogentec, Seraing, Belgium), the cells were
cultured in 6-well plates in a number of 1 × 106 cells/well. After reaching a confluence
of approximately 90%, the cells were stimulated with the sub-cytotoxic concentration of
HPex (100 µg/mL) for a period of 24 h. After this time, RNA was isolated using Trizol
reagent and the Quick-RNA ™ purification kit and its amount was determined using a
DS-11 spectrophotometer (DeNovix, Wilmington, DE, USA). Finally, RNA transcription
was completed using Maxima®First Strand cDNA Synthesis Kit (Thermo Fisher Scientific,
Inc., Waltham, MA, USA), and quantitative real-time PCR analysis was performed using
Quant Studio 5 real-time PCR system (Thermo Fisher Scientific, Inc., Waltham, MA, USA)
in the presence of Power SYBR-Green PCR Master Mix.

5. Conclusions

The present study was designed to determine the chemical composition and biological
properties of a hydroalcoholic extract of H. purpurascens, a medicinal plant with therapeutic
effects applied in traditional medicine since ancient times. LC-MS analysis revealed that
the extract contains high levels of flavonoids, especially quercetin, kaempferol, and epi-
catechin. First of all, the hydroalcoholic extract exerted a strong antioxidant effect, close
to that of ascorbic acid, mainly at a concentration of 100 µg/mL. Further, starting from
the beneficial role played by antioxidants in antitumor therapy, the hydroalcoholic extract
proved its selective cytotoxic effects in the four tumor cell lines used, the proliferation of
healthy cells not being affected by stimulation with H. purpurascens extract. Finally, the
influence of HPex on increasing the expression of pro-apoptotic genes (Bad and Bax) and
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decreasing the expression of anti-apoptotic genes (Bcl-2) was highlighted in the breast
cancer cell line—MCF-7. In conclusion, the extract has an important therapeutic value
for the future of oncological therapy, but, nevertheless, additional studies are needed to
unravel the mechanism of action and identify the key phytoconstituents which explain
these biological effects.
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75. Mohammed, F.; Çınar, G.; Şahin Yiğit, S.; Akgül, H.; Dogan, M. Antioxidant and Oxidant Status of Endemic Helleborus Vesicarius.
Turk. J. Agric. Food Sci. Technol. 2020, 8, 2008–2010. [CrossRef]

76. Coricovac, D.-E.; Moacă, E.-A.; Pinzaru, I.; Cîtu, C.; Soica, C.; Mihali, C.-V.; Păcurariu, C.; Tutelyan, V.A.; Tsatsakis, A.; Dehelean,
C.-A. Biocompatible Colloidal Suspensions Based on Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and
Toxicological Profile. Front. Pharmacol. 2017, 8, 154. [CrossRef] [PubMed]

77. Guran, K.; Buzatu, R.; Pinzaru, I.; Boruga, M.; Marcovici, I.; Coricovac, D.; Avram, S.; Poenaru, M.; Susan, M.; Susan, R.; et al. In
Vitro Pharmaco-Toxicological Characterization of Melissa Officinalis Total Extract Using Oral, Pharynx and Colorectal Carcinoma
Cell Lines. Processes 2021, 9, 850. [CrossRef]

78. Maghiari, A.L.; Coricovac, D.; Pinzaru, I.A.; Macas, oi, I.G.; Marcovici, I.; Simu, S.; Navolan, D.; Dehelean, C. High Concentrations
of Aspartame Induce Pro-Angiogenic Effects in Ovo and Cytotoxic Effects in HT-29 Human Colorectal Carcinoma Cells. Nutrients
2020, 12, 3600. [CrossRef] [PubMed]

79. Iftode, A.; Drăghici Andrei, G.; Macas, oi, I.; Marcovici, I.; Coricovac, E.D.; Dragoi, R.; Tischer, A.; Kovatsi, L.; Tsatsakis, M.A.;
Cretu, O.; et al. Exposure to Cadmium and Copper Triggers Cytotoxic Effects and Epigenetic Changes in Human Colorectal
Carcinoma HT-29 Cells. Exp. Ther. Med. 2021, 21, 100. [CrossRef] [PubMed]

http://doi.org/10.3390/medicina55060309
http://doi.org/10.3390/nu11092090
http://www.ncbi.nlm.nih.gov/pubmed/31487802
http://doi.org/10.1155/2010/453892
http://www.ncbi.nlm.nih.gov/pubmed/20182627
http://doi.org/10.1080/07435800.2019.1690505
http://doi.org/10.3892/etm.2021.9690
http://www.ncbi.nlm.nih.gov/pubmed/33603866
http://doi.org/10.1016/j.freeradbiomed.2020.02.026
http://doi.org/10.3892/etm.2021.10192
http://www.ncbi.nlm.nih.gov/pubmed/34035857
http://doi.org/10.1371/journal.pone.0232185
http://doi.org/10.1093/ajcn/74.4.418
http://doi.org/10.9734/ajbgmb/2018/v1i430047
http://doi.org/10.24925/turjaf.v8i9.2008-2010.3705
http://doi.org/10.3389/fphar.2017.00154
http://www.ncbi.nlm.nih.gov/pubmed/28400730
http://doi.org/10.3390/pr9050850
http://doi.org/10.3390/nu12123600
http://www.ncbi.nlm.nih.gov/pubmed/33255204
http://doi.org/10.3892/etm.2020.9532
http://www.ncbi.nlm.nih.gov/pubmed/33363611

	Introduction 
	Results 
	Liquid Chromatography–Mass Spectrometry (LC-MS) Assessment of Extract 
	Antioxidant Activity Evaluation 
	HPex Exerts a Selective Cytotoxic Effect 
	HPex Induces Changes in the Expression of Apoptotic Markers 

	Discussion 
	Materials and Methods 
	Preparation of Extract 
	Liquid Chromatography–Mass Spectrometry Analysis 
	DPPH Assay 
	Cell Culture 
	Cell Viability Assessment 
	Gene Expression 

	Conclusions 
	References

