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Abstract: Hydrocharis morsus-ranae is a free-floating species growing in lakes and slow-flowing rivers
near the shore in Europe and Western Asia, and as an invasive plant in the USA and Canada. Light-
requiring plants of this species can also grow in the shade, up to about 30% of full sunlight. In this
paper we present the data about the photosynthetic apparatus of sunny and shady H. morsus-ranae
plants grown in the sun and in the shade in nature. Methods of light and transmission electron
microscopy, biochemistry, chlorophyll fluorescence induction as well as the principal component
analysis were used. It was found that leaves of plants growing in shade differed from those in the
sun with such traits as thickness of a blade, palisade and spongy parenchyma, ultrastructure of
chloroplasts, and quantum efficiency of photosynthetic electron transport, the content of chlorophylls
and carotenoids, anthocyanins and phenilpropanoids. By these traits, H. morsus-ranae shady plants
are similar with shade-bearing plants that indicates their adaptation to light intensity lowering. The
ordination plots (PCA) suggested a clear structural and functional shift of plants growing in different
lighting showing relationship to light changes in the natural environment. Thus, our results displayed
the high phenotypic plasticity of the H. morsus-ranae photosynthetic apparatus, which ensures its
acclimation to changing light environment and wide distribution of this species.

Keywords: acclimation; anthocyanin; chloroplast; chlorophyll induction; granum; pigment complex;
plasticity; principal component analysis; shade; sunlight

1. Introduction

Hydrocharis morsus-ranae L. are monocotyledonous, dioecious, stolon-rosette free-
floating aquatic plants (hydrophytes) of lakes, ponds and slow-flowing rivers, growing near
the shore [1]. Flowers are white, reaching almost 2 cm in diameter. Male (staminate) flowers
are usually gathered in inflorescences of three, female (pistillate) flowers are solitary. Heart
shaped leaves with the spongy lower side and long petioles are collected in the rosette and
float on the water surface. The color of leaves is usually a light or pure green or becoming
brownish black at senescence. It can vary depending on the level of sunlight or shade, and
plant age. In autumn, thin stolons with large buds (turions) at the ends appear. Turions
fall to the bottom of the water body, where they remain until spring. In spring, turions
develop new plants [2–5]. Micromorphology of vegetative and generative organs were
described by Cutter and Feldman [6], Seago et al. [7], Tsyrenova et al. [8], Efremov et al. [9].
H. morsus-ranae is native for Europe and Western Asia, and it widely naturalized outside its
native range in the USA and Canada as an invasive species because of its significant ability
to overgrow areas in a short time by vegetative and seed propagation [4,10]. In Ukraine,
H. morsus-ranae is usual in the Polissya (northern forest) and Forest-Steppe physiographic
regions, sporadically—in Steppe and on the Zakarpatska plain [11].
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H. morsus-ranae is often associated with aeriel-aquatic plants, including: Typha ssp.,
Phragmites australis, Sparganium spp., Butomus umbellatus, Sagittaria spp., that offer protec-
tion from currents, wind, and waves. It is supposed the sanitary role of Lemna. minor,
since it is sensitive to pollution and settle only in clean waters [3] (. H. morsus-ranae are
light-requiring plants occurring and best growing at full sun light, but also at the relatively
low light levels, up to about 30% of diffuse radiation incident in an open area [12].

We investigated the responses of aerial-aquatic and true water plants at the organism,
cellular and molecular levels to the unfavorable changes of water regime in nature, and
in the experimental conditions during more 2 decades [13–15]. In the last decade, coastal
thickets of T. latifolia and Ph. australis have increased significantly in the river Psyol
Poltava region and the Dnipro River near Venice islands, shading sunlight for light-loving
H. morsus-ranae plants but having no an effect on their growth and development. We
hypothesized that successful growth of light-requiring plants in the shade is provided
by plasticity of the photosynthetic apparatus as an adaptive role of phenotypic plasticity
is well known. Therefore, investigation of plasticity is important for understanding the
mechanisms of plant responses to unfavorable changes in ecological factors and plant
interrelations with the changing environment [16,17] especially in the modern conditions
of anthropogenic pressure on the biosphere and global climate changes. To check our
assumption, we performed the comparative investigation of the structure and functional
state of the photosynthetic apparatus in plants growing in the full sunlight and in the shade,
the results of which are presented in this article.

2. Results
2.1. Leaf Micromorphology

The leaves of plants, which grew in the shade had a green color (Figure 1a), while
the same of plants, which grew in the full sun light, were frequently characterized by a
brownish color of the adaxial surface (Figure 1b).
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Figure 1. Plants of Hydrocharis morsus-ranae in the shade of Phragmites australis (a) and in the sun (b)
in the wide part of the arm of the Dnipro River near the Venetian Island.

Young leaves had also brownish color regardless of the location. Anatomical structure
of leaves was similar in the sun and shade. Leaves were dorsoventral with a single-layer
epidermis. Anthocyanins were detected in the subepidermal cell layer of abaxial and
adaxial leaf sides and much more expressed in leaves facing the sun (Figure 2a–d). Palisade
parenchyma consisted of two, often three layers of elongated tightly packed cells, spongy
parenchyma—of four layers of loosely packed irregular or rounded cells. The thickness of
a leaf blade, palisade and spongy parenchyma in young leaves in the sun and shade did
not essentially differ and was 611 ± 44.2, 250 ± 28.0 and 273 ± 43.0 in leaves in the sun and
579 ± 19.6, 189 ± 19.9 and 287 ± 18.2 in leaves in the shade, respectively. At the same time
the thickness of leaf blades was larger in the sun, e.g., in mature leaves 650 ± 39.2 µm and
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541 ± 24.0 µm in the sun and shade, respectively, mainly due to increased thickness of
palisade parenchyma cells (Figure 2e,f). In the shade, the spongy parenchyma dominated
palisade in thickness, e.g., in mature leaves, the thickness of palisade parenchyma was
179 ± 19.9 µm and spongy parenchyma 284 ± 17.1 µm, in the sun, 268 ± 22.6 µm and
270 ± 19.2 µm, respectively (Figure 2e,f). The presence of large intercellular spaces was
a characteristic feature of the spongy parenchyma in all leaves, but their area was less in
leaves in the sun (Figure 2g).
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Figure 2. Hand-made cross-sections of Hydrocharis morsus-ranae young (a,b) and mature (c,d) leaves
in the shade (a,c) and in the sun (b,d) without staining. Anthocyanin spots are seen in cells of the
subepidermal layer of adaxial and abaxial leaf surfaces. Histograms of a leaf blade, palisade and
spongy parenchyma thickness (e,f) and area of intercellular spaces (IS) in the spongy parenchyma (g).
Different letters on Figure 2g indicate significant difference in IS area (one-way ANOVA, p < 0.05).
Scale bar—100 µm.
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2.2. Chloroplasts in the Palisade Parenchyma Cells

The ultrastructure of palisade parenchyma cells in young and mature leaves in the
shade and in the sun was typical for cell such type. The main volume of cells is occupied by
a central vacuole, a nucleus and other organelles are in the cytoplasm peripheral layer. Oval
or elongated lens-like chloroplasts were in a contact with mitochondria and peroxisomes
(Figure 3).
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Figure 3. Fragments of palisade parenchyma cells of mature leaves of Hydrocharis morsus-ranae in
the shade (a) and in the sun (b–d). Aggregations of chloroplasts, mitochondria and peroxisomes
(a,b). Mitochondria and a peroxisome in chloroplasts’ “pockets” (c,d). Abbreviations: Ch–chloroplast,
M–mitochondrium, P–peroxisome. Scale bar: (a,c) 0.2 µm, (b,d) 0.5 µm.

The main differences between chloroplasts in the sun and in the shade consist in a size
of organelles and a number of thylakoids in grana, both of which in the shade exceeded
those in the sun (Table 1, Figures 4 and 5).

An area of starch grains in chloroplasts of mature leaves especially was larger in the
shade but the statistically validity differences were not found. A diameter of plastoglobules
varied from 0.09 ± 0.023 µm in young leaves to 0.23 ± 0.067 µm in mature leaves in the
shade and from 0.12 ± 0.021 µm in young leaves to 0.29 ± 0.051 µm in mature leaves in
the sun.
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Table 1. Morphometric parameters of chloroplasts in palisade parenchyma cells of young and
matured leaves of Hydrochari morsus-ranae in different lighting.

Lighting Leaves
Chloroplast

Length, µm Width, µm Number of Thylakoids per Granum Plastoglobule Diameter, µm

Shade
Young 9.24 ± 0.38 a 1.46 ± 0.05 a 6.77 ± 0.41 a 0.09 ± 0.023 a

Mature 11.63 ± 0.37 b 3.48 ± 0.19 b 7.67 ± 0.45 a 0.29 ± 0.051 b

Sun
Young 6,98 ± 0,29 a 1.39 ± 0.06 a 4.76 ± 0.31 b 0.12 ± 0.021 a

Mature 9.73 ± 0.27 b 1.64 ± 0.08 a 5.28 ± 0.38 b 0.23 ± 0.067 b

Note: there is no significant difference between the values of the parameters in columns with the same letters in
uppercase at p ≤ 0.05, n = 40.
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Figure 4. General view of chloroplasts (a,c) and chloroplast fragments with grana consisting
of different number of thylakoids (b,d) from palisade parenchyma cells of young leaves of
Hydrocharis morsus-ranae in the shade (a,b) and in the sun (c,d). Abbreviations: G—granum. Scale bar:
(a,c)—1 µm, (b,d)—0.2 nm.
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Figure 5. General view of chloroplasts with grana, starch grains and plastoglobules (a,c) and chloroplast
fragments with grana consisting of different number of thylakoids (b,d) from palisade parenchyma
cells of mature leaves of Hydrocharis morsus-ranae in the shade (a,b) and in the sun (c,d). Abbreviations:
SG—starch grain, G—granum, P—plastoglobule. Scale bar: (a,c)—1 µm, (b,d)—0.2 nm.

2.3. Photosynthetic Pigments

The content of chlorophylls per unit of dry weight in mature leaves in the shade was
twice higher than in the sun (Table 2). In contrast, young leaves in the sun contained even
slightly more chlorophylls than mature ones. In the shade, the content of chlorophylls
per unit of dry weight also was more than 2 times higher in mature leaves compared to
young, but it did not differ in young and mature leaves in the sun (Table 2). The content of
carotenoids followed the same pattern.
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Table 2. The content of photosynthetic pigments in young and mature leaves of Hydrocharis morsus-
ranae in the different lighting, mg/g dry weight ± SE.

Pigment
Shade Leaves Sun Leaves

Young Mature Young Mature

Chlorophyll a 4.09 ± 0.35 a 9.95 ± 0.38 b 5.12 ± 0.33 c 4.82 ± 0.36 c

Chlorophyll b 1.71 ± 0.19 a 4.35 ± 0.19 b 2.01 ± 0.16 c 2.08 ± 0.14 c

Chlorophylls (a + b) 5.79 ± 0.53 a 14.29 ± 0.56 b 7.13 ± 0.47 c 6.90 ± 0.50 c

Carotenoids 1.34 ± 0.12 a 2.86 ± 0.11 b 2.00 ± 0.12 c 1.78 ± 0.11 c

Note: in this and in Tables 3 and 4 there is no significant difference between the values of the parameters in rows
with the same letters in uppercase at p ≤ 0.05, n = 10.

2.4. Anthocyanins and Phenylpropanoids

Similar trends were observed in the content of anthocyanins and colorless phenyl-
propanoids (Table 3). In young leaves in the sun, the content of phenylpropanoids was
twice higher than in mature leaves. The young and mature leaves in the shade generally
did not differ.

Table 3. The content of anthocyanins and phenylpropanoids in young and mature leaves of
Hydrocharis morsus-ranae in the different lighting, mg/g dry weight ± SE.

Substance
Shade Leaves Sun Leaves

Young Mature Young Mature

Anthocyanins 0.37 ± 0.10 a 0.34 ± 0.03 a 0.65 ± 0.03 b 0.26 ± 0.03 a

Phenylpropanoids 0.35 ± 0.06 a 0.40 ± 0.03 a 0.77 ± 0.07 b 0.40 ± 0.02 a

A ratio of anthocyanins to the total chlorophylls decreased during leaf growth in the
shade and in the sun due to an increase in the content of photosynthetic pigments (Figure 6)
but it remained higher in leaves in the sun as the latter contained more anthocyanins and
less chlorophylls in comparison with shady leaves.
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2.5. Analysis of the Photosynthetic Apparatus State by Quantum Yields of Electron Transport

The course of JIP fluorescence rise was essentially the same in all variants (Figure 7).
The Fv/Fm parameter was some lower in young leaves in the shade than in the sun and
equal in the mature leaves The Fv/Fm parameter was some lower in young leaves in the
shade than in the sun and equal in the mature leaves as well as quantum efficiency of
photosynthetic electron transport was also the same (Table 4). A small, but significant
increase in the efficiency of electron transfer to plastoquinone was only noted in mature
leaves in the shade in comparison with young leaves.

Plants 2022, 11, x FOR PEER REVIEW 8 of 20 
 

 

Figure 6. Anthocyanins/chlorophylls (a + b) ratio in young and mature leaves of Hydrocharis morsus-
ranae in the different lighting. 

2.5. Analysis of the Photosynthetic Apparatus State by Quantum Yields of Electron Transport 
The course of JIP fluorescence rise was essentially the same in all variants (Figure 7). 

The Fv/Fm parameter was some lower in young leaves in the shade than in the sun and 
equal in the mature leaves The Fv/Fm parameter was some lower in young leaves in the 
shade than in the sun and equal in the mature leaves as well as quantum efficiency of 
photosynthetic electron transport was also the same (Table 4). A small, but significant 
increase in the efficiency of electron transfer to plastoquinone was only noted in mature 
leaves in the shade in comparison with young leaves. 

 
Figure 7. Chlorophyll a fluorescence fast induction (OJIP) averaged curves. The curves of 10 leaves 
for each variant were averaged and normalized to maximum. 

Table 4. Key parameters of fluorescence induction in young and mature leaves of Hydrocharis 
morsus-ranae in the different lighting. 

Parameter Shade Leaves Sun Leaves 
 Young Mature Young Mature 

Fv/Fm 0.70 ± 0.02 a 0.73 ± 0.01 b 0.69 ± 0.01 a 0.73 ± 0.01 b 
φE0 0.35 ± 0.01 a 0.37 ± 0.00 b 0.34 ± 0.01 a 0.34 ± 0.01 a 
φR0 0.25 ± 0.01 a 0.25 ± 0.00 a 0.27 ± 0.01 a 0.26 ± 0.00 a 

Figure 7. Chlorophyll a fluorescence fast induction (OJIP) averaged curves. The curves of 10 leaves
for each variant were averaged and normalized to maximum.

Table 4. Key parameters of fluorescence induction in young and mature leaves of Hydrocharis
morsus-ranae in the different lighting.

Parameter Shade Leaves Sun Leaves

Young Mature Young Mature

Fv/Fm 0.70 ± 0.02 a 0.73 ± 0.01 b 0.69 ± 0.01 a 0.73 ± 0.01 b

ϕE0 0.35 ± 0.01 a 0.37 ± 0.00 b 0.34 ± 0.01 a 0.34 ± 0.01 a

ϕR0 0.25 ± 0.01 a 0.25 ± 0.00 a 0.27 ± 0.01 a 0.26 ± 0.00 a
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The quantum efficiency of photosynthetic electron transport did not differ significantly
in plants in the different lighting. A small, but significant increase in the efficiency of elec-
tron transfer to plastoquinone was only noted in mature leaves in the shade in comparison
with young leaves.

2.6. The Relationship between the Content of Pigments, Anthocyanins and Color in Leaves in
Different Lighting

An analysis was performed by selection of the regression models of correlation be-
tween the amounts of chlorophylls, anthocyanins and their ratio with the leaf adaxial
surface color characteristic in RGB color space. Among the digital values of R, G, B, as well
as their ratios R/B, R/G, G/B, (R+B)/G, G/(B*R), (R+B) * G, the G/B ratio (or B/G) was
established to correlate the most strongly with the pigment content in leaves. An increase in
the chlorophyll content led to an increase in the G/B ratio (Figure 8a), that allowed to find
independent reliable linear models with a coefficient of determination (r2) of 0.76 and 0.75
for LL and LS, respectively, for sunny and shady leaves. At the same time, the correlation
between the anthocyanins content and leaf color was weak, r2 for the combined model was
0.21 (Figure 8b). The ratio of chlorophylls to anthocyanins showed the correlation with the
G/B ratio (r2 = 0.71), but for the exponential model (Figure 8c). In general, the G/B ratio in
the RGB model is visualized as green–blue tints. Thus, the main factor that determines the
color change during leaf growth is the accumulation of chlorophylls.

2.7. Principal Component Analysis of the Variability of Photosynthetic Traits

With principal components analysis (PCA) it was found that the first principal com-
ponent (PC 1) explains 43% and the second (PC 2)—23% of all the data variance. PC 1
is primarily associated with the content of photosynthetic pigments and the chlorophyll
fluorescence parameter Fv/Fm, PC 2—with the content of phenylpropanoids, anthocyanins
and quantum efficiency of electron transport to the terminal acceptor (Figure 9). Interest-
ingly, the content of carotenoids was equally strongly associated with both PC 1 and PC 2,
i.e., it decreased in leaves with immature photosynthetic apparatus or in shady plants.

In the ordination plot, all leaves are clearly separated into four groups: (1) young
leaves in the sun, (2) young leaves in the shade, (3) mature leaves in the sun, and (4) mature
leaves in the shade (Figure 8). The distance between individual leaves in the 2-D ordination
space shows their dissimilarity by a studied multivariable complex of traits. Therefore,
spatial separation of different experimental groups confirms that they are substantially
and consistently different. By the developmental stage, the leaves are separated along
with the PC 1 axis (Figure 10), which is associated with the chlorophyll content and the
level of PSII repair after photodamage. By lighting conditions, the leaves are separated
along with the PC 2 axis, which is associated with the content of protective compounds—
phenylpropanoids and anthocyanins, as well as with the actual efficiency of photosynthesis,
suggesting their role in the protection from excessive light. Therefore, the development
stage and lighting conditions have different and independent effects on the leaves.

Clustering of the leaves’ multivariate traits the by k-means algorithm [18] showed their
similar grouping to our experimental one by leaf age and lighting conditions (Figure 9),
also confirming that these groups are different.
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Figure 8. Relationship between digital values of leaf color G/B (a ratio of mean values of green to
blue) and chlorophylls (a), anthocyanins (b) and ratio of chlorophylls to anthocyanins (c) in young
and mature leaves of Hydrocharis morsus-ranae grown in the shade and sun.
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Figure 9. Principal component analysis (PCA) biplot of studied photosynthetic traits in leaves
of H. morsus-ranae. The loadings of physiological traits are shown with red lines and labelled by
green captions. The first principal component (PC1) is mainly associated with Chl (a + b) and
Fv/Fm, whereas the second component (PC2) is associated with the content of phenylpropanoids,
anthocyanins, and with φR0. The locations of leaves in the ordination space are shown by circles
filled with different colors, according to the experimental group, as also indicated in the legend:
blue circles—mature leaves in the shade; orange—mature leaves in the sun; green—young leaves in
the shade; red—young leaves in the sun. The groups are clearly separated on the ordination plot,
indicating that they are different by multivariable traits. The leaf groups are separated along with
PC1 by their development stage (young and mature ones), and along with PC2 by their lighting
conditions (sun and shade ones), which indicates that these factors have different and independent
effect on leaves.
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Figure 10. K-means clustering of PCA representations of studied leaves of H. morsus-ranae. The
leaves were automatically assigned to different clusters (shown in different colors), that are similar to
groups by their age and lighting conditions.

3. Discussion

Phenotypic plasticity, which is a fundamental property of all living organisms, is
defined as a genome ability to change its expression and be realized in different phenotypes
in an adaptive response to various environmental influences. Phenotypic manifestations
of changes in gene expression are already defined at the level of transcription efficiency
and include a very broad spectrum of ecologically important traits—physiological, bio-
chemical, anatomical and morphological, peculiarities of developmental biology, time of
transferring to the reproductive stage. It is postulated that phenotypic plasticity is carried
out within the limits of the normal response on the basis of metabolic, hormonal, and
epigenetic regulation of gene expression and provides two strategies of the adaptation
process: (1) rapid adaptation (acclimation) in response to daily and seasonal fluctuations of
environmental factors and (2) long-term adaptation (acclimatization) to moderate chronic
effects of adverse environmental changes factors often resulting in the appearance of a new
ecotype [16,17,19–22]. The structure of the photosynthetic apparatus during adaptation to
seasonal variations in the external environment, in particular lighting, has been referred
by A.D. Bradshow [23] to phenotypic plasticity in the most detailed review of the known
manifestations of this phenomenon at the population and species levels at that time. Now,
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it is considered short-term reactions to changing light intensity within seconds to minutes,
and long-term adjustments over hours and days. The mechanisms of long-term acclimation
to light intensity have been usually studied by changing constant light intensity. However,
much less attention has been paid to photosynthesis responses to highly fluctuating light
intensity in natural environments, caused by seasonal and daily periodicity and short-
term clouding or leaf movement [24–27]. To understand the ability of H. morsus-ranae
light-requiring plants to acclimate photosynthetically to shade conditions in nature, we
investigated micromorphology, chloroplast ultrastructure, pigment amounts, chlorophyll
a/b ratio, and photosynthetic capacity, in particular the chlorophyll fluorescence parameter
Fv/Fm, of young and mature leaves in plants growing in the sunlight and in the shade. The
Fv/Fm value is a robust photosynthetic parameter to indicate light quality acclimation [28].

Our results firstly showed the plasticity and coordinated changes in structural and
functional traits, which allow H. morsus ranae light-requiring plants to shading, as it has
been reported for other plants [27,29–31]. Leaves of H. morsus-ranae plants growing in
the shade differed from leaves in the sun by a thinner blade and a changed ratio of the
palisade and spongy parenchyma thickness. Chloroplasts in leaves in the shade distin-
guished first by a larger size, the presence of larger thick grana, the higher chlorophylls
content, and quantum efficiency of photosynthetic electron transport. So, by these traits the
H. morsus-ranae shady plants may be related to shade-adapted plants, the characteristic
features of which are leaf blade thinning and increasing of chloroplasts’ size, a number
of thylakoids in grana, and the chlorophyll content in comparison with light-requiring
plants [32–35].

In shade, the content of chlorophylls in young leaves was more than 2 times lower
than in mature. In the early stages of leaf development, the photosynthetic apparatus is
not fully functional, so young leaves cannot utilize all the incident light energy that may
irreversibly damage the components of the apparatus [36]. To avoid this, plants accumulate
less chlorophyll and intensively degrade the existing one to facilitate PSII repair [37].
Considering almost the same chlorophylls a/b ratio, the photosynthetic electron transport
chain in young and mature leaves of H. morsus-ranae is probably completely formed. The
difference in chlorophyll content may be caused by impeded CO2 transport or assimilation
leading to a regulatory reduction in the sizes or numbers of chloroplasts in mesophyll
cells. This may represent a species-specific effect because the difference between young
and mature leaves in terms of chlorophyll content greatly varies among plant species. At
the same time, in the sun, the content of chlorophylls did not differ in young and mature
leaves, that suggests that the incident light is also excessive for mature leaves, and the
plants adapt to high light reducing light absorption by lowering the abundance of light-
harvesting pigments, as one of the mechanisms to reduce photodamage [29]. The increased
carotenoids content in mature leaves in the shade may be evidence of its function first
of all as light-harvesting pigments ensuring an additional absorption of light energy in
the blue–green spectrum region, 350–500 nm [38–40], as the plant pigment complex is a
complicated and labile system, which promptly respond to environmental changes. In
addition, the accumulation of chlorophylls was shown to mainly influence the leaf color
change during its growth.

The Fv/Fm parameter, that was slightly lower in young leaves compared to ma-
ture ones, supports the idea that young leaves are probably generally more susceptible
to photoinhibition due to limitations of CO2 assimilation [41]. A value of Fv/Fm, that
characterizes PSII maximum potential effectiveness, in leaves adapted to darkness in the
conditions when a quinone pool (QA) is fully oxidized, is approximately equal in many
plants, independently of their habitat conditions [42]. The Fv/Fm parameter was in the
range of 0.69–0.70 in young leaves, indicative of severe photoinhibition [43], and rose to
the level of 0.73 ± 0.01 in mature leaves, still reflecting a moderate level of photoinhibition.
In contrast to the developmental stage of the leaves, lighting conditions did not affect
Fv/Fm, hence levels of PSII photodamage. The other two key photosynthetic quantum
yields—ϕEo and ϕRo—reflect the maximum potential efficiency of electron transport at
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the acceptor side of PSII and PSI in dark adapted state [43]. These parameters are also
sensitive to limitations by size and availability of the plastoquinone pool and Rubisco
content and activity, respectively. These two parameters did not differ in all the leaves,
probably suggesting that protective mechanisms effectively alleviate the low photosynthetic
capacity in young leaves and excess light in mature ones. Such mechanisms may include
lower accumulation of photosynthetic pigments, light avoidance-associated movement of
chloroplasts, screening of photoradiation, scavenging of reactive oxygen species (ROS),
heat dissipation of absorbed light energy in PSII, cyclic electron flow around the reaction
centers of PSI, and the photorespiration [44]. Increased accumulation of antocyanins in
young leaves, that was also shown in this work, may contribute to ROS scavenging [45].

The presence of anthocyanins in leaves is a characteristic feature of H. morsus-rannae
plants growing in the shade and sun. Anthocyanins absorbing the green and yellow
wavebands of light, between 500 and 600 nm, are assumed to protect chloroplasts from
the photoinhibitory and photooxidative effects of strong light, as well as participate in
plant responses to drought, UV-B, and heavy metals and resistance to herbivores and
pathogens [46,47]. The highest content of anthocyanins in young leaves in the sun is
clearly conformed with an idea of its photoprotective role, in young leaves in the sun,
especially [48–52]. A high accumulation of phenylpropanoids in young leaves in the sun
correlates with the same antocyanin content, that suggests their role in the protection of
photosynthetic apparatus from excess light and UV radiation by scavenging injurious
reactive oxygen species [53,54].

The application of principal component analysis [55,56] made it possible to visu-
alize the differences in light-requiring plants growing in the sun and shade in nature,
thereby emphasizing the ways in which light-loving plants adapt to unfavorable envi-
ronmental shading. Out of all the leaves’ traits, the contents of phenylpropanoids and
anthocyanins, and ϕR0, were most correlated with different lighting conditions (second
principal component).

4. Materials and Methods
4.1. Plant Material

Individual rosettes, usually containing five leaves and growing in the wide part of the
arm of the Dnieper River near the Venetian Island at coordinates 50◦26′37.0′′ N 30◦34′58.8′′

in cloudless days between 10–12 am were collected. The arm is oriented in the North–South
direction and is well lit most of the daytime. Plants grew on the open surface 4–6 m from
the bank, where they were exposed to direct sunlight about half daylight hours, and along
the shore usually between T. latifolia and P. australis plants, creating shade. The daytime
average photosynthetic photons flux density (PPFD) on a cloudless day in open locations
was 940 ± 80 µE·m−2·s−1, and in the shade −135 ± 70 µE·m−2·s−1, corresponding to
photosynthesis-saturating and limiting light, respectively [57–59]. Maximum PPDF in the
open locations reached 1800 µE·m−2·s−1 during plant collection. To estimate and compare
the light quality, we measured reflectance of white etalon placed at the level of leaves in
both shaded and open locations. The spectra were recorded, normalized by maximum
value, averaged, and the spectrum of the shaded locations was divided by one in the
open locations. The reflectance spectra were recorded using STS-VIS spectrometer (Ocean-
Insight, Ostfildern, Germany). In shaded places, blue-green, far-red, and near-infrared
parts of the spectrum were generally attenuated (Figure 11), probably causing lower light
use efficiency.

The plants were transported to the laboratory within 2 h after the collection, where the
measurement procedures began immediately. Young and mature leaves were
analyzed separately.
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4.2. Light Microscopy

Leaf micromorphology was studied on the hand-made uncolored sections with a
light microscope Axioscope (Carl Zeiss, Oberkochen, Germany) and photographed on a
digital camera EOS Rebel T2i (Canon). The thickness of the leaf blade, palisade and spongy
parenchyma, and the area of intercellular spaces of the spongy parenchyma were measured
on digital images of leaf cross-sections. In the diagrams, the data are presented as M ± SD,
statistically significant differences between the samples were taken at p < 0.05.

4.3. Transmission Electron Microscopy

Specimen cutoffs of 3 mm diameter were fixed in 3% glutaraldehyde (0.1 M cacodylic
buffer, pH 7.2) for 3 h at ambient temperature and then in 1% osmium tetraoxide in the same
buffer for 1 h at ambient temperature and 12 h at 4 ◦C. Samples were dehydrated through
a graded acetone series and embedded in epon-araldit resins. Sections were obtained on
an ultramicrotome PowerTome XL (Boeckeler Instruments, Tucson, AZ, USA). Ultrathin
sections (about 55 nm) were stained with uranyl acetate and lead citrate and examined
with a transmission electron microscope JEM 1230EX (JEOL, Tokyo, Japan).

4.4. Quantification of Leaf Blade and Chloroplast Structure

A thickness of leaf blades, palisade and spongy parenchyma and a size of chloroplasts
from palisade parenchyma cells of young and mature leaves were determined from TEM
micrographs with program Image Tool (Version 3.0, UTHSCSA, San Antonio, TX, USA). A
number of thylakoids in grana in chloroplasts on leaf cross sections was counted.
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4.5. Leaf Color Analysis

Leaves were photographed on a white background using the EOS Rebel T2i (Canon)
camera with standard optics in manual white balance mode in IPG format. Leaf color was
analyzed on the obtained digital images by Eitel et al. [60] in the RGB model. The intensity
average digital values of red (R), green (G) and blue (B) channels were obtained in the Image
J software (Version 1.50b, https://imagej.nih.gov, accessed on 17 August 2022). In addition
to absolute numerical values of channels, their different ratios (R/G, R/B, (R + B)/G,
G/(R + B) and G/B were evaluated. The relationships between the pigment content and
leaf color were found using R studio Software (Version 1.2.1335, https://www.rstudio.com,
accessed on 17 August 2022). Regression analysis included linear and nonlinear models.
The determination coefficient (r2) and the p value were used to assess the model reliability.
Regression models with p values <0.01 were considered significant.

4.6. Anthocyanins and Phenylpropanoids Analyses

Anthocyanins and phenylpropanoids were extracted from fresh samples (50 mg)
with 0.1% HCl solution in methanol, pre-cooled to −20 ◦C and kept for 24 h at 2 ◦C and
determined by the spectrophotometric method according to [61]. An analysis of the extract
was performed on a spectrophotometer SF 2000 (OKB Spectr, St. Petersburg, Russia). A
value of optical density at a wavelength of 532 nm, which corresponds to the maximum
absorption of anthocyanins (glycoside cyanide), was corrected by subtracting 24% of the
chlorophyll maximum absorption at A653. The relative amount of phenylpropanoids
was evaluated by the optical density at a wavelength of 329 nm after 40-fold dilution of
methanol-HCl extract.

4.7. Pigment Analysis

Pigments were extracted from fresh samples (50 mg) with 85% acetone. Measurements
of the photosynthetic pigments content were made with a spectrophotometer SF 2000 (OKB
Spectr, St. Petersburg, RF) at wavelengths of 663 nm, 647 nm and 470 nm. The content
of chlorophyll and carotenoids was determined by formulas [62] and recalculated per
dry mass.

4.8. Chlorophyll a Fluorescence Induction and JIP-Test

The state of the leaf photosynthetic apparatus was assessed with a portable OJIP
fluorometer “FluorPen FP 100” (Photon Systems Instruments, Drásov, Czech Republic).
This device can register polyphasic fluorescence induction curve caused by illumination of
photosynthetic samples by a flash of high intensity (saturating) exciting light. The intensity
of this light in our experimental setup was 5000 µmol photons·m−2·s−1. The multiple (O,
J, I, P) steps of this fluorescence rise are clearly visible on the logarithmic time-axis and
reflect the gradual reduction of electron carriers along the photosynthetic electron transport
chain. By analyzing the parameters of this curve, it is possible to determine some traits of
both light and dark phases of photosynthesis. The shape of the OJIP curve is sensitive to
changes in photosynthesis caused by the environment. For the integral assessment of the
photosynthetic apparatus state, the instruments sensor was pressed against the leaf blade
after 15 min dark adaptation, and fluorescence changes were recorded for 1 s. Based on the
obtained fluorescence curves, three key parameters, quantum yields of electron fluxes were
calculated and analyzed.

1.ϕ. Po = FV/FM is the maximum quantum yield of the primary photochemical
reaction (at t0 = 0), which characterizes the probability of energy capture of the absorbed
photons (or excitons migrating by the antenna) by the reaction centers of PS 2. In the case
of stress state caused by strong light or heating of the object, ϕPo is usually decreased.

2.ϕ. Eo—quantum yield of electron transfer from PS 2 to plastoquinone.
3.ϕ. Ro—quantum yield of reduction of electron terminal acceptors in the acceptor

site of PS 1.
All calculations were performed according to Stirbet et al. [43].

https://imagej.nih.gov
https://www.rstudio.com
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4.9. Statistical Analysis

For exploratory analysis of the multivariate data and extraction of main leaves’ traits
that constitute the differences between leaves and different experimental groups, principal
component analysis (PCA) was used [56]. The degree of dissimilarity between groups by their
multiple physiological traits was also assessed and visualized in 2D ordination biplot. Before
PCA, the data were centered and standardized according to general recommendations.

For independent and unsupervised grouping of the leaves by their physiological traits,
k-means clustering was used [18]. The number of clusters was chosen equal to the number
of experimental groups, the other parameters were kept at default. For PCA and k-means
clustering, and visualization of the results, python libraries ‘sklearn.decomposition.PCA’,
‘sklearn.cluster.Kmeans’, and ‘matplotlib’ were used.

For statistical analysis of significance, quantitative data have been analyzed by Stu-
dent’s t-test and Mann–Whitney U-test.

5. Conclusions

A significant difference in the traits of photosynthetic apparatus was shown between
H. morsus-ranae air-requiring plants growing in the natural environment in full sunlight
and under relatively low light levels, diffuse illumination of up to 20–30% of full sunlight.
The photosynthetic apparatus of plants in shade is similar to that of shade-enduring ones,
which indicates its high phenotypic plasticity firstly determined by light intensity and
underlying the acclimation of photosynthesis to diverse lighting conditions. The ability of
light-requiring plants of H. morsus-ranae to adapt to low light enables their wide occurrence
and survival in ponds with different lighting levels, including shadiness created by the
overgrowth of higher aquatic vegetation, first of all, P. australis and T. latifolia, under climate
global changes. Recently, the epigenetic system is considered pivotal in ensuring the
plasticity of plant reactions to environmental signals. H. morsus-ranae is a suitable object
to investigate the role of epigenetics in plant adaptations to habitat conditions due to its
ecological patterns and successful vegetative reproduction.
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