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Abstract: In this study, to screen for walnut salt-tolerant rootstocks, Juglans microcarpa L. seedlings
were treated in different NaCl concentrations (0, 50, 100, 200, and 300 mmol/L), and the growth
situation of seedlings was observed. Moreover, we determined the physiological indexes of seedlings
on different days (6, 12, 18, and 24 d) after treatment. The results showed that after salt stress, the
external morphology of seedlings displayed salt injury, which manifested as yellowing, withering,
curling, and falling off of leaves. High concentrations and long-term stress led to more serious
damage, with numerous leaves undergoing withering and shedding. Salt stress significantly inhibited
the growth of seedlings. With the increase in salt concentration and stress time, the chlorophyll
content and photosynthetic parameters of seedlings reduced to varying degrees; the relative electrical
conductivity (REC) and malondialdehyde (MDA) increased. Superoxide dismutase (SOD), peroxidase
(POD), and catalase (CAT) activities generally increased, followed by a decrease; proline (Pro)
accumulated; and soluble sugar (SS) content first increased and then decreased. In addition, it
promoted the production of abscisic acid (ABA) and inhibited the synthesis of indole-3-acetic acid
(IAA), gibberellic acid 3 (GA3), and zeatin riboside (ZR). It was found that J. microcarpa L. seedlings
were more tolerant under 100 mmol/L salt stress, whereas the damage to growth was more severe at
200 mmol/L to 300 mmol/L salt stress.

Keywords: Juglans microcarpa L.; rootstock; salt stress; growth characteristics; physiological index

1. Introduction

Currently, soil salinization is a worldwide resource and environmental problem. Due
to unreasonable irrigation, misuse of chemical fertilizers, and industrial pollution, the
salinization problem is becoming increasingly prominent, thus severely restricting the
sustainable development of agriculture and forestry [1]. On a worldwide scale, 20% of
arable lands and 50% of irrigated lands are affected by salinity [2]. According to statistics,
the total area of different types of saline soils in China is approximately 350,000 km2,
accounting for about 25% of the total arable land area. The six western provinces, three
northeastern provinces, and the lower terrain areas in the coastal provinces of China are
areas where saline soils are abundantly present [3,4]. The vast saline soil is considered
an important reserve land resource in China. The rational development and use of saline
soil is of great significance for the ecological environmental protection and sustainable
development of China’s agriculture and forestry economy.

Sodium chloride (NaCl) is the most plentiful salt that is conducive to soil salinization.
Exposure of plants to salt stress causes a series of growth, physiological, and biochemical
changes, and the effects of salinity on plant growth and physiology are deleterious and
complicated, largely due to the physiological and metabolic activities of plants impaired by
osmotic stress, ionic stress, and nutritional imbalances or a combination of these factors [5,6].
Under high soil salinity conditions, excessive soluble Na+ and Cl− increase the osmotic
potential of the soil solution, thus inhibiting root water uptake, reducing leaf expansion
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and stomatal closure, and restricting the photosynthesis and respiration in plants [5,7]. As
mineral elements, Na+ and Cl− are essential for the normal growth and development of
plants. However, if absorbed by the root system in large amounts, they will accumulate in
the leaves and cause toxicity to cell metabolism and the function of some enzymes. Finally,
they can lead to premature senescence of leaves and other negative effects, including
impaired protein synthesis, reactive oxygen species (ROS) production, and disturbances in
energy and lipid metabolism [5].

Currently, the research on plant salt tolerance is largely focused on external mor-
phological characteristics [8,9], osmoregulation [5,10], antioxidant protection [11,12], ion
homeostasis [9,10], anatomical structure [13,14], hormonal regulation [15,16], and intrinsic
molecular regulatory mechanisms [17,18]. To investigate the changes in plant growth and
physiological and biochemical characteristics under salt stress is an important basis for
selecting and breeding salt-tolerant or salt-resistant plant materials. In addition, it is an
economical and effective method to improve the use of saline–alkali lands.

J. microcarpa L. belongs to the genus Juglans of the Juglandaceae family; it is a type
of black walnut that is native to the southwestern United States and is recognized as a
dwarf rootstock for cultivating excellent clones of walnut and black walnut. J. microcarpa L.
has a large canopy and a beautiful posture, making it a good tree species for urban street
beautification [3,19]. It was introduced to China from the United States by Mr. Xi Shengke
and others in 1984 and has been planted in Henan, Inner Mongolia and other places [3]. At
present, only a few studies exist on the salt tolerance of J. microcarpa L. Therefore, in this
study, we explored the salt tolerance of J. microcarpa L. using its current-year seedlings as the
experimental material. We investigated the dynamic changes in the external morphology,
growth, and physiological indexes of J. microcarpa L. under different concentrations of NaCl
treatment and different stress times and hope to provide a theoretical basis for the screening
of salt-tolerant rootstocks of walnut.

2. Results
2.1. Effects of Salt Stress on External Morphological Characteristics of Seedlings
2.1.1. Symptom Classification of Salt Injury

The changes in the external morphology of plants under each treatment were observed
and recorded at 6, 12, 18, and 24 days after salt stress, respectively. The symptoms of salt
damage reflected by the external morphology of J. microcarpa L. seedlings were graded
according to the overall plant condition and leaf damage symptoms with reference to the
description provided by Wang Xiaoli [20], as shown in Table 1.

Table 1. Symptoms levels of salt injury level.

Grade Salt Stress Symptoms

0 No symptoms of salt stress damage.
1 A few tips and margins of the lower old leaves turn yellow and wither.
2 Some tips and margins of the lower old leaves turn yellow and wither.

3 Some tips and margins of the lower old leaves were withered, and the
withered and curled number of the middle and upper leaves increased.

4 Most leaves are withered and curled, and some compound leaves have
withered petioles.

5
Most leaves are withered and curled, accompanied by falling; the lower
compound leaves and total petioles are withered, accompanied by a few

fallen off.

6 Most leaves are withered, curled, and fallen off, and most compound
leaves and total petioles are withered and fallen off.

2.1.2. Change in Morphological Characteristics

The degree of plant stress at each concentration at different stress periods was recorded
(Table 2). At the early stage of stress (6 days), there was no significant change in each treat-
ment. At 12 days of salt stress, under 200 mmol/L NaCl treatment, the leaves in the lower
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part of the plant were yellowed, the leaf tips were withered, and the number was less.
Under 300 mmol/L NaCl treatment, the lower old leaves were partially yellowed, and the
leaf tips and margins were withered. At 18 days of salt stress, all treatment concentrations
showed different degrees of salt damage symptoms, and the lower leaves of the plants
showed withered symptoms at 50 to100 mmol/L concentration; under 200 mmol/L con-
centration, the lower leaves of the plant withered more deeply and in greater numbers,
and accompanied by leaf curling, the upper leaves showed a certain degree of leaf margin
withering; under 300 mmol/L concentration, the withering and curling of the leaves of
the whole plant increased, especially the lower leaves showed more withering and curling,
and the lower compound leaves and the total petiole showed drying and abscission. The
leaf damage symptoms increased significantly at 24 days of salt stress, and the number of
withered and curled leaves increased at 50 mmol/L and 100 mmol/L concentrations. At a
NaCl concentration of 200 mmol/L, the number of withered leaves of the whole plant was
higher, the area of withered leaves was larger, the curling was severe, and the compound
leaves and total petioles of the lower part of the plant dried up and fell off to a small
amount. At a NaCl concentration of 300 mmol/L, the withered leaves and the curly degree
of the leaves were further deepened, and the compound leaves and total petioles of the
whole plant dried up and fell off greatly.

Table 2. Leaf salt injury classification of J. microcarpa L.

NaCl
/(mmol·L−1)

Stress Symptom Grade

6 d 12 d 18 d 24 d

50 0 0 1 3
100 0 0 2 3
200 0 2 3 5
300 0 2 5 6

2.2. Effects of Salt Stress on Plant Growth

The effects of salt stress on growth indexes of J. microcarpa L. are shown in Table 3. With
an increase in the NaCl concentration, H∆ and D∆ of J. microcarpa L. showed a decreasing
trend. When the concentration of NaCl reached 200 mmol/L, H∆ reached a significant
difference compared with the control, with a decrease of 44.13%. At 300 mmol/L, D∆
decreased by 35.83% compared with the control, with no significant difference among the
treatments.

Table 3. Growth indexes of the seedlings of J. microcarpa L. under salt stress. The data are presented
as treatment mean ± SD. Different English letters in the same column indicate a significant difference
at the level of 0.05.

NaCl
/(mmol·L−1) H∆/cm D∆/mm DWS/g DWR/g PDW/g R/S

0 1.133 ± 0.058 a 0.907 ± 0.291 a 8.187 ± 0.973 a 7.890 ± 1.068 a 16.077 ± 1.842 a 0.966 ± 0.102 a
50 1.067 ± 0.153 a 0.808 ± 0.384 a 7.083 ± 1.320 ab 7.950 ± 1.541 a 15.033 ± 2.838 ab 1.122 ± 0.049 a

100 0.933 ± 0.058 a 0.598 ± 0.140 a 6.437 ± 0.883 ab 7.010 ± 0.879 ab 13.477 ± 1.746 ab 1.091 ± 0.044 a
200 0.633 ± 0.208 b 0.588 ± 0.122 a 4.970 ± 1.537 bc 6.510 ± 0.518 ab 11.480 ± 1.686 bc 1.410 ± 0.487 a
300 0.600 ± 0.173 b 0.582 ± 0.304 a 4.053 ± 1.220 c 4.883 ± 1.727 b 8.937 ± 2.600 c 1.247 ± 0.449 a

H∆, plant height increment; D∆, ground diameter increment; DWS, dry weight of shoot; DWR, dry weight of root;
PDW, plant dry weight; R/S, the ratio of root to shoot.

With an increase in the NaCl concentration, DWS and PDW of J. microcarpa L. exhib-
ited a declining trend, resulting in a significant difference with the control at 200 mmol/L
and a decrease ratio of 40.06% and 28.59%, respectively. At 50 mmol/L, DWR increased
compared with the control; however, the difference was insignificant, and as the NaCl con-
centration continued to increase, the DWR decreased gradually and decreased by 38.11%
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at 300 mmol/L, which was significantly different from the control. R/S reflects the rela-
tionship between the aboveground and underground parts of plants under stress. The
overall trend of R/S increased at NaCl concentrations of less than 200 mmol/L, reach-
ing a maximum at 200 mmol/L with an increase of 45.96%, followed by a decreased at
300 mmol/L.

2.3. Effects of Salt Stress on Chlorophyll Content

As shown in Figure 1, the content of Chl a, Chl b, and Chl a+b in the leaves of
J. microcarpa L. declined with an increase in the NaCl concentration at the same stress time.
At 6 days of salt stress, compared with the control, the content of Chl a, Chl b, and Chl
a+b decreased by 8.27%, 31.17%, and 14.63%, respectively, where Chl a content was not
significantly different among treatments, and Chl b and Chl a+b contents were significantly
different from that of the control at 300 mmol/L. At 12 days of salt stress, the content of
Chl a, Chl b, and Chl a+b decreased by 14.25%, 40.30%, and 22.20%, respectively, compared
with the control. At 18 days of salt stress, the content of Chl a, Chl b, and Chl a+b decreased
by 17.45%, 38.98%, and 24.12%, respectively, compared with the control. At 24 days of salt
stress, the above indices were significantly different among the treatments, which decreased
by 29.44%, 47.68%, and 35.23%, respectively, compared with the control.

Figure 1. The effect of salt stress on chlorophyll content of J. microcarpa L. seedlings. (A) Chlorophyll
a content (Chl a), (B) chlorophyll b content (Chl b), and (C) total chlorophyll content (Chl a + b) in the
leaves. Error bars indicate the SD of treatment means. Different letters on the bars indicate significant
differences among the treatments (p < 0.05).

Under the same salt concentration treatment, the content of Chl a, Chl b, and Chl a+b
decreased with an increase in stress time at all salt concentrations, except the control, and



Plants 2022, 11, 2381 5 of 21

decreased to the lowest after 24 days of salt stress, with the maximum decrease of 29.44%,
47.68%, and 35.23%, respectively. The above results showed that salt stress reduced the
chlorophyll synthesis in J. microcarpa L., and the chlorophyll content decreased gradually
with an increase in the salt concentration and the extension of stress time, in which the
content of Chl b was the most affected by salt stress.

2.4. Effects of Salt Stress on Photosynthetic Parameters

As shown in Figure 2A, under the same time stress, the Pn of J. microcarpa L. decreased
with an increase in the NaCl concentration. At 6 days, 18 days, and 24 days of salt stress,
Pn reached the lowest value at 300 mmol/L, which decreased by 26.77%, 82.24%, and
89.09% compared with the control, respectively. At 12 days of salt stress, the decrease in
Pn at 200 mmol/L was the largest, which was 46.42%; however, the difference with the
value at 300 mmol/L was insignificant. At 18 days of salt stress, a significant difference
was recorded between the treatments and the control, and Pn decreased more at salt
concentrations of 200 mmol/L–300 mmol/L compared with the control, which was 77.52%
and 82.24%, respectively. At 24 days of salt stress, the Pn decreased by 27.22%, 73.89%,
83.91%, and 89.09%, respectively, compared with the control, and all differences were
significant. Under the same salt concentration treatment, the Pn in the control treatment
did not differ significantly; Pn decreased with an increase in stress time under each salt
concentration treatment. At 50 mmol/L, the Pn slowly decreased with an increase in stress
time. At 100 mmol/L, the Pn declined rapidly on the 24th day, whereas at 200 mmol/L and
300 mmol/L, the Pn decreased rapidly on the 18th day and then changed slowly with time.

The Gs of J. microcarpa L. decreased significantly with an increase in the salt concentra-
tion. At the same stress time, the Gs significantly decreased by 38.06%, 54.72%, 86.81%, and
86.60% at 6 days, 12 days, 18 days, and 24 days of salt stress, respectively, compared with
the control. Under the same salt concentration treatment, Gs showed a decreasing trend
with increasing stress time, and when the stress time was longer than 18 days, the change
in Gs under 100 mmol/L–300 mmol/L gradually slowed down (Figure 2B).

The trend of Tr changes in seedling leaves under salt stress was similar to that of Gs.
Under the same salt stress time, it decreased with an increase in the salt concentration,
and at a salt concentration of 300 mmol/L, with decreases of 43.32%, 41.58%, 83.43%, and
86.23% compared with that of the control, respectively. Tr showed a decreasing trend with
an increase in stress time under the same salt concentration treatment (Figure 2C).

At 6 days of salt stress, the Ci of J. microcarpa L. decreased initially, followed by an
increase with the increase in salt stress concentration, and reached the lowest value at
50 mmol/L treatment. At 12 days of salt stress, the Ci showed a decrease with an increase
in salt stress concentration. At 24 days of stress, Ci increased initially, followed by a
decrease, and reached a maximum at a salt concentration of 100 mmol/L. Under the same
salt concentration treatment, Ci decreased initially and subsequently increased with an
increase in stress time, except for the salt concentration of 300 mmol/L, which reached its
peak at 24 days of salt stress (Figure 2D).
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Figure 2. Effect of salt stress on the photosynthetic parameters of J. microcarpa L. seedlings.
(A) Photosynthetic rate (Pn), (B) stomatal conductance (Gs), (C) transpiration (Tr), and (D) inter-
cellular CO2 concentration (Ci) in the leaves. Error bars indicate the SD of treatment means. Different
letters on the bars indicate significant differences among the treatments (p < 0.05).

2.5. Effects of Salt Stress on REC and MDA Content

As shown in Figure 3, under the same time stress, the REC and MDA contents of
J. microcarpa L. increased continuously with an increase in salt concentration. At 6 days of
salt stress, a small change in REC was recorded among treatments; at 12 days of salt stress,
the REC was significantly different from the control at 300 mmol/L, with an increase of
30.54%. At 24 days of salt stress, the REC showed a continuous upward trend, with signifi-
cant differences among all treatments, and each salt concentration increased compared to
the control by 20.68%, 35.91%, 68.41%, and 79.77% compared with the control. The trend
of MDA content was roughly consistent with the change in REC: at 6 days of salt stress,
the MDA content was highest at 300 mmol/L, with an increase of 18.18%. The maximum
increase in MDA was 39.13% at 12 days of salt stress, 54.55% at 18 days of salt stress, and
58.33% at 24 days of salt stress. At the same salt concentration, the REC and MDA contents
of seedling leaves increased with an increase in stress time and reached the maximum on
the 24th day.
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Figure 3. Effect of salt stress on (A) relative electrical conductivity (REC), (B) malondialdehyde
(MDA) content of J. microcarpa L. seedlings. Error bars indicate the SD of treatment means. Different
letters on bars indicate significant differences among the treatments (p < 0.05).

2.6. Effects of Salt Stress on Osmotic Adjustment Substances

As shown in Figure 4A, under the same time stress, as the concentration of NaCl in-
creased, the Pro content in seedlings also increased. At 6 days of salt stress, significant
differences were observed, with concentrations ranging from 100 mmol/L to 300 mmol/L,
with a maximum increase of 16.10% compared with the control. At 12 days of stress, all treat-
ments were significantly different from the control, and the highest Pro content was found
at 300 mmol/L with an increase of 35.76%. At 18 days of stress, the Pro content continued
to increase, showing a significant difference between each treatment and the control, and at
200 mmol/L and 300 mmol/L, the content of Pro was similar, which increased by 57.15% and
60.08%, respectively, compared with the control. At 24 days of stress, each salt concentration
increased by 31.17%, 54.25%, 82.83%, and 61.33%, respectively, compared with the control. In
addition, at the same salt concentration, the Pro content also increased with an increase in
stress time, with longer stress times leading to higher Pro content.

As shown in Figure 4B, at the same stress time, the difference in the SS content among
the groups before treatment was insignificant. At 6 days of stress, the SS content increased
at first, followed by a decrease and the highest SS content was recorded under 200 mmol/L,
which was significantly different from the control, with no significant difference between
other treatments and the control. At 12 days of stress, the SS content increased, followed by a
decrease with an increase in the salt concentration, and the SS content under 100 mmol/L salt
stress was significantly different from that of the control, and the content was the highest. At
18 days of stress, the content of SS increased at first, followed by a decrease with an increase in
the salt concentration, and the SS content was significantly higher under 50 and 100 mmol/L
salt stress, under 50 and 100 mmol/L salt stress, the content of SS was significantly higher
than that of other treatments, and the SS content was the highest at 100 mmol/L, whereas the
difference between other salt treatments and control was insignificant. At 24 days of stress,
the SS content increased, followed by a decrease; however, there was no significant difference
among the treatments, and the SS content was the highest at 100 mmol/L. At the same salt
concentration, the SS content first increased and subsequently decreased as the stress time
increased, and the peak SS content of all treatments was found on the 18th day after salt stress,
which subsequently decreased significantly.
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Figure 4. Effect of salt stress on osmotic adjustment substances of J. microcarpa L. seedlings.
(A) Proline (Pro) content, (B) soluble sugar (SS) content in the leaves. Error bars indicate the SD of
treatment means. Different letters on the bars indicate significant differences among the treatments
(p < 0.05).

2.7. Effects of Salt Stress on Antioxidant Enzyme Activities

As shown in Figure 5A, at the same stress time, the SOD activity increased, followed by
a decrease with an increase in NaCl concentration, reaching a maximum of 100 mmol/L. At
12 days of salt stress, the SOD activity increased the most at 100 mmol/L and 200 mmol/L
compared with the control, with an increase of 30.18% and 26.87%, respectively. At 24 days
of salt stress, the activity of SOD decreased compared with the control at 200 mmol/L
and 300 mmol/L salt concentration; however, there was no significant difference from the
control. Under the same concentration treatment, the SOD activity in the leaves showed a
continuous increase with an increase in stress time at CK-100 mmol/L; the SOD activity
increased at first and subsequently decreased from 200 mmol/L to 300 mmol/L, with peaks
on the 18th and 12th days, respectively.

Under the same stress time, the POD activity was different under different NaCl
concentrations. At 6 days of salt stress, the POD activity increased with an increase in
NaCl concentration, and only the concentration of 300 mmol/L increased significantly
compared with the control, with an increase of 33.33%. With the extension of stress time,
the POD activity increased at first and then decreased. At the same salt stress level, with
the extension of stress time, the POD activity showed an increasing trend at 50 mmol/L,
whereas it first increased and subsequently decreased at 100 mmol/L–300 mmol/L, among
these concentrations, 100 mmol/L treatment reached the maximum at 18 days of salt stress,
and the other concentrations reached the peak at 12 days (Figure 5B).

At the same stress time, the trend in the CAT activity was similar to that of SOD, which
increased at first and subsequently decreased with an increase in NaCl concentration. On
the 6th day, the activity was the highest at 200 mmol/L. On the 12th, 18th, and 24th days
after the treatment, the CAT activity reached the peak at a concentration of 100 mmol/L
NaCl, with a significant difference between the control and treatments. At 24 days of
stress, the CAT activity under 200 and 300 mmol/L showed a decrease compared with the
control, however, the difference was insignificant. At the same level of salt stress, the CAT
activity increased and subsequently decreased with an extension in stress time, and the
CAT activity at 50 mmol/L concentration reached the peak after 18 days, and the other
concentrations reached the maximum after 12 days (Figure 5C).
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Figure 5. Effect of salt stress on the activities of antioxidant enzymes in leaves of J. microcarpa L.
seedlings. (A) Superoxide dismutase (SOD) activity, (B) peroxidase (POD) activity, and (C) catalase
(CAT) activity of leaves. Error bars indicate the SD of treatment means. Different letters on the bars
indicate significant differences among the treatments (p < 0.05).

2.8. Effects of Salt Stress on Endogenous Hormones

As shown in Figure 6A, different NaCl treatment conditions significantly affected the
content of IAA in J. microcarpa L. leaves. At 6 days of stress, the IAA content increased at
first and subsequently decreased with an increase in salt concentration, and the highest
IAA content was found at 100 mmol/L. At 12 days of stress, the IAA content in the leaves
showed an increase followed by a decrease, in which the IAA content at 50 mmol/L and
100 mmol/L were not significantly different, and both were significantly higher than the
control, whereas the IAA contents of other salt treatments were slightly lower than the
control. At 18 days of stress, the IAA content increased at 50 mmol/L treatment compared
with the control and significantly decreased under the other salt treatments. At 24 days
of stress, the IAA content showed a decreasing trend, and the IAA content under each
salt treatment content was significantly lower than that of the control. Under the same
salt treatment, the IAA content showed an overall decreasing trend with an increase in
the stress time. It showed that higher concentration and prolonged salt stress treatment
significantly reduced the IAA content in the leaves.
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Figure 6. Effect of salt stress on endogenous hormones of J. microcarpa L. seedlings. (A) Indole-3-acetic
acid (IAA), (B) abscisic acid (ABA), (C) gibberellic acid 3 (GA3), and (D) zeatin riboside (ZR) of the
leaves. Error bars indicate the SD of treatment means. Different letters on the bars indicate significant
differences among the treatments (p < 0.05).

Changes in the ABA content were significantly different among different concentra-
tions of NaCl treatment. Under the same treatment time, the ABA content in the leaves
generally showed an increasing trend with an increase in the salt concentration. In addition,
the ABA content under each salt treatment was significantly different compared with the
control. At 50 and 100 mmol/L concentrations, the ABA content increased at first and then
decreased with the prolonged stress time. At 200 and 300 mmol/L concentrations, the ABA
content increased with prolonged stress time, but the rate of increase was delayed in the
later stages of treatment (Figure 6B).

Different NaCl treatments exerted significant effects on the GA3 content in the leaves.
At 6 days of salt stress, with an increase in salt concentration, the GA3 content in the leaves
increased and then decreased, and the highest GA3 content was found under 50 mmol/L
salt treatment; the GA3 content was significantly decreased at 200 and 300 mmol/L com-
pared with the control. Under the other three treatment times, the GA3 content showed
an overall decreasing trend, and the difference was significant compared with the control.
Under the same salt treatment, the GA3 content at 50 and 100 mmol/L salt treatment
showed a decreasing trend with an extension of the stress time, and the GA3 content under
200 and 300 mmol/L increased at first and subsequently decreased, with unstable changes
(Figure 6C).

Different NaCl treatment conditions exerted significant effects on the ZR content in
the leaves. At 6 or 12 days of salt treatment, the contents of ZR and IAA showed similar
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responses. At 18 days of salt stress, the ZR content in the leaves showed a decreasing trend
with an increase in salt concentration, and the differences among treatments were significant.
At 24 days of salt stress, the ZR content decreased with an increase in salt concentration,
and the ZR content in the seedlings at 200 and 300 mmol/L NaCl concentrations was
significantly lower than that in the control, but the ZR content was not significantly different
between the two treatments. Under the same salt treatment, the ZR content showed an
overall decreasing trend an extension of stress time (Figure 6D).

2.9. Correlation Analysis

Correlation analysis was performed on the growth and final physiological indexes
of J. microcarpa L. seedlings under salt stress (Figure 7). Results showed that H∆, DWS,
and PDW were positively correlated with Chl a + b, Pn, Tr, IAA, and GA3, but negatively
correlated with REC, MDA, and ABA. The chlorophyll content was significantly correlated
with photosynthetic parameters, and negatively correlated with REC, MDA, and Pro.
MDA is a product of membrane lipid peroxidation, and REC reflects the cell membrane
permeability, REC was highly significantly correlated with MDA. In addition, we observed
a highly significant negative correlation between ABA and IAA, GA3, and ZR. In general,
growth indicators are closely linked to changes in physiological indicators. When plants
are subjected to salt stress, growth decreases while regulating the content of different
substances in the plants to maintain normal functions.

Figure 7. The correlation heatmap of every single index. * means significantly correlation, p < 0.05; **
means extremely significantly correlation, p < 0.01. Abbreviations of the corresponding indicators are
shown in Figures 1–6.
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3. Materials and Methods
3.1. Plant Materials and Growth Conditions

The current-year seedlings of J. microcarpa L. were used as experimental materials. On
2 January 2021, seeds of uniform size and with no infestation with pests and diseases were
selected and placed in a 60 L plastic bucket filled with a certain volume of clean water
(the water surface was higher than the seeds). The seeds were soaked for 7 days, and the
water was changed once a day. After the water was completely absorbed, the seeds were
stored in sand and stratified to accelerate the germination process. On 9 April 2021, the
seeds that had been stored in the sand for 3 months were sown in plastic pots of 18 cm in
upper diameter and 25 cm in height with a substrate of peat soil, perlite, and vermiculite
(3:1:1 v/v), one seed per pot. The seeds were cultured in the greenhouse of the Chinese
Academy of Forestry, China (latitude 40◦0′10′′ N, longitude 116◦14′38′′ E, altitude 61 m).
The greenhouse culture conditions included an average temperature of 25 ◦C, not higher
than 30 ◦C during the day and not lower than 14 ◦C at night, with a transmittance of 50–60%
and an average relative humidity (RH) of 55~85%. On 6 May, a few seeds began to emerge,
and by 24 May, the emergence rate reached 80%. The seedlings were managed with normal
water and fertilizer during the growth period.

3.2. Experimental Design

In early August, the seedlings were cultured for around 2 months, and the average
plant height of each seedling was 58 cm, the average ground diameter was 4.5 mm, and
the average number of compound leaves was 12. Finally, healthy seedlings with consistent
growth were selected for NaCl stress treatment. Five salt gradients (0, 50, 100, 200, and
300 mmol/L) were set, and each gradient was divided into three groups of four plants
each, with a total of 60 seedlings. During the treatment, the salt solution was applied once
a week at the set NaCl concentration (15 August, 22 August, 28 August, and 3 September),
each 300 mL, a total of 1200 mL. To prevent the leakage of salt solution, a suitable-sized
tray was placed at the bottom of the pot, and the salt solution leaking out of the tray was
poured back into the pot. In the morning of 6, 12, 18, and 24 days after salt stress, that is, the
morning of 21 August, 27 August, 2 September, and 8 September, the 1–2 pairs of functional
leaves of the upper and middle compound leaves were selected to measure photosynthetic
indices and related physiological indexes.

3.3. Determination of Morphology and Growth Parameters

Before the salt stress treatment, three seedlings with consistent growth were randomly
selected from each group, and their seedling height H0 (measured with a tape measure, cm)
and ground diameter D0 (measured with a Vernier caliper, mm) were measured. After the
experiment, the seedling height H1 and ground diameter D1 were measured again, and
the increment in seedling height H∆ = H1 − H0 and that in ground diameter increment
D∆ = D1 − D0 were calculated. At the end of the treatment, the seedlings of each treatment
group were divided into the aboveground and underground parts, washed, and dried,
and their fresh weight was calculated. Next, these were placed in an oven at 105 ◦C for
30 min and transferred to 75 ◦C to dry weight; its dry weight was calculated as plant dry
weight (PDW) = dry weight of shoot (DWS) + dry weight of root (DWR), root to shoot ratio
(R/S) = dry weight of root (DWR)/dry weight of shoot (DWS). The morphological changes
in plants were observed and recorded on the 6th, 12th, 18th, and 24th days after salt stress.

3.4. Determination of Physiological and Biochemical Indicators
3.4.1. Determination of the Chlorophyll Content

The leaf pigment content was extracted with 95% (v/v) ethanol by referring to the
method described by Zhu et al. [21]. The absorbance was measured at 665 and 649 nm
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(A665 and A649). The contents of chlorophyll a (Chl a), chlorophyll b (Chl b), and total
chlorophyll (Chl a+b) were calculated using the following equations.

Chl a (mg/L) = 13.95 A665 − 6.88 A649

Chl b (mg/L) = 24.96 A649 − 7.32 A665

Chl a + b (mg/L) = 6.63 A665 + 18.08 A649

3.4.2. Determination of Photosynthetic Parameters

The photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr) and
intercellular CO2 concentration (Ci) of the first and second pairs of functional leaves in
the middle and upper compound leaves were measured using a Li-6400 photosynthesis
apparatus from 9:00 to 11:00 a.m. on a sunny day. The concentration of CO2 was set to
400 µmol mol−1, and the light intensity was 1200 µmol m−2 s−1. A standard leaf chamber
was used, the open gas path was adopted, and the flow rate was set to 500 µmol s−1.

3.4.3. Determination of Relative Electrical Conductivity

Relative electrical conductivity (REC) was measured using a DDS-11C conductivity
meter and assessed according to the method described by Ghalati et al. [22]. The first
two pairs of functional leaves of the upper and middle compound leaves of seedlings
were collected, washed, and wiped with deionized water, 0.1 g of it was weighed after
removing the main veins and leaf margins and incubated in a 100 mL of water bath (40 ◦C,
30 min), and subsequently, the electrical conductivity R1 was measured. The samples were
treated in a boiling water bath for 15 min, and the conductivity R2 was measured again
after natural cooling. The REC was used to indicate the cell membrane permeability. The
calculation formula used was as follows:

REC (%) = R1/R2 × 100

3.4.4. Determination of Malondialdehyde Content

The malondialdehyde (MDA) content was determined using the thiobarbituric acid
(TBA) method [23]. Briefly, fresh leaves were weighed and extracted in 5 mL of 5% (w/v)
trichloroacetic acid (TCA) solution. The supernatant was centrifuged at 10,000 r/min at 4 ◦C
for 10 min. To the supernatant obtained, 2 mL of the TBA solution was added, mixed, and
boiled in a water bath for 30 min, rapidly cooled, and centrifuged. The absorbance of the
supernatant was read at 450, 532, and 600 nm. The MDA content was calculated as follows:

C = 6.45 × (A532 − A600) − 0.56 × A450

MDA content (µmol/g FW) = C × V2 × V/(m × V1 × 1000)

where C represents MDA concentration in the extract (µmol/L); V represents the total
volume of extract (mL); V1 represents the volume of extracted liquid reacting with TBA
(mL); V2 represents the total volume of extract and TBA reaction solution (mL); m represents
the fresh weight of the samples (g).

3.4.5. Determination of Proline Content

The content of proline (Pro) was determined according to the ninhydrin reaction
method [24]. In total, 0.1 g of samples were homogenized in 2.5 mL of 3% sulfosalicylic
acid solution, and the homogenate was centrifuged at 10,000 rpm for 5 min. The extracted
solution (2 mL) was treated with 2 mL of acid ninhydrin and 2 mL of glacial acetic acid
and heated for 30 min at 100 ◦C. Next, 4 mL of methylbenzene was added to the solu-
tion after cooling to extract the mixture. Using methylbenzene as the blank control, the
absorbance values were recorded using the UV–Vis spectrophotometer (Beijing Purkinje
General Instrument Co., Ltd., Beijing, China) at 520 nm.
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3.4.6. Determination of Soluble Sugar Content

The content of soluble sugar (SS) was determined by anthrone colorimetry [25,26].
Samples were extracted with 5 mL of distilled water at 100 ◦C for 30 min, after which
the supernatant was collected. Next, 0.5 mL of the sample extract was placed in a test
tube, 1.5 mL of distilled water, 0.5 mL of anthrone reagent (1 g anthrone and 50 mL ethyl
acetate), and 5 mL of concentrated sulfuric acid were added, and the solution was shaken
thoroughly. The test tube was immediately placed in boiling water for 1 min, removed,
and cooled to room temperature naturally. The SS content was analyzed through UV–Vis
spectrophotometer (Beijing Purkinje General Instrument Co., Ltd., Beijing, China) at 630 nm.

3.4.7. Determination of Activity of Antioxidant Enzymes

Antioxidant enzymes were extracted by the method of Khalid et al. [27] with slight
modifications. Briefly, 0.3 g of the sample was weighed and 3 mL of sodium phosphate
buffer (pH 7.8) was added. Next, it was centrifuged at 10,000 r/min at 4 ◦C for 10 min, and
the supernatant was taken as the enzyme extraction solution. The supernatant was collected
and used to determine the superoxide dismutase (SOD) and peroxidase (POD) activities.

The SOD activity was determined according to the method described by Liu et al. [26]
and Khalid et al. [27], with certain modifications. A total of 0.05 mL of the enzyme extract
was taken in a test tube, following which 1.5 mL of the phosphate buffer (pH 7.8), 0.3 mL
of methionine, 0.3 mL of NBT, 0.3 mL of EDTA-Na2, 0.3 mL of riboflavin, and 0.25 mL
of distilled water were added in order, totaling 3 mL. Among these, the same volume of
phosphate buffer was used to replace the enzyme extract for the blank control group. The
tubes were placed under 4000 Lx fluorescent lamps for 30 min. After the reaction was over,
the lamps were turned off, and the tubes were incubated in the dark for analyses. The
SOD activity was determined by monitoring the decrease in the absorbance (560 nm) of the
nitroblue tetrazolium (NBT) by the enzyme. The SOD activity was calculated as U/g FW
(unit of enzyme activity per gram of fresh weight).

The POD activity was determined using the guaiacol method [10,28]. Briefly, 50 mL
of PBS (0.2 mol/L, pH 6.0) was added to 28 µL of guaiacol. The reaction solution was
obtained by heating and stirring to dissolve; after cooling, 19 µL of H2O2 was added to the
reaction solution. The mixture was afterward stored in a refrigerator for further use. Next,
3 mL of the reaction solution was taken, and 40 µL of the enzyme solution was added. PBS
served as the blank, and the absorbance values of solutions were measured at 470 nm. One
unit of the POD activity was expressed as the change in the absorbance per min.

The catalase (CAT) activity was measured using a CAT assay kit (Solarbio, Beijing,
China). Briefly, 0.1 g of the material was homogenized in an ice bath by adding 1 mL of
the extraction solution and centrifuged at 8000× g for 10 min at 4 ◦C. The supernatant was
removed and placed on ice for measurement. The microplate reader was preheated for over
30 min, the wavelength was adjusted to 240 nm, and the distilled water was transferred
to zero. Next, 10 µL of the sample and 190 µL of the working liquid were added to a
96-well plate and immediately mixed; the initial absorption values A1 under 240 nm and
A2 after 1 min were recorded and calculated ∆A = A1 − A2. The catalytic degradation of
1 µmol H2O2 per minute per g of material in the reaction system was defined as an enzyme
viability unit.

3.4.8. Determination of Endogenous Hormones

A certain amount of plant leaves was weighed and homogenized in an ice bath with
PBS (0.01 mol/L, pH 7.2–7.4). The weight of the sample weighed is not less than 50 mg;
generally, 1 g is taken as the benchmark. The proportion of homogenate is chosen to be
10%, which is equivalent to 1 g of tissue plus 9 mL of solution for homogenization. The
homogenate was centrifuged for 20 min at 2000–3000 rpm, and then the supernatant was
taken to be tested.

Indole-3-acetic acid (IAA), abscisic acid (ABA), gibberellic acid 3 (GA3), and zeatin
riboside (ZR) were detected by enzyme-linked immunosorbent assay (ELISA), following
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the manufacturer’s instructions (Jiangsu Jingmei Biological Technology Co., Ltd., Yancheng,
China).

3.5. Statistical Analysis

After the data were preprocessed with Microsoft Excel 2019, version, 2207 (Microsoft
Corp., Washington, DC, USA), ANOVA analysis and Duncan’s multiple comparisons were
performed using IBM SPSS Statistics, version 23 (International Business Machines Corp., Ar-
monk, NY, USA) p < 0.05), analyzed with Origin 2018, and plotted the changes in indicators.
SPSS 23.0 was used to analyze the growth indicators and final physiological indicators of
J. microcarpa L. under salt stress by Pearson’s correlation analysis. The correlation between
each indicator was compared, and the correlation heat map was drawn using ChiPlot
(https://www.chiplot.online/) (accessed on 7 August 2022).

4. Discussion

The morphological characteristics of plants visually reflect their growth status, which
is an important index of plant salt tolerance [8,29]. The salt tolerance of two pistachio
rootstock varieties by Rahneshan et al. [24] and four kiwifruit genotypes by Abid et al. [8]
showed a series of salt damage symptoms such as yellowing, withering, and abscission of
leaves to varying degrees under salt stress. When plants were subjected to external stresses,
their physiological indexes will change, thus characterized in their external morphology
so that morphological characteristics are the most intuitive manifestations of plants under
environmental stress. During the early stage of stress, no obvious symptoms of salt damage
were observed in J. microcarpa L. With an extension of stress time, the leaves of different
treatments showed yellowing, withering, curling, and shedding due to a decrease in the
content of Chl a, Chl b, and Chl a+b—the most important pigments synthesized by plants
through photosynthesis. At 12 days of stress, salt damage symptoms already appeared
at 200 and 300 mmol/L concentrations, and the salt damage symptoms first appeared
on the lower old leaves of the plant. At 100 mmol/L and below, salt damage symptoms
appeared later and to a lesser extent, whereas above 100 mmol/L, salt damage symptoms
were significant and plants were more severely affected.

The changes in plant growth indexes and biomass are the comprehensive manifesta-
tion of plant response to salt stress [30,31]. Our study showed that with an increase in salt
concentration, H∆, D∆, DWS, and DWR of J. microcarpa L. seedlings decreased, indicating
that salt stress inhibited the growth and accumulation of biomass. Although salt stress at
50 mmol/L and 100 mmol/L did not have a significant effect on seedlings, it exerted an
inhibitory effect to a certain extent. Moreover, salt stress of 200 mmol/L and above signifi-
cantly inhibited the growth of seedlings. Ion toxicity and nutrient imbalance are among
the most important reasons for reduced plant growth under high salinity [32]. In addition,
soluble salts in the soil increase the osmotic pressure and decrease the total soil water poten-
tial, thus reducing water uptake by the roots, which also ultimately leads to a reduction in
plant growth parameters [33]. In the present study, we measured photosynthetic rate and
stomatal conductance, which showed a decreasing trend with the deepening of salt stress.
It has been shown that under stress conditions, plants close their stomata to prevent water
loss by transpiration, and this mechanism limits the assimilation of CO2, which slows down
the photosynthetic process and limits plant growth [34]. Induced stomatal closure under
salt stress is a physiological mechanism for plants to reduce or avoid salt injury. One of
the reasons for the decrease in growth parameters in this study could be due to the closure
of the stomatal, reduced carbon dioxide emissions and photosynthetic efficiency [33,35].
The literature has reported that salinity could increase the R/S ratio because salinity can
rapidly inhibit shoot growth while maintaining root growth [36]. Consistent with this,
although salt stress inhibited the growth of the aboveground and underground parts of
J. microcarpa L. seedlings, the R/S ratio increased, indicating that the aboveground part
was more severely affected than the underground part. This plant response to improve the

https://www.chiplot.online/
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R/S ratio by changing the biomass allocation patterns is one of the primary strategies of
plants to adapt to stresses [37].

Chlorophyll, as the most basic photosynthetic pigment in plants, is involved in the
absorption, transmission, and transformation of light energy, and its content is an impor-
tant indicator reflecting the strength of photosynthesis [24,38]. With an increase in the
salt concentration and prolonged stress time, Chl a, Chl b, and Chl a+b contents in the
seedings showed an overall decreasing trend, which could be attributed to the damage
to the chloroplast structure caused by salt stress, and the activity of chloroplast enzymes
increased, which promoted the breakdown of photosynthetic pigments [5,21]. The decrease
in chlorophyll concentration indicated oxidative damage to chloroplasts, which ultimately
led to a significant decrease in CO2 assimilation rate and non-stomatal restriction of photo-
synthesis [12]. Our results were similar to the findings of Dichala et al. [2] that chlorophyll
was reduced as NaCl concentrations increased.

Ordinarily, photosynthesis has been recognized as a source of material and energy for
their growth. Many studies have concluded that the reduction in photosynthetic rate (Pn)
under NaCl stress is the result of several physiological responses, including reductions in
stomatal conductance (Gs), transpiration rate (Tr), chlorophyll, and carotenoid contents,
or a combination of these parameters [39,40]. In general, the first physiological response
to salt stress is to avoid water loss through transpiration, which is achieved by a decrease
in Gs value due to stomatal closure [40]. At the early stage of salt stress (6 d and 12 d), Pn,
Tr, Ci, and Gs of J. microcarpa L. leaves decreased with an increase in salt concentration,
indicating that it could be attributed to stomatal closure; this is similar to the findings of
Lu et al. [40] and Yuan et al. [41]. Notably, with the prolongation of salt stress (24 d), Pn,
Gs, and Tr decreased, while Ci increased with an increase in salt concentration. A similar
result was found in salt-stressed melon as well [39]. This change in photosynthetic indexes
at high salt concentrations may be caused by nonstomatal limiting factors [40,42]. After
salt stress, J. microcarpa L. is affected by both stomatal and non-stomatal limitation, which
reduces photosynthesis, and the dynamic changes between stomatal and non-stomatal
limitation change with salt concentration and stress time.

The membrane system of plants is the first site to sense the damage under stress condi-
tions such as salt stress. Damage to the cell membrane system is manifested as membrane
lipid oxidation reactions, resulting in increased cell membrane permeability and elevated
REC. MDA is one of the products of membrane lipid peroxidation in plants, such that REC
and MDA are two important physiological indexes of the extent of plant damage under
stress conditions [12,21]. Studies have shown that MDA affects the structure of thylakoid
membrane and leads to the degradation of chlorophyll, thus affecting photosynthesis in
plants [43]. At the same time, MDA, a product of membrane lipid peroxidation, also has
a feedback effect on the antioxidant protection system of cells and affects its antioxidant
enzyme activity [22]. Yang et al. [44,45] monitored MDA content in leaves as an indicator
of abiotic stress pressure on J. regia. In this study, under low concentration of salt stress
(50–100 mmol/L NaCl), MDA content in J. macrocarpa L. seedlings increased slowly, which
might be due to the low concentration of salt stress promoting the activity of antioxidant
enzymes, which reduced the damage to the cell membrane system. However, with the
increase in salt concentration and the prolongation of stress time, MDA content increased
significantly. The variation of REC is similar to MDA. This indicates that the high concen-
tration of NaCl suggests the seedlings already have cell membrane lipid peroxidation, the
function of the antioxidant system of the cell membrane is weakened, and the degree of
cell membrane damage is increased, which affects the physiological metabolic process of
J. macrocarpa L.

Under salt stress, plants can synthesize and accumulate organic osmolytes in excess
amounts to ensure plant tolerance against osmotic stresses [8]. Previous studies have shown
that proline is a compatible osmolyte accumulated by many plants and microorganisms
in response to osmotic stress caused by salinity and drought [29,46]. The accumulation of
proline helps in membrane stability, which in turn mitigates the adverse effect of NaCl on
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cell membrane disruption [47]. In this study, the overall trend of Pro content in J. microcarpa
L. seedlings increased with an increase in salt concentration and prolonged stress time,
which is consistent with the results of other studies on environmental stresses such as
salinity stress on citrus rootstocks [47], water and salinity stress on late-bearing walnut [48]
and acid stress on five citrus rootstocks [21]. Under prolonged high salt stress, Pro content
increased significantly, indicating that although high salt stress accelerated the peroxidation
of membrane lipids, promoted the accumulation of peroxidation products of MDA, and
cell membrane damage, J. microcarpa L. could alleviate the osmotic stress to a certain extent
by increasing Pro content. Recent studies have shown that SS play a key role in plants’
osmotic adjustment, such as maintaining cell turgor, water uptake and transport under
stressful conditions [48,49]. In this study, with the increase in the salt concentration and
stress time, the SS content increased at first, followed by a decrease. Under the conditions
of pre- and mid-salt stress and medium- and low-concentration NaCl stress, SS, as an
osmotic adjustment substance, maintained the proper osmotic potential level by increasing
its own content, slowing down cell water loss, and reducing stress injury. However,
under prolonged and relatively high NaCl stress conditions, the SS in plants underwent
decomposition, and the level of decomposition was greater than the level of synthesis, thus
reducing the total amount of SS, weakening plant resistance, and aggravating injury, thus
reducing salt stress resistance.

Under normal conditions, the contents of superoxide anion radicals (O2−), singlet
oxygen (O2), hydrogen peroxide (H2O2), and hydroxyl radicals (OH−) in plant cells are very
low, and the intracellular ROS production and scavenging are in dynamic equilibrium [21].
However, stress conditions disrupt this equilibrium, and ROS in plants accumulate in
large amounts, and disrupted normal metabolism through oxidative damage to lipids,
proteins and nucleic acids in the absence of any protective mechanism [5]. Therefore,
under stress conditions, a series of antioxidant enzymes (such as CAT, SOD, and POD)
are generated following the accumulation of ROS in plants to eliminate the excess ROS.
The equilibrium between the effective production and elimination of ROS can be used
as secondary messengers to abiotic stresses, and could be used to evaluate the tolerance
of plants [9,21]. The results showed that with an increase in salt concentration and the
extension of stress time, the SOD and CAT activities showed an overall trend of the first
increase, followed by a decrease. During the early stage of stress, the enzyme activity
increased greatly compared with the control with an increase in salt concentration. During
the late stage of stress, the increase in enzyme activities was small. During the late stage
of stress, with a decrease in enzyme activities, SOD and CAT activities were still higher
than the control at concentrations below 200 mmol/L, and on the 28th day, the enzyme
activities were lower than the control at 200 and 300 mmol/L. During the early stage of
stress, the POD activity increased with an increase in salt concentration. During the late
stage of stress, the POD activity increased, followed by a decrease with an increase in the
salt concentration, reaching a peak at 100 mmol/L. On the 28th day, the enzyme activity
was lower than that of the control at 300 mmol/L. The above results showed that under salt
stress, the antioxidant capacity of J. microcarpa L. was enhanced to scavenge excessive ROS
and reduce the damage of ROS on cell membranes, and within a certain range, the activities
of SOD, POD, and CAT were higher, and each oxidative enzyme could prevent the damage
caused by harmful substances such as reactive oxygen species. However, prolonged or high
salt stress exceeded the tolerance range of J. microcarpa L. seedings, decreasing the ability
to scavenge peroxide radicals, and causing an imbalance in the plant’s own metabolism
and a decrease in enzyme activity, and the growth of J. microcarpa L. became worse. These
findings are consistent with those of Wang et al. [23] and Liu Hao et al. [3].

Plant hormones, also known as phytohormones, are small chemicals that play a crucial
role in plant growth and development [15]. Under stress conditions, plants can control
growth rhythms and metabolic activities by regulating the content of hormones in the
bodies to ensure normal maintenance of physiological functions and successful adaptation
to the external stressful environment [15,50]. The study by Sachs [51] had reported that the
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allocation of dry matter to plant tissues is essentially controlled by plant hormones. In the
present study, both the increase of ABA and decrease of GA3 in J. macrocarpa L. seedling
leaves could lead to the inhibition of leaf growth under t salt stress. This was also indicated
by the significant correlation between ABA, GA3 and biomass. Consistent with the results of
the present study, a relationship between ABA and biomass regulation under salt stress was
also shown in cotton plants [7] and tomato plants [52]. Under abiotic stress such as drought
and salt, ABA rapidly accumulate in the plants to regulate functions such as the closure of
stomata, reduction of transpiration rate, and water loss, consequently reducing the damage
caused by salt stress [16,53,54]. In this study, the IAA content in the leaves increased at first
and subsequently decreased with an increase in stress concentration during the early stage
of stress, whereas the IAA content showed a downward trend with an extension in the
stress time. This indicates that low salt stress does not pose a serious threat to the growth of
plants. In the present study, ABA was increased under salt stress and there was a significant
negative correlation between Gs and ABA. This result indicates ABA could be involved in
Gs regulation in J. macrocarpa L. in response to salinity. The contents of GA3 and ZR showed
an overall decreasing trend with the deepening of salt stress, and there was a significant
positive correlation between GA3, IAA and Gs. Previous studies have demonstrated that,
in addition to ABA, other phytohormones, including auxin, gibberellin, cytokinin and
ethylene, could also be involved in stomatal regulation under stress [7,55]. It has also been
suggested that the changed phytohormonal balance might be a factor directly involved in
stomatal regulation [56]. Ma et al. [7] also indicated that both leaf ABA and leaf GA3 could
be involved in Gs regulation. These results indicating that both ABA, GA3 and IAA might
be involved in the regulation of Gs in J. macrocarpa L. Nevertheless, to date it remains largely
elusive about the interaction effects of phytohormones such as ABA, IAA, GA3 and ZR
on stomatal movements when plants exposed to salt stress, and further investigations are
needed. In general, under salt stress conditions, J. microcarpa L. promotes the production of
ABA while inhibiting the synthesis of IAA, GA3, and ZR through coordination of multiple
hormones, thereby comprehensively regulating the growth and development of plants and
their physiological and biochemical responses after salt stress.

5. Conclusions

All physiological indexes of J. microcarpa L. showed a certain response to salt stress.
Under salt stress, J. macrocarpa L. seedlings alleviate osmotic stress by increasing the content
of osmotic adjustment substances; maintaining the balance of reactive oxygen species in
the body and reducing the oxidative damage by increasing the activities of antioxidant
enzymes. And regulating their physiological metabolism and growth through mutual
coordination of multiple hormones, thereby, enhancing their salt tolerance. The analysis of
the growth status and physiological and biochemical indexes revealed that J. microcarpa L.
seedings displayed a certain level of salt tolerance, and it showed tolerance of salt stress
with 100 mmol/L NaCl. However, under high salt stress ranging from 200 to 300 mmol/L,
the growth of J. microcarpa L. was severely affected and inhibited.
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