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Abstract: Wall-associated kinases/kinase-likes (WAKs/WAKLs) are plant cell surface sensors. A va-
riety of studies have revealed the important functions of WAKs/WAKLs in regulating cell expansion
and defense in cells with primary cell walls. Less is known about their roles during the development
of the secondary cell walls (SCWs) that are present in xylem vessel (XV) and interfascicular fiber (IF)
cells. In this study, we used RNA-seq data to screen Arabidopsis thaliana WAKs/WAKLs members that
may be involved in SCW development and identified WAKL8 as a candidate. We obtained T-DNA
insertion mutants wakl8-1 (inserted at the promoter region) and wakl8-2 (inserted at the first exon)
and compared the phenotypes to wild-type (WT) plants. Decreased WAKL8 transcript levels in stems
were found in the wakl8-2 mutant plants, and the phenotypes observed included reduced stem length
and thinner walls in XV and IFs compared with those in the WT plants. Cell wall analysis showed no
significant changes in the crystalline cellulose or lignin content in mutant stems compared with those
in the WT. We found that WAKL8 had alternative spliced versions predicted to have only extracellular
regions, which may interfere with the function of the full-length version of WAKL8. Our results
suggest WAKL8 can regulate SCW thickening in Arabidopsis stems.

Keywords: wall-associated kinases (WAKs)/kinase-likes (WAKLs); secondary cell wall (SCW); cell
wall integrity (CWI); cellulose; lignin

1. Introduction

Plant cell walls are functional dynamic networks that can both maintain integrity and
react to intra- and extracellular stimuli [1–3]. Plant cells have complex and precise cell
wall sensing networks that facilitate the cell wall modifications appropriate for growth
and in response to environmental conditions. Numerous cell wall integrity (CWI) sensors
have been proposed, and include arabinogalactan-proteins (AGPs), glycosylphosphatidyli-
nositol (GPI)-anchored proteins (GPI-APs), DEFECTIVE KERNEL1 (DEK1), receptor-like
kinase (RLK) family members including Catharanthus roseus receptor-like kinase (CrRLK1L),
leucine-rich repeat receptor kinases (LRR-RLKs), L-lectin RLKs, plant external response-like
kinases (PERKs), lysine-motif containing receptor-like kinases (LysM-RLKs), and wall-
associated kinases/kinase-likes (WAKs/WAKLs) [1,4–12]. In general, RLKs, mechanosen-
sors/channels, and glycoproteins are the major categories of CWI sensors that can in-
tersect with other wall regulatory pathways, including hormones and reactive oxygen
species (ROS).

One of the most well-characterized CWI sensors is the CrRLK1L kinase FERONIA,
which interacts with extracellular signal peptides and RALFs, and can regulate cell growth,
female gametophyte development, and defense via downstream signaling pathways that
intersect with ROS production, calcium, and mitogen-activated protein kinases (MPKs) [13].
Other RLKs proposed to be CWI sensors include THE1, shown to regulate cellulose-
deficiency-induced stress responses, and WAKs/WAKLs that can interact with pectin/pectin
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fragments and regulate cell growth and defense [9,13]. WAK/WAKL family members share
common structures of an N-terminal carbohydrate binding domain (CBD), epidermal
growth factor 2-like (EGF2-like) domain, calcium binding EGF (EGF-Ca2+) domain, trans-
membrane domain (TMD), and intracellular Ser/Thr protein kinase sites (PK) [14,15].
Members of the WAKs/WAKLs family have been shown to be covalently linked with
either cell wall pectin or pectic fragments and to trigger downstream signaling pathways
involving different MPKs [9,14,16–19]. The WAKs/WAKLs family has been shown to play
important functions in regulating plant growth, development, and resistance to pathogens
in a variety of plant species, including Arabidopsis, maize, rice, and cotton, by associ-
ating with primary cell walls [20–31]. However, the role of WAKs in regulating SCW
development is still poorly understood.

The secondary cell wall (SCW) of the stem xylem vessel (XV) and the interfascicular
fiber (IF) cells constitute the major components of renewable resources and are impor-
tant structures for plant growth, development, and response to stresses [32]. Cellulose,
xylan, and lignin are major polymers of SCWs, with (glycol) proteins as a minor compo-
nent [32]. The initiation and development of SCW are regulated by transcription factor
hierarchies [33]. In addition, environmental stimuli such as blue light, cold stress, and me-
chanical stress have also been suggested to integrate with transcription factors to regulate
SCW development [34–37]. Fasciclin-like arabinogalactan-protein 11 (FLA11) was shown
to be SCW-specific, and overexpression FLA11 (OE-FLA11) showed the early initiation and
altered composition of SCWs, leading to proposed roles as a CWI sensor involved in sensing
mechanical stimuli [36]. However, the role(s) of CWI sensors regulating SCW development
is still poorly understood. Recently, functions for WAKs/WAKLs in regulating SCW devel-
opment have been suggested. The expression of a rice WAK, Xa4, is predominantly in stem
sclerenchyma cells and tightly correlates with SCW cellulose synthesis genes [38]. A large
family of WAKs with 175 members in the model tree species, Populus, used to study wood
formation, was also identified [39].

In this study, we screened the gene expression levels of WAKs/WAKLs in Arabidopsis
stems and identified WAKL8 as a putative candidate in regulating stem SCW development.
We obtained and phenotypically analyzed T-DNA insertion mutants of wakl8-1 and wakl8-2
and found that WAKL8 can regulate stem development, XV, and IF wall thickening. We
identified an alternative spliced version of WAKL8 predicted to encode a protein lacking
the EGF-Ca2+, transmembrane, and intracellular domains and proposed functions for
this variant.

2. Results
2.1. Identification of WAK/WAKL Family Genes during Stem Secondary Wall Development

The WAK/WAKL family in Arabidopsis consists of more than 27 members [40]. To
identify which members are potentially involved in SCW development, we used a combi-
nation of expression levels of WAKs/WAKLs in the RNA-seq data of OE-FLA11 plant stems
that showed earlier onset of SCW development than WT and Arabidopsis eFP browser
data to narrow the targets [36,41–43]. Ten WAKs/WAKLs were found to have altered tran-
script levels in OE-FLA11 young stems compared with WT plants: WAK1, WAK2, WAK3,
WAKL2, WAKL6, WAKL8, WAKL9, WAKL14, WAKL21, and WAKL22 (Figure 1a,b). The
RNA-seq data showed WAKs/WAKLs with more than 200 read counts and at least two-fold
changes in OE-FLA11 compared with WT plants: WAK1, WAK2, WAK3, WAKL6, WAKL8,
WAKL9, and WAKL14 (Figure 1a,b). WAKL8 (AT1G16260) was recently identified to be
expressed at vascular tissues and to play a role in regulating leaf phloem sucrose loading
via phosphorylating sucrose transporter 2 (SUC2) [44]. Q-PCR analysis was performed to
check WAKL8 expression levels in OE-FLA11 stems compared with WT stems and showed
consistent results with those of RNA-seq (Figure 2a). Comparison of WAKL8 expression
levels between the flower, silique, stem, and leaf showed WAKL8 was broadly expressed in
all tissues but higher in the leaves (Figure 2b). The eFP browser visualization of WAKL8
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expression in primary root showed higher levels in vasculatures than in other cell types
(Figure S1).
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Figure 1. Comparison of WAKs/WAKLs transcript levels in OE-FLA11 and WT stems. Analysis
of differentially expressed genes (DEGs) in OE-FLA11 stems compared with WT plants revealed
upregulation of WAKs (a) and WAKLs (b) WAK1, WAK2, WAK3, WAKL2, WAKL6, WAKL8, WAKL9,
WAKL14, WAKL21, and WAKL22, as shown by the relative read counts from RNA-seq.
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Figure 2. Q-PCR analysis of WAKL8 transcript levels in OE-FLA11 stems and expression profile in WT
tissues. (a) Q-PCR analysis showed upregulation of WAKL8 transcript in OE-FLA11 stems compared
with that in WT stems. (b) Q-PCR analysis showed WAKL8 is ubiquitously expressed in different
tissues but highest in leaves. Data shown as average ± SD. n ≥ 3 plants acquired from 3 biological
replicates. * Significant difference compared with WT plants, p < 0.05 using Student’s t-test.
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2.2. WAKL8 Can Regulate Plant Stem Growth

WAKL8 transcripts predict an N-terminal signal peptide followed by an extracellu-
lar polysaccharide-interacting domain (ECD), EGF-Ca2+ domain, single transmembrane
domain, and intracellular Ser/Thr kinase domain (Figure 3a). T-DNA insertion mutants
in WAKL8 were obtained for phenotypic analysis. The wakl8-1 and wakl8-2 mutants had
an insertion in the promoter region and in the first exon, respectively (Figure 3a). The
WAKL8 transcript level was slightly upregulated in wakl8-1 stems compared with that in
WT stems and decreased to about 20% of the WT levels in the wakl8-2 mutant (Figure 3b).
Observations of plant growth showed that wakl8-1 and wakl8-2 plants had different rosette
leaf shapes compared with the WT plants (Figure 3c), and mature wakl8-2 plants were
shorter than WT and wakl8-1 plants (Figure 3d). Measurements of blade length and width
showed wakl8-2 plants had a higher blade width and reduced length/width ratio than WT
and wakl8-1 plants (Figure 3e,f). Measurements of petiole length and width showed wakl8-1
and wakl8-2 plants had a higher petiole width than WT plants (Figure 3g), and wakl8-2
plants had a reduced length/width ratio compared with WT and wakl8-1 plants (Figure 3h).
Changes in SCWs are often revealed by defects in stem development. Measurements of
stem length of stage 6.9 plants [45] were also conducted, as this is where we observed that
SCW defects occurred and found that wakl8-1 plants had a similar stem length as WT plants,
whereas wakl8-2 plants had a significantly reduced stem length (Figure 3i).
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Figure 3. Identification of T-DNA insertions in WAKL8 and analysis of phenotypes of wakl8 mutant plants
compared with WT plants. (a) Schematic of the WAKL8 coding sequence showing the predicted protein
domains and position of the T-DNA inserts for both wakl8-1 and wakl8-2. The WAKL8 transcript is predicted
to encode an N-terminal signal peptide (yellow), followed by a putative extracellular polysaccharide-
interacting domain (green), epidermal growth factor-Calcium interacting domain (EGF-Ca2+) (blue),
single transmembrane domain (orange), and cytoplasmic Ser/Thr protein kinase domain (purple).
The T-DNA in the wakl8-1 mutant is inserted in the promoter region, and for the wakl8-2 mutant, the
T-DNA is inserted in the first exon. (b) Q-PCR analysis of WAKL8. Expression levels are relative to
ACT2 and show slightly increased WAKL8 transcript levels in wakl8-1 plants and decreased WAKL8
transcript levels in wakl8-2 plants compared with WT plants. Data shown as average ± SD. n ≥ 3 plants.
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(c) Representative image of WT, wakl8-1, and wakl8-2 mutant plants at stage 6.1 [45]. Scales: 1 cm.
(d) Representative image of WT, wakl8-1, and wakl8-2 mutant plants at stage 6.9 [45]. Scales: 10 cm.
(e–h) Quantification of leaf blade and petiole length and width of WT, wakl8-1, and wakl8-2 mutant
plants at stage 6.1. (i) Quantification of stem length of WT, wakl8-1, and wakl8-2 mutant plants at
stage 6.9. Stem length is significantly reduced in wakl8-2 mutant plants compared with that in WT
plants. Data shown as average ± SD. n ≥ 6 plants. * Significant difference compared with WT plants,
p < 0.05 using Student’s t-test.

2.3. Histological Analyses of wakl8-1 and wakl8-2 Mutant Stems

To investigate if changes at the tissue level could explain the reduced stem length
phenotype in wakl8-2 mutants, histological analysis was performed of cellular organization
in fresh stem sections taken at 1 cm above the base of plants at growth stage 6.5 [45]. Stem
sections showed wakl8-2 had slightly deformed and thinner XV walls compared with those
of WT plants (Figure 4). The wakl8-2 mutant also showed a reduced number of secondary
IF layers compared with those of WT plants (Figure 4). Deformed XVs were also observed
in wakl8-1, but the phenotype was less severe than in wakl8-2 plants (Figure 4 compares d–f
with g–i).
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Figure 4. Histological analyses of transverse sections at 1 cm from the stem base of WT, wakl8-
1, and wakl8-2 plants. Fresh stems of WT (a–c), wakl8-1 (d–f), and wakl8-2 (g–i) plants at growth
stage 6.5 [45] were sectioned and stained with Toluidine blue O. Thinner and slightly deformed
xylem vessel (XV) walls could be observed in mutants compared with WT plants (red arrows in (e,h)).
(j) Quantification of the number of XVs in stem transverse sections. (k) Quantification of primary and
secondary interfascicular fiber (IF; red brackets) layers in stem transverse sections. Scale bar = 200 µm
in (a,d,g), 20 µm in (b,c,e,f,h,j). Data shown as average ± SD acquired from three biological replicates.
* Significant difference compared with WT plants, p < 0.05 using Student’s t-test.
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2.4. WAKL8 Regulates Stem SCW Synthesis

Transmission-electron microscopy (TEM) of stems was used to investigate the changes
in the XV cell morphology and wall thickness of mutants. Both wakl8-1 and wakl8-2 mutants
showed slightly deformed XVs and thinner XV and IF walls compared with those of WT
plants (Figure 5a–g). The phenotypes in wakl8-2 plants were more severe than in wakl8-1
plants (Figure 5a–g). Crystalline cellulose and lignin content of stems were also measured
in mutants but showed no significant differences compared with those of WT plants at
stage 6.5 (Figures 5h, S2 and S3).
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Figure 5. Transverse stem sections imaged by transmission electron microscopy (TEM) and mea-
surement of stem crystalline cellulose and lignin contents. TEM imaging of xylem vessel (XV)
and interfascicular fiber (IF) walls from WT (a,b), wakl8-1 (c,d), and wakl8-2 (e,f) plants at growth
stage 6.5 [45]. Arrows indicate sites of collapsed XVs. Scale bar = 5 µm in (a–f). (g) Quantification of
XV and IF wall thickness. (h) Measurement of crystalline cellulose and lignin contents in stems. Data
shown as average ± SD acquired from three biological replicates. * Significant difference compared
with WT plants, p < 0.05 using Student’s t-test.

2.5. WAKL8 Has Alternative Spliced Transcripts

Sequencing of WAKL8 cDNA from Arabidopsis identified alternative spliced versions
of WAKL8 transcripts, which we named WAKL8A and WAKL8B. The WAKL8A transcript
is a full-length transcript with all predicted protein domains (Figure 6a). The WAKL8B
transcript showed part of the first intron expressed as an exon, which introduced a stop
codon before the predicted EGF-Ca2+ domain and is predicted to encode a truncated
WAKL8 protein that only contains the putative extracellular polysaccharide-interacting
domain (Figure 6a and Figure S4). Q-PCR analysis using primers recognizing either all
WAKL8 transcripts, only WAKL8A transcripts, or only WAKL8B transcripts was used to
compare the relative amounts of the different transcript versions in WT plants and mutants.
In the WT plants, the WAKL8A transcripts were present at higher levels (approximately
1000-fold) than the WAKL8B transcripts (Figure 6b–d). In the wakl8-1 mutants, WAKL8A
transcripts were increased compared with those in the WT plants (Figure 6b–d). In the
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wakl8-2 mutants, WAKL8A transcripts were significantly reduced compared with those
in the WT plants, and WAKL8B transcripts were present at similar levels, suggesting the
defects in SCW development in the wakl8-2 mutants were unlikely to be regulated by
WAKL8B transcripts (Figure 6b–d).
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Figure 6. Schematic representation of WAKL8 alternative spliced transcripts and Q-PCR analysis of
transcript levels. (a) The WAKL8A transcript encodes a predicted protein with an N-terminal signal
peptide (yellow), followed by an extracellular putative polysaccharide-interacting domain (green),
EGF-Ca2+ domain (blue), transmembrane domain (orange), and cytoplasmic kinase domain (purple).
The WAKL8B transcript has part of the first intron retained (red) and introduces a stop codon before
the predicted EGF-Ca2+ domain. Positions are shown of T-DNA insertion in WAKL8 to give wakl8-1
and wakl8-2 mutants and sites of primers used for Q-PCR analysis. (b) qPCR analyses of all WAKL8
transcripts, (c) WAKL8A transcripts, and (d) WAKL8B transcripts in WT, wakl8-1, and wakl8-2 mutant
plants. Data shown as average ± SD acquired from 3 biological replicates. * Significant difference
compared with WT plants, p < 0.05 using Student’s t-test.

3. Discussion

Cell wall strengthening can be initiated in response to environmental (abiotic/biotic)
stresses and is necessary for cells to acquire specific functions at defined spatiotemporal
stages of normal growth and development. Whether plant SCW development is regulated
by CWI mechanisms and what molecules and pathways are involved in this regulation
remain unclear [3,46]. Arabidopsis SCW cellulose synthase mutant plants cesa4, cesa7, and
cesa8 have enhanced resistance to the soil-borne bacterium P. cucumerina and necrotrophic
fungus R. solanacearum, indicating that CWI pathways can regulate the components of
the SCW through CESAs [47]. Mechanical stresses, such as either bending or leaning, can
induce reaction wood (RW) formation in either the lower (in gymnosperms, compression
wood) or upper (in angiosperms, tension wood) sides of the stem, which display altered
wall structure and chemical composition compared with nonstressed wood walls [48–50].
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A few putative CWI genes have been identified that may play roles in regulating SCW
sensing including FLAs, COBRA-Like 4, and homologues, Vascular-Related Receptor-Like
Kinase1 (AtVRLK1) [51–55]. Here, we show that WAKL8 functions in regulating SCW
development and is another candidate CWI sensor.

Phenotypic analysis of wakl8-2 mutant plants with decreased WAKL8 transcript levels
showed thinner XV and IF SCWs, suggesting a positive role of WAKL8 in regulating
stem SCW development (Figures 3–5). However, the wakl8-1 mutant that had T-DNA
insertion at the promoter region and increased WAKL8 transcript levels also showed a
mild phenotype of XV and IF SCW thickness (Figures 3–5). A possible explanation for
this unexpected result is that overexpression of WAKL8 may interfere with or silence other
WAKs/WAKLs, as there are at least 27 WAKs/WAKLs in Arabidopsis [15]. Generation of
overexpression lines and analysis of other WAKs/WAKLs will be needed in future studies
to clarify this inconsistency. The reductions in the numbers of XV and IF cells and decrease
in SCW thickness, together with the lack of change in either cellulose or lignin contents
(Figures 4 and 5) suggest that WAKL8 plays a role as a regulator of SCW differentiation
and development rather than specifically regulating either cellulose or lignin synthesis.

Mechanisms of how WAKL8 regulates stem SCW development remain to be explored,
but a few hypotheses can be suggested. A role for pectin modifications regulating SCW
development was previously identified, as shown by POLYGALACTURONASE INVOLVED
IN EXPANSION2 (PGX2) [56]. Overexpression of PGX2 can increase stem SCW lignin
content [56]. WAKs are known to initiate different signaling pathways based on interactions
with different forms of pectin and pectin fragments. Arabidopsis WAK1 was shown to
covalently interact with cell wall pectins and pectin fragments [19,57]. The interaction of
WAK1 with pectin fragments can initiate defense responses to pathogens [19,57]. WAKL8
may act as a receptor of pectins ad pectin fragments, regulated by PGX2, to modulate SCW
development. Future work is needed to confirm WAKL8-pectin binding, and crosses with
OE-PGX2 may reveal genetic interactions. The availability of sucrose to stems is a limiting
step for stem SCW development, as shown by previous studies investigating the function
of sucrose synthase (SUS) and invertase [58–60]. Yeast two-hybrid, fluorescence resonance
energy transfer, and Phos-Tag assays showed WAKL8 can interact with phosphorylate
SUC2 and positively regulate phloem loading, suggesting an alternative explanation for
how WAKL8 can regulate stem SCW development [44]. The sucrose allocated to stems
for XV and IF cell development may likely be limited in wakl8 mutant plants because
of the lower SUC2 activity, resulting in the defects in stem SCW thickening. However,
measurements of sucrose level and SUC2 activity in wakl8 mutant stems are required
for testing this hypothesis. Further experiments are needed to investigate if WAKL8 can
phosphorylate SUC2 (and other sucrose transporters) in stem tissues to regulate sucrose
availability for stem SCW development, and to identify the putative protein interactors
with WAKL8 and the downstream signaling pathways.

We also identified that WAKL8 undergoes alternative splicing. Interestingly, a similar
alternative splicing of WAKs was reported in maize ZmWAK-RLK1 [27]. ZmWAK-RLK1
was shown to regulate the hemi-biotrophic fungus Exserohilum turcicum, and an alternative
spliced version, predicted to encode a truncated WAK, was identified but not suggested
to contribute to pathogen resistance [27]. Although both ZmWAK-RLK1 and AtWAKL8
truncated version were suggested to be nonfunctional, we cannot exclude the possibility
that these spliced version transcripts are important when plants are exposed to specific
growth and/or stress conditions. As these truncated proteins still contain extracellular
domains, they may competitively interact with pectins and pectin fragments to reduce
the signaling strength under certain circumstances. It remains to be determined whether
the alternative splicing of WAKs/WAKLs is conserved in different species and what
mechanisms are involved in regulating the splicing of WAK transcripts.
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4. Materials and Methods
4.1. Plant Materials

Arabidopsis thaliana wild0type (WT, Col-0), wakl8-1 (SALK_029502C) and wakl8-2
(WiscDsLox350H06) mutant plants were ordered from The Arabidopsis Biological Re-
source Center (ABRC, Ohio State University) and homozygous lines were identified
by PCR genotyping. Primers used for wakl8-1 genotyping were: LP (CGATATGGA-
GAAAGGGTCTCC), RP (CCCACACGAATTGTCATTTTC), and LBb1.3 (ATTTTGCC-
GATTTCGGAAC). Primers used for wakl8-2 genotyping were: LP (TATGGGTCAAG-
GTCTTCGTTG), RP (GCCAGGTATGTAGGGATTTCC), and P745 (AACGTCCGCAAT-
GTGTTATTAAGTTGTC). All plants were grown in controlled environment rooms under
long-day 16 h light/8 h dark conditions at 22/18 ◦C.

4.2. Sequence Analysis and Protein Domain Prediction

Functional domains of WAKL8 (AT1G16260) were predicted online at UniProt
(www.uniprot.org, accessed on 30 January 2018). WAKL8 genomic DNA and mRNA sequences
were downloaded from TAIR (www.arabidopsis.org, accessed on 30 January 2018). Bench-
ling (https://benchling.com, accessed on 30 January 2018) was used for sequence alignment.

4.3. Q-PCR

Total RNA was extracted from stems at the same growth stages using an RNeasy kit
(Qiagen). cDNA was synthesized with a SuperScript IV Reverse Transcriptase kit (Invitro-
gen). A QuantStudio 5 Real-Time System (Thermo Fisher, Waltham, MA, USA) was used
for measuring transcript levels using the relative quantitation method [61] with PowerUp
SYBR Green Master Mix (2X) Universal (#A25742, Thermofisher). Relative expression
levels were normalized against ACT2. Three biological and three technical replicates were
performed. The Q-PCR primers used for total WAKL8 were: forward (GATCGCAATGC-
CGGAGTCTA) and reverse (TCACTGTGTCTTGTGAGGCA). For WAKL8A, the primers
were: forward (GGCGGATGCCAAGACATT) and reverse (CAAGTTTTCTCACATCTATAT-
GATCCG). For WAKL8B, they were: forward (GGATGCcaagtttggaattttt) and reverse
(AGAGCTTAGAGTTCCACATCTATATGAT). For ACT2, they were: forward (ACATTGT-
GCTCAGTGGTGGA) and reverse (GAGATCCACATCTGCTGGAAT). The data are shown
as average ± SD. Student’s t-test was used for significance analysis with p < 0.05.

4.4. Phenotyping Analysis

Arabidopsis plants at growth stage 6.1 [45] were used for measurements of leaf growth.
Ten technical replicates from each of ten biological replicate plants were measured. Ara-
bidopsis plants at growth stage 6.9 [45] were used for measurements of stem length. Six
technical replicates from each of six biological replicate plants were measured. The data are
shown as average ± SD. Student’s t-test was used for significance analysis with p < 0.05.

4.5. Histological Analyses

Fresh stems were hand-sectioned and stained with either Toluidine blue O,
phloroglucinol-HCl, or Mäule stain to observe the cell morphology of stems according to
methods outlined in Mitra and Loqué [62]. Images were acquired using an Olympus BX53
microscope under a bright field. At least three plants were used for quantifications. The
data are shown as average ± SD. Student’s t-test was used for significance analysis with
p < 0.05.

4.6. Transmission Electron Microscopy

Base stems were chemically fixed according to Wilson and Bacic [63]. Thin sections
(~80 nm) were post-stained and imaged using a Jeol (Tokyo, Japan) 2100 EM equipped with
a Gatan (Pleasanton, CA, USA) Orius SC 200 CCD camera. Three technical replicates from
each of three biological replicate plants were imaged. Images of metaxylem vessels and
primary IF cells (about 10 cells from each technical replicate) were used for quantification

www.uniprot.org
www.arabidopsis.org
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of cell wall thickness. The data are shown as average ± SD. Student’s t-test was used for
significance analysis with p < 0.05.

4.7. Measurement of Crystalline Cellulose and Lignin Content

Arabidopsis whole stems of stage 6.5 were harvested for alcohol-insoluble residue
(AIR) preparation according to Pettolino et al. [64]. The Updegraff method was used for
crystalline cellulose content measurement [65]. Acetyl bromide method was used for lignin
content measurement according to Chang et al. [66]. Three technical replicates from each
of three biological replicate plants were measured. The data are shown as average ± SD.
Student’s t-test was used for significance analysis with p < 0.05.

5. Conclusions

In this study, we revealed the role of WAKL8 in regulating Arabidopsis stem SCW
development by phenotypically analyzing wakl8-1 and wakl8-2 mutant plants. We found
alternative splicing of WAKL8 transcripts proposed to lead to a truncated extracellular vari-
ant. These findings extend our understanding of the biological functions of WAKs/WAKLs
and bring new perspectives to help us understand the regulation of SCW development for
editing better crops and trees in the future.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/plants11172297/s1: Figure S1: Expression profiles of
WAKL8 during development. Figure S2: Phloroglucinol-HCl staining of lignin in transverse sections
1 cm from the stem base of WT, wakl8-1 and wakl8-2 plants. Figure S3: Mäule staining of lignin in
transverse sections 1 cm from the stem base of WT, wakl8-1 and wakl8-2 plants. Figure S4: Sequencing
of alternative spliced versions of WAKL8 transcripts.
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