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Abstract: Zingiber officinale Roscoe (ginger) has long been used as an herbal medicine to treat various
diseases, and its main sub-components, [6]-gingerol and [6]-shogaol, were also reported to have
anti-inflammatory, anti-oxidant, and anti-tumor effects. However, their effects on various types of
pain and their underlying mechanisms of action have not been clearly analyzed and understood
yet. Thus, in this review, by analyzing 16 studies that used Z. officinale, [6]-gingerol, and [6]-shogaol
on mechanical, spontaneous and thermal pain, their effects and mechanisms of action have been
analyzed. Pain was induced by either nerve injury or chemical injections in rodents. Nine studies
analyzed the analgesic effect of Z. officinale, and four and three studies focused on [6]-gingerol and
[6]-shogaol, respectively. Seven papers have demonstrated the underlying mechanism of action of
their analgesic effects. Studies have focused on the spinal cord and one on the dorsal root ganglion
(DRG) neurons. Involvement and change in the function of serotonergic receptors (5-HT1A, B, D,
and 5A), transient receptor potential vanilloid 1 (TRPV1), N-methyl-D-aspartate (NMDA) receptors,
phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2), histone deacetylase 1 (HDAC1),
voltage-gated sodium channel 1.8 (Nav1.8), substance P (SP), and sciatic nerve’s morphology have
been observed.

Keywords: [6]-gingerol; [6]-shogaol; ginger; pain; Zingiber officinale Roscoe

1. Introduction

Zingiber officinale Roscoe is a perennial herb from a member of the Zingiberaceae
family [1], and it is known to be rich in various chemical constituents, such as phenolic
compounds, terpenes, polysaccharides, lipids, organic acids, and raw fibers [2]. Among
the main phenolic compound, gingerols, which are a mixture containing the 3-methoxy-
4-hydroxyphenyl functional group, induce Z. officinale’s spicy taste and are present in
85 types [3]. Gingerols can be divided into gingerols, shogaols, paradols and zingerones.
Among them, gingerols and shogaols are known as the most important physiological
active ingredients for Z. officinale, of which [6]-gingerol and [6]-shogaol are the main
compounds [4].

In the international association for the study of pain (IASP), pain is defined as “an
unpleasant sensory and emotional experience associated with, or resembling that associated
with, actual or potential tissue damage.” Additionally, pain extends its meaning to personal
experiences affected by biological, psychological, and social factors [5]. Pain is present in
various forms, such as acute and chronic [6], neuropathic [7], inflammatory [8], and cancer [9]
pain. To manage these various types of pain, diverse analgesics are used. Among them,
opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the most widely used
pain-reducing drugs in the world. In 2012, 6.8% of the 4.2 billion prescriptions prepared
in the United States were opioids [10], and from 2001 to 2009, the number of people who
prescribed NSAIDs more than doubled [11]; however, both opioids and NSAIDs have side
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effects such as hormone imbalance [12], tolerance and dependence [13], nausea, dyspepsia
and gastrointestinal ulceration [14]. Thus, efforts to find an optimal analgesic drug that has no
or fewer side effects than the currently used analgesics are still needed.

Z. officinale, ginger, has long been widely used as an herbal medicine for the pre-
vention and treatment of various diseases [15–17], as it has also been reported to show
no toxic effects [18]. In clinical studies, it has been reported to alleviate diseases such as
diabetes [19–21], obesity [22], cancer [23], nausea and vomiting [24]. Furthermore, although
low in numbers, Z. officinale has also been demonstrated to be effective against different
types of pain in humans. Its administration with NSAIDs have decreased migraine attack
compared to the placebo-treated group [25]. A systematic review has reported the efficacy
of Z. officinale to treat primary dysmenorrhea [26], and a clinical report has demonstrated
that osteoarthritis patients receiving both Z. officinale extract and ibuprofen showed signifi-
cantly reduced pain [27]. Although more than ten papers, which have focused on the effect
of Z. officinale and its sub-components on pain have been published, to date no study has
summarized the effect of Z. officinale and its sub-components on various types of pain.

From the past, our lab has focused our efforts to understand the pathophysiological
and curative mechanism of different types of pain, such as chemotherapy-induced neu-
ropathy (CIPN) [28,29] and diabetic-induced neuropathic pain [30]. In our previous study,
the water extract of Z. officinale effectively attenuates chemotherapy-induced neuropathic
pain [31], as cold and mechanical allodynia significantly decreased after the oral treatment
of Z. officinale in mice. These data let us speculate that ginger and its sub-component could
be used to treat different types of pain. Moreover, as it has been reported to not induce any
lethal effects [18], if the understanding of the effect and the mechanism of action increases,
it could be considered a good option to treat pain.

Thus, in this review, the effect of Z. officinale, [6]-gingerol, and [6]-shogaol has been
summarized and analyzed along with the underlying mechanisms of action. This review
study includes a total of 16 studies.

2. Results

This review includes a total of 16 studies (Tables 1 and 2). Nine studies analyzed the
analgesic effect of Z. officinale [19,31–38], and four [39–42] and three [43–45] studies focused
on [6]-gingerol and [6]-shogaol, respectively. To analyze their effects on different types
of pain, studies have been subdivided into three types of pain; mechanical, spontaneous
and thermal pain (Figure 1). The mechanical pain section contains seven studies, and the
spontaneous and thermal pain section contains four and ten studies, respectively.
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Figure 1. Analgesic effects of Z. officinale, [6]-gingerol and [6]-shogaol in mechanical, spontaneous,
and thermal pain induced by nerve injury or chemical injection, and a summarization of behavior
tests used in the experiment. The pain is induced by a nerve or chemical injection (Red) and alleviated
by Z. officinale and its sub-components (Blue). Abbreviations: Z. officinale (Zingiber officinale Roscoe).
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2.1. Mechanical Pain

Various sensory receptors are present on the skin, such as mechanoreceptors, ther-
moreceptors and nociceptors [46]. Among them, nociceptors transmit pain signals related
to mechanical, thermal, or chemical [47]. Nociceptors include both myelinated and un-
myelinated neurons such as Aβ-, Aδ- and C-fiber nociceptors, respectively. Among them,
Aβ and Aδ nociceptor neurons are known to mediate mechanical sensation and pain [48].
Mechanical pain could be associated with nerve damage [49] and changed in the activities
of various sodium channels (i.e., voltage-gated sodium channel (Nav) 1.7 and Nav1.8) [50].
In addition, the depression of gamma-Aminobutyric acid (GABA)ergic interneurons in-
creases in the expression of transient receptor potential vanilloid 1 (TRPV1) [51], and the
decrease in the potassium channel subfamily K member 1 (TREK-1) channel [52] has also
been reported to be the cause of mechanical pain.

To assess the effect of Z. officinale and its sub-components on mechanical pain, studies
used different types of nerve injury methods, such as chronic constraint injury (CCI) [40],
spinal nerve ligation (SNL) [42], spared nerve injury (SNI) [38], and intermittent cold
stress (ICS) [35], or chemicals such as acetic acid [41], streptozotocin (STZ) [43,44] and
oxaliplatin [31] to induce pain in rodents. Mechanical pain has been evaluated by either
von Frey filaments tests [31,38,40–42,44,45] or the Randall–Selitto test [35,43].

Nerve-injury-induced animal models of pain have been used by both Gauthier et al. [40],
Mata-Bermudez et al. [42] and Borgonetti et al. [38]; however, the method was different, as
Gauthier et al. used CCI, whereas Mata-Bermudez et al. and Borgonetti et al. used SNL
and SNI animal models of pain, respectively. CCI consists of four loose ligations around the
sciatic nerve damaging most of the myelinated neurons but leaving intact the unmyelinated
C-fibers. The CCI-induced pain rodents demonstrate spontaneous, thermal, and mechanical
pain, which appears from three days to two months after the injury [53]. SNL is the tight
ligation of L5-6 spinal nerves. In this model, the degenerative fibers of the damaged roots
come into contact with the distal portion of the undamaged roots [54]. In SNL models, L4
dorsal root ganglia (DRG) is unaffected, whereas L5-6 DRG is affected [55]. Pain occurs
quickly after nerve ligation and lasts at least four months [56]. In SNI-induced pain, only
the tibial and common peroneal nerves are axotomized, leaving the sural nerve intact. The
undamaged fibers are in contact with the proximal part of the injured nerves [57]. SNI models
differ from other surgery models in that they can examine distinct regions of the hind paw
that are innervated by damaged or undamaged neurons. In addition, this model has been
demonstrated to closely mimic many features of clinical neuropathic pain. SNI showed pain
24 h after surgery and reached its peak about two weeks later [58].

Nerve injury models such as CCI, SNL, SNI and partial sciatic nerve ligation (PSNL)
models all measure the cutaneous sensory threshold of ipsilateral hind limb and these
pains are evaluated mainly by thermal and mechanical stimuli [56,59].

Gauthier et al. [40] has reported that [6]-gingerol could effectively attenuate mechanical
pain induced by CCI. The pain lasted from 1 to 10 days after the surgery, and intrathecally
administered 10 µg of [6]-gingerol demonstrated an analgesic effect, which lasted till 4 h
after the injection. In the study of Mata-Bermudez et al. [42], the same dose of [6]-gingerol
also attenuated SNL-induced mechanical pain. The anti-analgesic effects of [6]-gingerol
initiated 60 min after the administration, which gradually decreased after four hours. They
further reported that various serotonin (5-HT) receptors, such as 5-HT1A, 1B, 1D and 5A,
but not opioid receptors, are involved in the analgesic effect of [6]-shogaol. In addition, in
their study, intrathecal pre-treatment of nonselective nitric oxide (NO) synthase inhibitor,
inhibitor of guanylate cyclase, and ATP-sensitive K+ channels channel blocker also inhibited
the [6]-gingerol-induced anti-allodynic effect.

Borgonetti et al. [38] used SNI-induced animal models of pain to confirm the analgesic
effect of single and multiple administration of Z. officinale. First, the acute oral adminis-
tration of Z. officinale significantly increased the threshold to mechanical stimuli, which
was reduced after surgery. In their second experiment, the repeated oral administration
of Z. officinale for 7 days starting from 3 days after surgery significantly decreased the
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pain induced by mechanical stimuli. Among the three doses used in the study (100, 200
and 400 mg/kg), the anti-allodynia effect of 200 mg/kg was greater, which was similar
to 30 mg/kg of pregabalin. The increase in histone deacetylase 1 (HDAC1) in BV2 cell
and spinal cord after nerve injury were not shown in single and repeated Z. officinale
treated rodents. Moreover, acute Z. officinale application decreased both phosphorylated
extracellular signal-regulated kinase 1/2 (pERK1/2) activation in BV2 cell and spinal cord,
respectively; however, repeated Z. officinale treatments decreased pERK2 activation in the
spinal cord. Montserrat-de la Paz et al. [35] did not use a surgical model, but exposed
rodents to intermittent cold places (ICS) to assess the effect of Z. officinale against me-
chanical pain. Z. officinale (0.5 and 1%) was given in combination with the standard diet
that initiated eight weeks before inducement of hyperalgesia, and the result shows that it
dose-dependently alleviated mechanical pain. In their study, paracetamol was also treated
in combination with Z. officinale and the co-administration-treated group mice showed less
pain than individually administered littermates.

Contrasting to the above-mentioned studies, Lee et al. [31] demonstrated the effect
of Z. officinale in chemotherapy-induced mechanical pain. As a chemotherapeutic agent,
they used oxaliplatin (single, intraperitoneal injection, i.p.; 6 mg/kg), which is a widely
used anti-cancer agent to treat colorectal and breast cancer. Mechanical pain induced by
oxaliplatin lasted from three to five days after the injection. Z. officinale was orally admin-
istrated for three days after oxaliplatin injection and Z. officinale significantly attenuated
mechanical pain for 1 h. In addition, to confirm the mechanism of the analgesic effect
of Z. officinale, Lee et al. focused on the role of serotonin receptors present in the spinal
cord, as various serotonin receptors are reported to take part in pain pathways. Intrathecal
injections of 5-HT1A receptor antagonist before the treatment of Z. officinale blocked its
analgesic effect. Moreover, the spinal expression of the 5-HT1A receptor was significantly
decreased after oxaliplatin injection, whereas Z. officinale treatment reversed the decreased
mRNA expression level of the 5-HT1A receptor. In addition, Kim et al. [45] also reported
that [6]-shogaol could significantly attenuates mechanical pain in neuropathic pain induced
by oxaliplatin as in the study of Lee et al. [31]. In this experiment, [6]-shogaol was intraperi-
toneally injected four days after oxaliplatin injection. One hour after the administration
of [6]-shogaol, the threshold to mechanical stimuli was significantly increased compared
to that of the oxaliplatin group. As the mechanism of action of [6]-shogaol, authors have
demonstrated that the effect of [6]-shogaol was blocked by the intrathecal injection of
5-HT1A, 3 and GABAB receptor antagonists. Moreover, treatment of [6]-shogaol increased
spinal GABA and glutamate decarboxylase 65 (GAD65) protein concentration in the spinal
dorsal horn of L4–5 segments. Altogether, these results suggest that Z. officinale and its
sub-components use spinal serotonergic pathways to induce an analgesic effect.

In two studies conducted by Fajrin et al. [43,44], STZ-induced animal models of
diabetic pain were used to assess the pain-decreasing effect. In their first study [43], Z.
officinale and [6]-shogaol significantly attenuated mechanical pain induced by 110 mg/kg
of STZ injection. Moreover, both Z. officinale and [6]-shogaol demonstrated less damage
in the sciatic nerve’s morphology compared to the STZ group. In their second study [44],
both Z. officinale and [6]-shogaol significantly decreased mechanical pain induced by STZ
injection. They reported that both Z. officinale and [6]-shogaol could significantly reduce
upregulated spinal TRPV1 and N-methyl D-aspartate receptor subtype 2B (NMDAR2B)
mRNA expression after STZ treatment.

Hitomi et al. [41] assessed the effect of [6]-gingerol and [6]-shogaol in 50% acetic
acid filter paper-induced oral ulcerative mucositis (OUM) pain rats. In this study, the
swab application of 300 and 150 µM of [6]-gingerol and [6]-shogaol, respectively, failed
to attenuate the pain. However, when 13.5 mg/mL of ginseng was applied together, the
mechanical threshold significantly increased and spontaneous mouth rubbing decreased
Additionally, both [6]-shogaol and [6]-gingerol at 100 µM exhibited significant antagonistic
effects on the Nav1.8 currents and decreased substance P (SP) release induced by KCL and
veratridine in CHO cells.
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In summary, the above-mentioned studies demonstrate that Z. officinale and its main
physiological active indicators, [6]-gingerol and [6]-shogaol, could significantly attenuate
mechanical pain that has been induced by various animal models of pain.

Table 1. Summary on the effect of Z. officinale on pain.

Authors Strain Pain Z. officinale
Roscoe Findings

Rats

Sepahvand
et al.,

2010 [33]

Wistar Rat Tail-Flick Test
200, 400 and

600 mg/kg (i.p.
80% Ethanol

Extract)

Control:

Heat Pain

-

Z. officinale: ↓
Z. officinale +

Morphine
(2.5 mg/kg):

↓

Mechanism of
Actions: -

Darvishzadeh-
Mahani et al.,

2012 [34]
Wistar Rat Tail-Flick Test

50 and
100 mg/kg
(p.o. 96%

Ethanol Extract)

Control:
Heat Pain

↑
Z. officinale: ↓

Mechanism of
Actions: -

Mice

Y et al.,
2002 [32]

Swiss Mice
Acetic Acid

3% (i.p.)

50 and
100 mg/kg
(i.p., 100%

Ethanol Extract)

Control:

Spontaneous
Pain

↑
Z. officinale: ↓

Aspirin
(150 mg/kg, i.p.): ↓

Mechanism of
Actions: -

Ojewole
2006 [19]

Balb C Mice
Acetic Acid
3% (i.p.) and

Hot Plate Test

100, 200, 400
and 800 mg/kg

(i.p. 96%
Ethanol Extract)

Control:

Spontaneous
and

Heat Pain

↑
Z. officinale: ↓
Morphine

(10 mg/kg, i.p.):
Diclofenac

(100 mg/kg, i.p.):

↓

Mechanism of
Actions: -

Montserrat-de
la Paz et al.,

2018 [35]

C57BL/6J
Mice

ICS-induced
FMS models

0.5 and 1%
(p.o. Mixed

with Standard
Diet)

Control:
Cold, Heat and

Mechanical
Pain

↑
Z. officinale: ↓
Z. officinale +
Paracetamol: ↓

Mechanism of
Actions: -

Fajrin et al.,
2019 [36]

Mice

CFA 40 µL
(Intraplantar

Injection)
and PSNL

100, 200, 400
and 600 mg/kg
(p.o., Destilator
with Aquadest)

Control:
Heat Pain

↑
Z. officinale: ↓

Mechanism of
Actions: -
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Table 1. Cont.

Authors Strain Pain Z. officinale
Roscoe Findings

Kravchenko
et al.,

2019 [37]
White Mice

AITC
0.5%

(Subplantar
Injection)

0.0125, 0.025,
0.05, 0.1, 0.5, 1

and 5% of
Extract

Ointment

Control:
Spontaneous

Pain

↑
Z. officinale: ↓
Benzocaine
(Ointment): ↓

Mechanism of
Actions: -

Fajrin et al.,
2019 [43]

Balb/c Mice
STZ

110 mg/kg
(i.p.)

100, 200 and
400 mg/kg
(p.o., 96%

Ethanol Extract)

Control:

Heat and
Mechanical

Pain

↑
Z. officinale: ↓
Gabapetin

(100 mg/kg, p.o.): ↓

Mechanism of
Actions: Prevention of sciatic nerve damage

Fajrin et al.,
2020 [44] Balb/c Mice

STZ
110 mg/kg

(i.p.)

100, 200 and
400 mg/kg
(p.o., 96%

Ethanol Extract)

Control:
Heat and

Mechanical
Pain

↑
Z. officinale: ↓
Gabapetin

(100 mg/kg, p.o.): ↓

Mechanism of
Actions:

↓ TRPV1 and NMDAR2B mRNA
expression (spinal cord)

Borgonetti et al.,
2020 [38]

CD1
Mice

SNI

200 and
400 mg/kg

(p.o.,
Supercritical

CO2 extraction)

Control:

Mechanical and
Heat Pain

↑
Z. officinale: ↓
Pregabalin

(30 mg/kg, p.o.): ↓

Mechanism of
Actions:

↓ pERK1/2 activation (in BV2 cells
and spinal cord)

↓ HDAC1 expression (in BV2 cells
and spinal cord)

Lee et al.,
2021 [31]

C57BL/6
Mice

Oxaliplatin
6 mg/kg

(i.p.)

100, 300 and
500 mg/kg
(p.o., 100%

Water Extract)

Control: Cold and
Mechanical Pain

↑
Z. officinale: ↓

Mechanism of
Actions:

Analgesic Effect Blocked by Mixed
5-HT1 and 5-HT2 receptor, 5-HT1A
and 5-HT3 antagonists’ injections
(i.t.) ↑mRNA expression level of

5-HT1A receptor

Abbreviations: 5-HT (serotonin), AITC (allyl isothiocyanate), CFA (completed Freud’s Adjuvant), FMS (fi-
bromyalgia syndrome), GR (ginger rhizome), HDAC (histone deacetylase), ICS (intermittent cold stress), i.p.
(intraperitoneal), i.t. (intrathecal), NMDAR2B (N-methyl-D-aspartate receptor subunit 2B), mRNA (messenger
RNA), pERK (phosphorylated extracellular signal-regulated kinase), p.o. (per os), PSNL (partial sciatic nerve
ligation), SNI (spared nerve injury), STZ (streptozotocin), TRPV1 (transient receptor potential vanilloid 1), and Z.
officinale (Zingiber officinale Roscoe).

Table 2. Summary on the effect of [6]-gingerol and [6]-shogaol on pain.

Authors Strain Pain Treatments Findings

Rats

Gauthier et al.,
2012 [40]

SD
Rat

CCI
[6]-Gingerol

10 µg
(i.t.)

Control:

Heat and
Mechanical Pain

↑

[6]-Gingerol: ↓

Cyclodextrin
Formulation
(20 µL, i.t.):

↑

Mechanism of Action: -
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Table 2. Cont.

Authors Strain Pain Treatments Findings

Hitomi et al.,
2017 [41] Wistar Rat OUM

[6]-Shogaol
150 µM

[6]-Gingerol
300 µM
(Swab

Application)

Control:

Mechanical Pain

↑

[6]-Shogaol +
[6]-Gingerol: -

Mechanism of Action:
↓ Evoked currents on Nav1.8.

(CHO cell)
↓ SP release (CHO cells)

Mata-Bermudez
et al.,

2018 [42]

Wistar
Rat

SNL
[6]-Gingerol

1, 3, 6 and 10 µg/rat
(i.t.)

Control:

Mechanical Pain

↑

[6]-Gingerol: ↓

Gabapentin (100 µg/rat,
i.t.): ↓

Mechanism of Action:

Effect not blocked by nonselective opioid
receptor antagonist

(naloxone, i.t.) Effect blocked by nonselective
5-HT, 5-HT1A, 1B, 1D, 5A receptor antagonists

(methiothepin, WAY-100635, SB-224289,
BRL-15572, SB-659551, i.t.)

Effect blocked by nonselective NO synthase
inhibitor, inhibitor of guanylate cyclase, channel
blocker of ATP-sensitive K+ channels (L-NAME,

ODQ, glibenclamide, i.t.)

Mice

Young et al.,
2005 [39]

ICR
Mice

Acetic Acid 1%
(i.p.) and

10%
Formalin

(s.c.)

[6]-Gingerol
25 and 50 mg/kg

(i.p.)

Control:

Spontaneous Pain

↑

[6]-Gingerol: ↓

Indomethacin
(10 mg/kg, i.p.): ↓

Mechanism of Action: -

Fajrin et al.,
2019 [43] Balb/c Mice

STZ
110 mg/kg

(i.p.)

[6]-Shogaol
5, 10 and 15 mg/kg

(p.o.)

Control:

Heat and
Mechanical Pain

↑

[6]-Shogaol: ↓

Gabapentin (100 mg/kg,
p.o.): ↓

Mechanism of Action: Prevention of sciatic nerve damage

Fajrin et al.,
2020 [44] Balb/c Mice

STZ
110 mg/kg

(i.p.)

[6]-Shogaol
5, 10 and 15 mg/kg

(p.o.)

Control

Heat and
Mechanical Pain

↑

[6]-shogaol ↓

Gabapentin
(100 mg/kg, p.o.) ↓

Mechanism of Action ↓ TRPV1 and NMDAR2B mRNA expression
(spinal cord)

Kim et al.,
2022 [45]

C57BL/6
Mice

Oxaliplatin
6 mg/kg

(i.p.)

[6]-Shogaol
10 mg/kg

(i.p.)

Control: Cold and
Mechanical pain:

↑

[6]-shogaol: ↓

Mechanism of Action:

Effect blocked by 5-HT1A, 3 receptor antagonists
(NAN-190, MDL-72222, i.t.)

Effect blocked by GABAB receptor antagonist
(CGP 55845, i.t.)

↑ GABA and GAD65 concentration (spinal cord)

Abbreviations: 5-HT (serotonin), ATP (adenosine triphosphate), GABA (gamma-aminobutyric acid), GAD65
(glutamate decarboxylase 65), i.p. (intraperitoneal), i.t. (intrathecal), L-NAME (Nω-nitro-L-arginine methyl
ester), NMDAR2B (N-methyl-D-aspartate receptor subunit 2B), NO (nitric oxide), ODQ (1H-[1,2,4]oxadiazolo
[4,3-a]quinoxalin-1-one), OUM (oral ulcerative mucositis), p.o (per os), CCI (chronic constriction injury), SNL
(spinal nerve ligation), SP (substance P), STZ (streptozotocin), TP (test pulse), and TRPV1 (transient receptor
potential vanilloid 1).

2.2. Spontaneous Pain

Spontaneous pain includes sensations of stabbing, shooting, burning and paroxysmal
pain associated with dysesthesia or paresthesia [60]. Paresthesia and dysesthesia, one of the
symptoms of neuropathic pain, is spontaneous, and the cause of this sensation seems to be a
spontaneous firing of nerve sprouts that changed the innervation area of peripheral nerves,
and sensitization of Aβ and C-fibers [60]. However, it is still unclear whether A- or C-fibers,
injured or uninjured fibers, are more important for spontaneous pain generation [61]. It has
been also reported that ethological activity in nerve-end neuroma, DRG, and the thalamus
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can be the basis for spontaneous pain [62]. Chronic inflammatory and neuropathic pain is
clinically characterized by a type of spontaneous pain [63].

In this section, various types of chemicals, such as acetic acid [19,32,39], formalin [39]
and allyl isothiocyanate (AITC) [37] were used to induce spontaneous pain in rodents, and
writhing or licking response was measured to assess the spontaneous pain [19,32,37,39].

Y et al. [32], Ojewole [19] and Young et al. [39] all used acetic acid to induce sponta-
neous pain in mice. Intraperitoneal injection of acetic acid is known to cause inflamma-
tion of the abdominal cavity and induce writhing behavior due to visceral stimulus [64].
Y et al. [32] reported that Z. officinale could prevent acetic acid-induced spontaneous pain
in mice. Spontaneous pain was induced by intraperitoneal injection of 3% acetic acid (i.p.),
and increase in the number of abdominal constrictions (writhing) and stretching with a jerk
of the hind limb were shown after the injection. Z. officinale was intraperitoneally injected
1 h before acetic acid administration, and it significantly prevented acetic acid-induced
writhing. The effect of Z. officinale was similar to the effect of 150 mg/kg of aspirin, which
was used as a positive control. In the work of Ojewole [19], writhes induced with acetic
acid were recorded for 20 min after intraperitoneal injection of 3% acetic acid. Z. officinale
was administrated (i.p.) 20 min preceding the acetic acid injection, and it significantly
decreased acetic acid-induced writhes.

Young et al. [39] reported that [6]-gingerol has an analgesic effect in both acetic acid and
formalin-induced spontaneous pain in mice. Five minutes after intraperitoneal injection of
1% acetic acid, the number of writhing increased during the following ten min. [6]-gingerol
was injected intraperitoneally 30 min prior to acetic acid injection, and it significantly
attenuated the writhing response. In their subsequent study, 1% formalin (20 µL) was
injected to the dorsal surface of the right hind-paw to induce spontaneous pain, and the
amount of time spent licking or biting the hind-paw was recorded for 40 min. The formalin
test is divided into early and late phases. The early phase is caused by C-fiber activation
due to peripheral stimulation, and the late phase is known to be caused by inflammatory
reactions in peripheral tissues and functional changes in spinal dorsal horn [65]. [6]-gingerol
and indomethacin were, respectively, administered 30 min before formalin injection. Both
[6]-gingerol and indomethacin significantly attenuated the late phase (period between
15 and 40 min post formalin injection), but not the early phase (first 5 min post formalin
injection) of 1%-formalin-induced licking time.

In the study of Kravchenko et al. [37], external application of Z. officinale as ointments,
attenuated the AITC-induced spontaneous pain. AITC (0.5%, 20 µL) was injected in the
sub plantar region of mice to induce spontaneous pain, and a total time spent by the
animal on licking the affected limb was observed for ten minutes. Z. officinale ointment was
applicated five to ten minutes before the injection of AITC, and a different concentration
of Z. officinale extracts showed an analgesic effect in the group that applied ointments ten
minutes before the AITC injection. Among them, 0.05% ointment observed the highest
level of analgesic activity.

Altogether these four studies suggest that Z. officinale and [6]-gingerol could be used
to attenuate the spontaneous pain induced with acetic acid and formalin injection as the
writhing and licking the affected limb decreased as much as the conventionally used drugs,
such as aspirin [66], diclofenac [19] and indomethacin [39], which were used as positive
controls in the included studies.

2.3. Thermal Pain

Thermal pain is a common symptom both to neuropathic pain caused by nerve
injury and systemic inflammatory disorders [67,68]. It refers to a change in perception
of temperature, which increases sensitivity to noxious heat or cold and it also typically
involves recognizing “warm” or “cold” stimuli as painful [66]. C-fiber nociceptors, non-
myelinated neurons among nociceptors present in the skin, are known to mediate thermal
pain sensitivity [48]. In addition, the behavioral detection response (i.e., a stabbing pain
caused by heat and cold) induced by harmful radiant skin heating appears to also be
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mediated by Aδ nociceptor activation [69]. The reaction of myelinated Aδ-fibers to noxious
heat indicates a sense of pain at a threshold of 43 to 45 ◦C [70], whereas C-fiber nociceptors
have a pain sensing threshold value of 41 ◦C on average [71]. TRPV1, also known as the
capsaicin receptor, is known as the major molecular transducer of polymodal nociceptors
that detect heat [72]. In humans, the innocuous cold mainly activates myelinated Aδ-
fibers, and the noxious cold activates both polymodal C-fibers and Aδ-fibers. Additionally,
transient receptor potential melastatin 8 (TRPM8), a non-selective cation channel, is known
as the main mechanism of cold sensing in peripheral neurons [73].

In this section, thermal pain was induced by nerve injury (i.e., CCI [40], PSNL [36],
ICS [35] and SNI [38]) or chemical (i.e., complete freund’s adjuvant (CFA) [36], STZ [43,44] and
oxaliplatin [31,45]) injections, and thermal pain was measured by using hot-plate [19,35,36,44],
tail-flick [33,34,43], hargreaves [38,40], immersion [35] and acetone drop tests [31,45].

Three studies observe the effect of Z. officinale and [6]-gingerol in nerve-injury-induced
thermal pain (SNI, CCI, and PSNL). First, Borgonetti et al. [38] demonstrated the analgesic
effect of Z. officinale in SNI-induced thermal pain in mice. Heat pain was evaluated by
using hargreaves’ plantar test. SNI-induced thermal pain lasted till 21 days after the nerve
injury. Z. officinale was injected orally at day seven after surgery, and 200 mg/kg of Z.
officinale completely attenuated the heat pain. The analgesic effect of 200 mg/kg Z. officinale
was similar to that of the pregabalin. Second, Gauthier et al. [40] reported the effect of [6]-
gingerol in CCI-induced thermal pain. Thermal hyperalgesia was evaluated by hargreaves
test, and tests were conducted at 30 min, 2 h and 4 h following intrathecal injections of
[6]-gingerol (10µg) on both paws. The results show that [6]-gingerol could attenuate
thermal hyperalgesia from 30 min to 2 h and 4 h after its administration. Finally, Fajrin
et al. [36] analyzed the effect of Z. officinale in PSNL- and CFA-induced neuropathic and
inflammatory pain mice, respectively. The PSNL model ligates 1/3–1/2 of the sciatic nerve
to induce pain, and it is known to be associated with the development of spontaneous pain,
allodynia and hyperalgesia. However, it is difficult to associate PSNL injuries with specific
DRG or spinal levels due to a random mixture of injured L4-5 spinal nerves [74]. Z. officinale
was orally injected once a day for seven consecutive days a week after the inducement of
heat pain by CFA injection and PSNL. Their results show that Z. officinale administration
significantly increased the latency time toward thermal stimulus. The 200 mg/kg dose was
the most effective in PSNL-induced neuropathy pain, whereas the 400 mg/kg dose was the
most effective in CFA-induced inflammatory pain. Montserrat-de la Paz et al. [35] used
ICS-induced FMS models to observe the effect of Z. officinale on thermal pain. Symptoms
of FMS include thermal allodynia or hyperalgesia, and hot plate test or tail immersion
test was used for evaluation, respectively. Z. officinale (0.5 and 1%) and paracetamol were
supplied in combination with the standard diet daily that initiated eight weeks prior the
inducement of pain. In the hot plate test, only Z. officinale (0.5%) and co-administrated
group significantly decreased the thermal hyperalgesia. However, in the tail immersion test,
the Z. officinale (0.5 and 1%) alone group was effective in both cold and hot pain (allodynia
and hyperalgesia).

Chemotherapy treatment is also known to induce thermal pain both in humans and
rodents [75,76]. In the study of Lee et al. [31] and Kim et al. [45], cold pain was assessed by
using the acetone drop test. Lee et al. [31] injected different doses of Z. officinale orally in
oxaliplatin-induced neuropathic pain, and all doses succeeded in significantly attenuating
cold pain when measured 60 min after its administration. Kim et al. [45] also reported
that [6]-shogaol could significantly alleviate cold pain in neuropathic pain induced by
oxaliplatin. [6]-shogaol was injected intraperitoneally, and analgesic effect was shown
60 min after the administration. Fajrin et al. reported two studies related to thermal
pain; on the first study [43], the efficacy of Z. officinale and [6]-shogaol were evaluated
through a tail-flick test in the STZ-induced heat pain in mice. Oral and intraperitoneal
administration of Z. officinale and [6]-shogaol, decreased thermal hyperalgesia, respectively.
In their subsequent study [44], STZ was also used to induce thermal pain (heat), and the
hot-plate test was used to evaluate the analgesic effect of Z. officinale and [6]-shogaol. The
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results show that both Z. officinale and [6]-shogaol treated group mice showed significantly
longer latency time toward thermal stimulus compared to the diabetic control group.

Ojewole [19] and Sepahvand et al. [33] evaluated the effect of Z. officinale in electrical
and radiant heat-induced thermal pain using a hot plate test and a tail flick test, respectively.
In the study of Ojewole, Z. officinale was intraperitoneally administrated 20 min before the
hot-plate test, and jumping-out of the beaker was considered a response to heat-induced
pain. Z. officinale treatment significantly delayed the reaction time induced by electrical heat.
Sepahvand et al. [33] also demonstrated the effect of Z. officinale through a tail-flick test
in radiant heat-induced pain in rats. The tail-flick test was evaluated after intraperitoneal
injection of the Z. officinale or morphine. Z. officinale was injected 15 min before morphine
injection to confirm the effect of co-administration in morphine analgesia. Z. officinale
exerted an analgesic effect in tail-flick test, which peaked at 30 min after injection and
lasted till 60 min. The analgesic effect of Z. officinale peaked at 30 min after the injection
and lasted till 120 min, respectively (120 mg/kg). Morphine alone showed no analgesic
effect; however, co-administration of Z. officinale (200 mg/kg) and morphine produced an
antinociceptive effect that lasted 120 min. As a result, the analgesic effect of Z. officinale
alone or with morphine was greater than the morphine.

Darvishzadeh-Mahani et al. [34] have reported that Z. officinale could protect the de-
velopment of morphine-induced tolerance in radiant heat-induced pain (tail-flick test). The
tolerance of analgesic effect was demonstrated by multiple injections of morphine (twice a
day for eight days). Z. officinale was given through the oral route and co-administered with
morphine. Concomitant treatment of morphine and Z. officinale significantly prevented
the morphine-induced tolerance. Dose of 25 mg/kg of Z. officinale shows anti-tolerance
effect, whereas 10 mg/kg Z. officinale failed to show a significant effect. In addition, co-
administration of morphine and Z. officinale (100 mg/kg) reversed the morphine-induced
L-type calcium channel over-expression in the spinal cord.

Altogether, the results demonstrated in the included studies clearly show that Z.
officinale, [6]-gingerol and [6]-shogaol can effectively attenuate thermal pain (i.e., cold and
heat) induced by nerve injury and chemotherapy treatment.

3. Discussion

In this study, the effect of Z. officinale, [6]-gingerol and [6]-shogaol on different types of
pain have been summarized. A total of 16 studies that focused on Z. officinale [19,31–38],
[6]-gingerol [39–42] and [6]-shogaol [43–45] have been included. To our knowledge, this
is the first time that their effect and underlying mechanism of action in pain have been
analyzed. Z. officinale is widely known for its effect on the digestive system, and it has
been mainly used to treat digestive disorders [77–79]; however, recent clinical [80,81] and
animal [82–84] studies suggest that it could also be effective against the pain, but too little
is known on their effect and mechanisms of action.

Z. officinale, ginger, which has long been widely used to treat various diseases, is one
of the most popular herbal dietary supplements in the world [85]. It is also known to cause
no severe side effects, and the U.S. Food and Drug Administration (FDA) classified ginger
as “generally recognized as safe” [86]. The components of Z. officinale include volatile
oils, fixed fatty oils and pungent compounds but depends on the characteristics of the
cultivated region, agroclimatic conditions [87]. As the pungent compounds, [6]-gingerol
and [6]-shogaol, are the two main compounds [88]. When gingerol, which is unstable in
heat, is deformed at a high temperature, it becomes shogaol, and [6]-shogaol is the most
common dehydrated product [89]. Although the content of [6]-gingerol and [6]-shogaol in
Z. officinale appears to be affected by drying and extraction temperatures [89], it is reported
that about 11% and 0.08% are contained in Z. officinale, respectively [90]. Both shogaols and
gingerols are known to easily pass the blood–brain barrier (BBB) [91].

In this study, the analgesic effect of Z. officinale, [6]-gingerol and [6]-shogaol have been
analyzed on mechanical, spontaneous, and thermal allodynia or hyperalgesia (Tables 1 and 2),
and different animal models of pain have been used. Among the 16 studies included, five
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used different types of nerve injury pain models, whereas 11 used diverse chemicals to induce
pain in rodents. On mechanical allodynia, five studies focused on the effect of Z. officinale and
four on [6]-shogaol and three on [6]-gingerol. On spontaneous pain, three observed the pain-
decreasing effect of Z. officinale and one of [6]-gingerol. Finally, on thermal pain, nine reported
the action of Z. officinale and one and three of [6]-gingerol and [6]-shogaol, respectively.

In the included studies, only seven papers have demonstrated the underlying mechanism
of action of the analgesic effects of Z. officinale, [6]-gingerol and [6]-shogaol [31,38,41–45]. Five
studies have focused on the spinal cord, one on the DRG neurons and one has used cultured
cell. Three studies [31,42,45] focused on the role of spinal serotonergic receptors [31,42,45], and
spinal TRPV1, spinal NMDA receptor (NMDAR) [44], spinal pERK1/2, histone deacetylase
(HDAC1) [38], spinal pERK1/2, histone deacetylase (HDAC1), sciatic nerve’s morphology [43],
and Nav1.8 and SP [41] have been observed by one study (Figure 2).
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Figure 2. The pathogenesis mechanism of pain induced by nerve injury or chemical injection and
the mechanism of action of the analgesic effect of Z. officinale, [6]-gingerol and [6]-shogaol. Pain
is caused by nerve injury or chemical injection (Red), and pain is attenuated when Z. officinale
and its sub-components are administered (Blue). Mechanism was identified on the spinal cord,
peripheral nerves and cultured cell (in vitro). Abbreviations:5-HTR (serotonin receptor), GABA
(gamma-aminobutyric acid), HDAC1 (histone deacetylase 1), Nav1.8 (voltage-gated sodium channel
1.8), NMDAR2B (N-methyl-D-aspartate receptor subunit 2B), pERK (phosphorylated extracellular
signal-regulated kinase), TRPV1 (transient receptor potential vanilloid 1), and Z. officinale (Zingiber
officinale Roscoe).

To assess the involvement of the serotonergic system, Lee et al. [31], Kim et al. [45] and
Mata-Bermudez et al. [42] observed the role of serotonergic receptors in the spinal cord. On
the oxaliplatin-induced animal model of pain, both Lee et al. and Kim et al. have reported
that intrathecal pre-treatment of 5-HT1A and 5-HT3 receptor antagonists could block the
analgesic effect of Z. officinale and [6]-shogaol. Although the animal model of pain was
different (oxaliplatin vs. SNL), Mata-Bermudez et al. have also focused on spinal 5-HT1A,
B, D, and 5A receptors and demonstrated that the analgesic effect of intrathecal injection
of [6]-gingerol is mediated by these receptors. In addition, in the study of Kim et al. [45],
[6]-shogaol was shown to decrease both the mechanical and cold pain through spinal
5-HT1A and 5-HT3 receptors present in the spinal GABA neurons, which are inhibitory
interneurons [45]. Altogether, these results suggest that both Z. officinale and [6]-shogaol
act on spinal 5-HT1A and 5-HT3 receptors and [6]-gingerol on spinal 5-HT1A, B, D, and 5A
receptors. Seven families of serotonin recipients are divided into 15 subtypes [92], and are
found in both central and peripheral nervous systems [93]. Among them, 5-HT3 receptors
are ligand-gated ion channels (LGICs), whereas other receptors are G-protein-coupled
receptors (GPCRs) [92]. 5-HT1, 3 and 5 receptors are known to be present in the superficial
laminae of the dorsal horn of the spinal cord and are reported to induce an analgesic effect
upon activation [94–96]. Although the included studies have demonstrated that Z. offici-
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nale and its sub-components could induce analgesic effect through serotonergic receptors
present in the spinal cord, much remains to be clarified, as whether they directly activated
these receptors or indirectly activated them by increasing the synthesis of descending sero-
tonin from the rostro ventromedial medulla (RVM) of the brain has not been understood
yet. Thus, further studies are needed to clearly understand the role of the serotonergic
system in the analgesic effect of Z. officinale and its sub-components.

In the study conducted by Fajrin et al. [44], the role of spinal TRPV1 has been observed.
[6]-Gingerol and [6]-shogaol are known as capsaicin structural analogs [97] and have a
high binding affinity for TRPV1 [98]. By using a diabetic induced animal model of pain,
Fajrin et al. has reported that Z. officinale and [6]-shogaol modulate the expression of spinal
TRPV1 to induce analgesia. They reported that both Z. officinale and [6]-shogaol decrease
the expression of TRPV1 in the spinal cord. Compared to the relatively well understood
role of the TRPV1 present on the peripheral nervous system, the role of spinal TRPV1 has
not been clearly understood yet [99,100]. In the spinal cord, TRPV1 is known to exist in
the superficial laminae I and II, which are pain sensory pathways [101]. Kanai et al. [102]
confirmed a gradual increase in TRPV1 expression in superficial dorsal horns of spinal
cord in the CCI rats model and reported that intrathecal administration of TRPV1 antag-
onist could induce analgesia. In addition, mechanical and heat hypersensitivity induced
by spinal cord injury were reversed by intrathecal injection of antisense oligonucleotide,
which knockdown spinal TRPV1 [103]. In clinical trials, the TRPV1 antagonist has been
reported to significantly increase the threshold for capsaicin-induced heat and pressure
pain in healthy volunteers [104]. TRPV1 has also been reported to be related to the activity
of spinal astrocytes [105] and microglia [106] augmenting the ascending neuronal pain
signals transmitted to the brain. Furthermore, TRPV1 can interact with NMDAR2B to
contribute to pain development [107], as a study has reported that spinal TRPV1 expres-
sion was increased in carrageenan-inducted pain condition, and expression of TRPV1 and
phosphorylated NMDAR2B decreased when capsazepine, the TRPV1 antagonist, was in-
trathecally administered [108]. Furthermore, Zingiber zerumbet, which is a different species
of the Zingiberaceae family [109], has also shown an antinociception effect similar to cap-
sazepine [110]. They further revealed that the antinociception effect of Zingiber zerumbet is
mediated through the NO and adenosine triphosphate (ATP)-sensitive K+ channel pathway.
The opening of the ATP-sensitive K+ channel, which releases K+, leads to a decrease in
membrane excitability through membrane repolarization or hyperpolarization [111]. Simi-
larly, Mata-Bermudez et al. [42] have demonstrated that [6]-gingerol affected the NO–cyclic
guanosine monophosphate–ATP-sensitive K+ channel pathway to induce analgesia. In
addition to the above-mentioned mechanisms, calcitonin gene-related peptide (CGRP) has
been reported to be modulated by Z. officinale, as an in vitro study has suggested that Z.
officinale could attenuate the trigeminal pain by modulating CGRP [112]. CGRP is known
as the main inflammatory mediator in neurogenic inflammation of migraine. Peripheral
release of CGRP is known to be involved in the development and maintenance of central
sensitization and allodynia, and receptor antagonist of CGRP is targeted as a treatment for
migraine and chronic pain [113]. TRPV1 expressed in trigeminal nociceptors has also been
reported to cause neurogenic inflammation by releasing CGRP [114].

In conclusion, based on the results obtained from 16 studies, our review suggests that
Z. officinale and its sub-components (i.e., [6]-gingerol and [6]-shogaol), which have long
been used as herbal medicines, can be used to treat mechanical, spontaneous, and thermal
(cold and heat) pain. However, more studies that focus on the mechanism of action are still
needed, as the understanding of the underlying mechanism of action is still poor, especially
on the role of the serotonin system and TRPV1. Furthermore, future studies should focus
not only on the spinal cord, but also on the brain and the peripheral nervous system to
enlarge the understanding on the effect of Z. officinale.
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4. Materials and Methods

A search was conducted on all studies on the effect of Z. officinale and its sub-
components of pain in the National Library of Medicine (MEDLINE) using PubMed,
and Google Scholar (Figure 3). Extensive searches were undertaken for articles written in
English, as non-English studies were excluded. Studies electronically published until the
end of June 2022 were included. The literature search was performed using the following
keywords: “Zingiber officinale roscoe (Z. officinale)”, “[6]-Shogaol”, “[6]-Gingerol”, “Allody-
nia” and “Hyperalgesia” “Pain”. After the initial search, duplicates, bibliographies, study
protocols, clinical trials, and non-English studies were excluded. Sixteen animal studies
were included in this study.
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