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Abstract: Dianella ensifolia is a perennial herb with thickened rhizome and is widely distributed
in tropical and subtropical regions of Asia, Australia, and the Pacific islands. This plant has the
potential to be used as a source of herbal medicine. This study investigated further phytochemistry
and tyrosinase inhibitory effect of some constituents isolated from D. ensifolia. Four new flavans,
(2S)-4′-hydroxy-6,7-dimethoxyflavan (1), (2S)-3′,4′-dihydroxy-7-methoxy-8-methylflavan (2), (2S)-2′-
hydroxy-7-methoxyflavan (3), and (2S,1′S)-4-hydroxy-4-(7-methoxy-8-methylchroman-2-yl)-cyclohex-
2-enone (4), together with 67 known compounds, including 10 flavans (5–14), 5 flavanones (15–19),
3 flavone (20–22), 5 chalcones (23–27), 3 chromones (28–30), 15 aromatics (31–45), 7 phenylpropanoids
(46–52), one lignan (53), 7 steroids (54–60), one monoterpene (61), one diterpene (62), 4 triterpenes
(63–66), a carotenoid (67), 2 alkaloids (68 and 69), and 2 fatty acids (70 and 71) were isolated from
D. ensifolia. Their structures were elucidated on the basis of physical and spectroscopic data analyses.
Moreover, compounds 1–4, 8, 10–15, 20, 21, and 41 were evaluated for their mushroom tyrosinase
inhibitory effect. Compounds 11 and 14 strongly inhibited mushroom tyrosinase activity with IC50

values of 8.6 and 14.5 µM, respectively.

Keywords: Dianella ensifolia; Asphodelaceae; flavan; tyrosinase

1. Introduction

The Dianella Lam. ex Juss. genus includes perennial herbs (or subshrubs), glabrous,
and rhizomatous with aerial stems. It comprises about 40 species with accepted names,
mainly distributed in tropical Asia, Australia, and the southern Pacific islands [1]. The
Dianella genus previously belongs to Liliaceae but has been revised to Asphodelaceae,
recently [1,2]. Only one species, Dianella ensifolia (L.) DC, is native to Taiwan [3]. D. ensifolia
is used as herbal medicine, such as topical medicines for ferunculosis, abscesses, lympharin-
gitis, tuberculosis lymphadenitis, tinea, traumatic injuries, and wounds. The plant can also
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be taken internally for the treatment of dysentery, dysuria, leucorrhoea, blanorrhoea, and fa-
tigue [4]. In Taiwan, the indigenous people use its roots for the treatment of abdominal pain;
roots and leaves for treating poisonous snakebite [5]. Previous studies of D. ensifolia iden-
tified various phytochemical constituents, such as quinones [6,7], phenolics, steroids [8],
flavonoids [8–10], glycosides [11], triterpenoids [12,13], and diarylpropanes [14–16]. Some
of these constituents exhibited biological activities, including antioxidative [12,16], an-
tibacterial [12], antivirus [12,17,18], anthelmintic [10], antitumor/anticancer [10,13], and
anti-tyrosinase/melanogenesis activities [15,16,19]. Given the promise of a literature survey,
an investigation was carried out to search for additional valuable bioactive constituents
from the whole plant of D. ensifolia.

Melanin is one of the most widely distributed pigments and is found in fungi, bacteria,
plants, and animals. It is the main protective pigment found in the hair, skin, and eyes of
a human. The role of melanin is to protect the skin against ultraviolet (UV) damage by
absorbing UV sunlight and removing reactive oxygen species (ROS) [20]. Melanin is formed
through a series of oxidative reactions involving the amino acid tyrosine in the presence
of tyrosinase. Tyrosinase (EC 1.14.18.1) is a membrane-bound, multifunctional copper-
containing polyphenol oxidase (PPO) enzyme, involved in the initial steps of melanin
biosynthesis in living organisms [21,22]. The enzyme catalyzes the hydroxylation of
L-tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA) and L-DOPA to dopaquinone, which
is the rate-limiting step of melanin synthesis and can cause unusual melanin pigments
accumulation in the outermost layer of the skin [23,24]. Excessive production of melanin
resulted in different dermatological disorders such as aging spots, wrinkles, melasma,
freckles, lentigo, ephelides, post-inflammatory melanoderma, nevus, and melanoma [25].
In addition, a recent investigation suggests that abnormal melanogenesis disorders are
related to some neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, and Hunt-
ington’s diseases [26]. Therefore, there is a great need for melanogenesis inhibitors to
develop treatment or prevention of hyperpigmentation disorders. Tyrosinase inhibitors
typically work by chelating with copper within the active site of tyrosinase, obviating
the substrate-enzyme interaction, or disrupting the ensuing electrochemical oxidation
process [23]. Since it has been observed that flavonoids, stilbenes, and phenolics manifest
tyrosinase inhibitory activities, it encourages us the continuing search for more bioactive
constituents from Formosan medicinal plants. Accordingly, this investigation of D. ensifolia
products focused on identifying new tyrosinase inhibitors that could be whitening candi-
dates. Here in this article, the structure elucidation of four new flavans and the results of
the tyrosinase inhibitory effect are reported.

2. Results and Discussion
2.1. Isolation and Structure Elucidation of Compounds 1–4

The methanolic extract of roots of D. ensifolia was partitioned into ethyl acetate
(EtOAc)- and water-soluble layers. Four new flavans (1–4) (Figure 1) and 41 known
compounds including 8 flavans (5–12), 2 flavanones (15–16), a flavone (20), 4 chalcones (23–
26), 2 chromones (28–29), 11 aromatics (31–41), 4 phenylpropanoids (46–49), one lignin (53),
7 steroids (54–60), and a monoterpene (61) (Figure S1) were isolated from the EtOAc-soluble
layer of methanolic extract of roots.
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Figure 1. The chemical structures of new flavans (1–4). 

The methanolic extract of the aerial part of D. ensifolia was partitioned into EtOAc- 
and water-soluble layers. The new flavan (1) and 48 known compounds including 7 fla-
vans (8–14), 5 flavanones (15–19), 2 flavones (21–22), 2 chalcones (26–27), 2 chromones (29–
30), 10 aromatics (36–45), 4 phenylpropanoids (49–52), lignin (53), 4 steroids (54–57), a 
monoterpene (61), one diterpene (62), 4 triterpenes (63–66), a carotenoid (67), two alka-
loids (68–69), and two fatty acids (70–71) (Figure S1) were isolated from the EtOAc-soluble 
layer of methanolic extract of the aerial part. 

Compound 1 was isolated as yellowish oil. Its molecular formula, C17H18O4, was de-
termined by HREIMS ([M]+, 286.1209). The 1H- and 13C-NMR spectral data (Tables 1 and 
2) of 1 were similar to that of 6,4’-dihydroxy-7-methoxyflavan [27], except that one hy-
droxy group at C-6 in 6,4’-dihydroxy-7-methoxyflavan was replaced by a methoxy group 
in 1. The 1H-NMR spectrum (Table 1 and Figure S4) of 1 showed five aliphatic protons at 
δ 2.05, 2.14, 2.70, 2.92, and 4.92, typical of pyran nucleus protons of a flavan, one set of 
A2B2 system phenyl protons [δ 6.83 (2H, d, J = 8.4 Hz, H-3’ and H-5’), 7.28 (2H, d, J = 8.4 
Hz, H-2’ and H-6’)], two singlet aromatic protons [δ 6.46 (1H, s, H-8), 6.57 (1H, s, H-5)], 
two methoxy singlet at δ 3.80 and 3.82, and one hydroxy group at δ 5.05. The NOESY 
spectrum of 1 (Figures 2 and S7) showed protons at δ 3.80 and 3.82 owing correlations 
with 6.46 (H-8) and 6.57 (H-5) respectively suggesting a methoxy group (δ 3.80) at C-7 and 
a methoxy group (δ 3.82) at C-6. Because 1 showed negative optical rotation { 25

D][α  −17.1° 
(c 0.01, MeOH)}, C-2 possesses as S-configuration [28]. According to the above evidence, 
the structure of 1 was elucidated as (2S)-4’-hydroxy-6,7-dimethoxyflavan, which was fur-
ther confirmed by COSY (Figure S6), NOESY (Figures 2 and S7), 13C-NMR (Figure S5), 
DEPT, HMQC (Figure S8), and HMBC (Figures 2 and S9) experiments. 
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Figure 1. The chemical structures of new flavans (1–4).

The methanolic extract of the aerial part of D. ensifolia was partitioned into EtOAc- and
water-soluble layers. The new flavan (1) and 48 known compounds including 7 flavans
(8–14), 5 flavanones (15–19), 2 flavones (21–22), 2 chalcones (26–27), 2 chromones (29–
30), 10 aromatics (36–45), 4 phenylpropanoids (49–52), lignin (53), 4 steroids (54–57), a
monoterpene (61), one diterpene (62), 4 triterpenes (63–66), a carotenoid (67), two alkaloids
(68–69), and two fatty acids (70–71) (Figure S1) were isolated from the EtOAc-soluble layer
of methanolic extract of the aerial part.

Compound 1 was isolated as yellowish oil. Its molecular formula, C17H18O4, was de-
termined by HREIMS ([M]+, 286.1209). The 1H- and 13C-NMR spectral data (Tables 1 and 2)
of 1 were similar to that of 6,4′-dihydroxy-7-methoxyflavan [27], except that one hydroxy
group at C-6 in 6,4′-dihydroxy-7-methoxyflavan was replaced by a methoxy group in 1.
The 1H-NMR spectrum (Table 1 and Figure S4) of 1 showed five aliphatic protons at δ
2.05, 2.14, 2.70, 2.92, and 4.92, typical of pyran nucleus protons of a flavan, one set of A2B2
system phenyl protons [δ 6.83 (2H, d, J = 8.4 Hz, H-3’ and H-5’), 7.28 (2H, d, J = 8.4 Hz, H-2’
and H-6’)], two singlet aromatic protons [δ 6.46 (1H, s, H-8), 6.57 (1H, s, H-5)], two methoxy
singlet at δ 3.80 and 3.82, and one hydroxy group at δ 5.05. The NOESY spectrum of 1
(Figures 2 and S7) showed protons at δ 3.80 and 3.82 owing correlations with 6.46 (H-8) and
6.57 (H-5) respectively suggesting a methoxy group (δ 3.80) at C-7 and a methoxy group (δ
3.82) at C-6. Because 1 showed negative optical rotation {[α]25

D −17.1◦ (c 0.01, MeOH)}, C-2
possesses as S-configuration [28]. According to the above evidence, the structure of 1 was
elucidated as (2S)-4′-hydroxy-6,7-dimethoxyflavan, which was further confirmed by COSY
(Figure S6), NOESY (Figures 2 and S7), 13C-NMR (Figure S5), DEPT, HMQC (Figure S8),
and HMBC (Figures 2 and S9) experiments.
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Table 1. 1H-NMR data (CDCl3) of compounds 1–4. Chemical shifts δ in ppm, J in Hz.

H 1 a 2 b 3 b 4 a

2 4.92 (dd, J = 10.2, 2.6) 4.96 (dd, J = 10.5, 2.4) 5.18 (dd, J = 10.2, 2.7) 4.01 (dd, J = 11.2, 2.0)

3 2.05 (m)
2.14 (m)

1.90 (m)
2.16 (m) 2.26 (m) 1.92 (m)

2.04 (m)

4
2.70 (ddd, J = 16.4, 5.2, 2.8, Hβ)

2.92 (ddd, J = 16.4, 10.8, 5.4,
Hα)

2.72 (ddd, J = 15.2, 4.8, 4.0, Hβ)
2.92 (m, Hα)

2.80 (ddd, J = 16.3, 5.0,
2.5, Hβ)

2.96 (m, Hα)
2.81 (m)

5 6.57 (s) 6.85 (d, J = 8.0) 7.00 (d, J = 8.4) 6.86 (d, J = 8.2)
6 – 6.44 (d, J = 8.0) 6.52 (dd, J = 8.4, 2.4) 6.46 (d, J = 8.2)
7 – – – –
8 6.46 (s) – 6.46 (d, J = 2.4) –
2’ 7.28 (d, J = 8.4) 6.95 (s) – 7.09 (dd, J = 10.4, 1.2)
3’ 6.83 (d, J = 8.4) – 6.91 (m) 6.06 (d, J = 10.4)
4’ – – 7.20 (m) –

5’ 6.83 (d, J = 8.4) 6.84 (s) 6.90 (m) 2.49 (dd, J = 17.2, 5.6)
2.81 (m)

6’ 7.28 (d, J = 8.4) 6.84 (s) 7.14 (dd, J = 8.3, 1.2) 2.16 (m)
MeO-6 3.82 (s) – – –
MeO-7 3.80 (s) 3.80 (s) 3.75 (s) 3.79 (s)
Me-8 – 2.20 (s) – 2.08 (s)
OH 5.05 (br s) 5.23 (br s), 5.25 (br s)

a Measured at 400 MHz. b Measured at 500 MHz.

Table 2. 13C-NMR data (CDCl3) of compounds 1–4. Chemical shifts δ in ppm.

C 1 a 2 b 3 b 4 a

2 77.5 77.2 78.5 80.5
3 30.3 30.4 28.1 21.7
4 25.2 25.1 24.4 24.7
4a 105.3 113.4 114.1 113.3
5 111.9 125.8 130.2 125.9
6 142.5 102.8 108.5 103.4
7 148.5 156.1 159.1 156.1
8 100.8 114.0 101.8 113.8
8a 147.7 152.8 154.4 151.8
1’ 133.5 134.9 125.5 70.5
2’ 127.3 112.8 154.7 148.7
3’ 115.0 142.9 117.2 129.5
4’ 154.7 142.4 129.4 198.2
5’ 115.0 114.9 120.4 33.9
6’ 127.3 118.2 127.0 30.9

MeO-6 56.6 – – –
MeO-7 56.0 55.9 55.4 55.9
Me-8 – 8.8 – 9.0

a Measured at 100 MHz. b Measured at 125 MHz.

Compound 2 was isolated as a brown oil. Its molecular formula, C17H18O4, was
determined by HREIMS ([M]+, 286.1207). The 1H-NMR spectrum (Table 1 and Figure S12)
of 2 showed five aliphatic protons at δ 1.90, 2.16, 2.72, 2.92, and 4.96, typical of pyran
nucleus protons of a flavan, one 3,4-dihydroxyphenyl group [δ 6.84 (2H, s, H-5’ and H-6’),
6.95 (1H, s, H-2’), 5.23 (br s, OH), 5.25 (br s, OH)], two ortho coupled doublets (J = 8.0 Hz)
at δ 6.44 and 6.85, a methoxy singlet at δ 3.80, and one methyl singlet at δ 2.20. The NOESY
experiment of 2 (Figures 3 and S15) showed that protons at δ 6.85 correlated with δ 6.44 and
2.72 (H-4), δ 6.85 and 6.44 were assigned to H-5 and H-6, respectively. The methoxy singlet
(δ 3.80) owning correlation with H-6 suggested the methoxy group at C-7. Compound 2
showed negative optical rotation {[α]25

D −15.8◦ (c 0.01, MeOH)}, which means C-2 has the
S-configuration [28]. According to the above evidence, the structure of 2 was elucidated as
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(2S)-3′,4′-dihydroxy-7-methoxy-8-methylflavan, which was further confirmed by COSY
(Figure S14), NOESY (Figures 3 and S15), 13C-NMR (Figure S13), DEPT, HMQC (Figure S16)
and HMBC (Figures 3 and S17) experiments.
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Compound 3 was isolated as a brown oil. Its molecular formula, C16H16O3, was
determined by HREIMS ([M]+, 256.1104). The 1H-NMR spectrum (Table 1 and Figure S23)
of 3 showed five aliphatic protons at δ 2.26, 2.80, 2.96, and 5.18, typical of pyran nucleus
protons of a flavan, one set of ABX system phenyl protons [δ 6.46 (d, J = 2.4 Hz), 6.52
(dd, J = 8.4, 2.4 Hz), 7.00 (d, J = 8.4 Hz)], four aromatic protons at δ 6.90, 6.91, 7.14, and
7.20, a methoxy singlet at δ 3.75. Since the NOESY experiment of 3 (Figure 4) showed that
protons at δ 7.00 correlated with δ 6.52 and H-4, δ 7.00 and 6.52 were assigned to H-5 and
H-6, respectively. The methoxy singlet owning correlation with H-6 and δ 6.46 suggested
the methoxy group at C-7 and δ 6.46 was assigned to H-8. 13C-NMR spectrum (Table 2
and Figure S21) of 3 showed three oxygenated quaternary C-atoms (δ 154.4, 154.7, 159.1)
suggesting a hydroxyl group on B-ring. The NOESY correlations (Figure 4 and Figure
S23) of four aromatic protons (δ 6.90, 6.91, 7.14, and 7.20) suggested the hydroxy group at
C-2′. An S-configuration at C-2 of 3 was due to the negative optical rotation {[α]25

D −26.0◦

(c 0.01, MeOH)} [28]. According to the above evidence, the structure of 3 was elucidated
as (2S)-2’-hydroxy-7-methoxyflavan, which was further confirmed by COSY (Figure S22),
NOESY (Figures 4 and S23), 13C-NMR (Figure S21), DEPT, HMQC (Figure S24), and HMBC
(Figures 4 and S25) experiments.
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Compound 4 was isolated as a colorless oil. Its molecular formula, C17H20O4, was
determined by HREIMS ([M]+, 288.1363). The 1H-NMR spectrum (Table 1 and Figure S28)
of 4 was similar to that of 2, except the typical aromatic proton signals of the B-ring were
absent. Instead, four aliphatic protons at δ 2.16, 2.49, 2.81, and two vinylic hydrogens
[6.06 (d, J = 10.4 Hz, H-3’), 7.09 (dd, J = 10.4, 1.2 Hz, H-2’)] provided evidence of a
cyclohexenone non-aromatic B-ring. Moreover, an additional carbonyl group at δ 198.2
(C-4’) and conjugated vinylic carbons at δ 129.5 (C-3’) and 148.7 (C-2’) in the 13C-NMR
spectrum (Table 2 and Figure S29) of 4 provided strong support of this cyclohexenone
moiety. HMBC correlations (Figures 5 and S33) between H-2’ and the carbon at δ 80.5
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(C-2), 198.2 (C-4’), 70.5 (C-1’), and 30.9 (C-6’) and between H-3’ and carbons at δ 70.5 (C-1’)
and 33.9 (C-5’) supposed the connectivity between the non-aromatic B-ring and C-ring.
According to the above evidence, the structure of 4 was elucidated as 4-hydroxy-4-(7-
methoxy-8-methylchroman-2-yl)-cyclohex-2-enone, which was further confirmed by COSY
(Figure S30), NOESY (Figures 5 and S31), 13C-NMR (Figure S29), DEPT, HMQC (Figure S32),
and HMBC (Figures 5 and S33) experiments. The CD spectrum (Figure 6: orange curve) of
4 showed two positive Cotton effects around 392 and 334 nm, similar to the calculated ECD
spectrum for (2S,1′S)-4 (Figure 6: purple curve). Therefore, the absolute configuration of 4
was decided as (2S,1′S)-4-hydroxy-4-(7-methoxy-8-methylchroman-2-yl)-cyclohex-2-enone.
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The known compounds including 10 flavans, (2R,3R)-3,4’-dihydroxy-7-methoxy-8-
methylflavan (tupichinol A) (5) [29], (2S)-7,3’-dihydroxy-4’-methoxyflavan (6) [30], (2S)-
4’-hydroxy-5,7-dimethoxy-8-methylflavan (7) [31], (2S)-7,4’-dihydroxyflavan (8) [28], (2S)-
4’-hydroxy-7-methoxyflavan (9) [31], (2S)-7,4’-dihydroxy-8-methylflavan (10) [32], (2S)-
2’,4’-dihydroxy-7-methoxy-8-methylflavan (11) [9], (2S)-3’,5’-dihydroxy-7,4’-dimethoxy-
8-methylflavan (12) [33], (2S)-7,3′-dihydroxy-6,4’-dimethoxyflavan (13) [34], (2S)-2’,4’-
dihydroxy-7-methoxyflavan (14) [8]; 5 flavanones, (2S)-liquiritigenin (15) [35], (2S)-farrerol
(16) [36], (2S)-liquiritigenin 4’-methyl ether (17) [28], (2S)-5,7-dihydroxy-4’-methoxy-6,8-
dimethylflavanone (18) [37], cyrtominetin (19) [38]; 3 flavones, luteolin (20) [39], apigenin
(21) [39], syzalterin (22) [36]; 5 chalcones, broussonin A (23) [40], 1-(2,4-dimethoxyphenyl)-
3-(4-hydroxyphenyl)propane (24) [41], 4,2’-dihydroxy-4’-methoxychalcone (25) [42], 4,2’,4’-
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trihydroxychalcone (26) [42], kukulkanin B (27) [42]; 3 chromones, noreugenin (28) [43]
and 5,7-dihydroxy-2,8-dimethylchromen-4-one (29) [44], 5,7-dihydroxy-2-tricosylchromone
(30) [45]; 15 aromatics, 1H,3H-5,7-dimethoxyisobenzofuran-l-one (31) [46], syringic acid
(32) [47], 2,4-dimethoxy-6-methylbenzoic acid (33) [48], methyl 2,6-dihydroxy-3,4-dimethyl-
benzoate (34) [49], methyl 3,4-dihydroxybenzoate (35) [50], 3,5-dimethoxy-4-hydroxybenzal-
dehyde (36) [51], vanillic acid (37) [52], methyl 2,4-dimethoxy-6-methylbenzoate (38) [48],
methyl 4-hydroxy-2-methoxy-6-methylbenzoate (39) [53], methyl 4-hydroxybenzoate (40) [54],
7-acetyl-4,8-dihydroxy-6-methyl-1-tetralone (41) [8], benzoic acid (42) [55], 4-hydroxybenzal-
dehyde (43) [52], 4-hydroxybenzoic acid (44) [54], phenylacetic acid (45) [56]; 7 phenyl-
propanoids, 4-(3-hydroxypropyl)-2-methoxyphenol (46) [57], ferulic acid (47) [58], tetra-
cosanyl ferulate (48) [59], 4-hydroxycinnamic acid (49) [52], methyl 4-hydroxycinnamate
(50) [47], feruloyloxytetracosanoic acid (51) [60], phloiorubein (52) [61]; one lignan, (+)-
pinoresinol (53) [62]; 7 steroids, β-siosterol (54) [63], stigmasterol (55) [63], β-sitostenone
(56) [64], stigmasta-4,22-dien-3-one (57) [65], 6β-hydroxystigmast-4-en-3-one (58) [66], 3β-
hydroxystigmast-5-en-7-one (59) [52], (22E)-3β-hydroxystigmasta-5,22-dien-7-one (60) [67];
one monoterpene, loliolide (61) [68]; one diterpene, phytol (62) [54]; four triterpenes,
3β,24ξ-dihydroxy-25-cycloartene (63) [69], 3β-hydroxy-11-oxo-12-ursene (64) [70], 9 (11),12-
oleanadien-3-one (65) [71], 3β-hydroxy-20-oxo-30-norlupane (66) [70]; a carotenoid, β,ε-
carotene-3,3′-diol (67) [72]; two alkaloids, indole-3-aldehyde (68) [73], indole-3-carboxylic
acid (69) [74]; two fatty acids, linoleic acid (70) [75] and palmitic acid (71) [76] were readily
identified by comparison of physical and spectroscopic data (UV, IR, 1H-NMR, [α]D, and
mass spectrometry data) with values found in the literature.

2.2. Mushroom Tyrosinase Inhibitory Effect of Compounds Isolated from D. ensifolia

Tyrosinase is a copper-containing enzyme that catalyzes the oxidation of both monophe-
nols (monophenolase activity) and diphenols (diphenolase activity) to the corresponding
quinones and is responsible for the formation of melanin, which protects skin from the
damage caused by UV radiation [20,24]. Excessive tyrosinase activity may lead to the over-
production or abnormal distribution of melanin, known as irregular hyperpigmentation of
the skin. The use of tyrosinase inhibitors to prevent pigmentation is becoming increasingly
important in the cosmetic and medicinal industries. These phenomena have motivated us
to continue our research on natural tyrosinase inhibitors.

Compounds 1–4, 8, 10–15, 20, 21, and 41 were evaluated for their mushroom tyrosinase
inhibitory effect. As shown in Table 3, compounds 11 and 14 exhibited potent concentration-
dependent mushroom tyrosinase inhibitory activity, with IC50 values of 8.6 ± 0.8 and
14.5 ± 0.3 µM, respectively. However, the IC50 value of arbutin (positive control), a well-
known whitening agent used in cosmetics, was 112.2 ± 5.4 µM. (2S)-2’,4’-Dihydroxy-
7-methoxy-8-methylflavan (11) and (2S)-2’,4’-dihydroxy-7-methoxyflavan (14) showed
approximately 13-fold and 7.7-fold stronger tyrosinase inhibitory activity than arbutin,
respectively. Compounds 2, 15, 20, and 21 also showed a more substantial inhibitory effect
against mushroom tyrosinase than arbutin. Whereas, compounds 1, 3, 4, 8, 10, 12, 13, and
41 had moderate or weak activity.

Table 3. Mushroom tyrosinase inhibitory effect of tested compounds.

Compound IC50 (µM) a Compound IC50 (µM) a

1 170.9 ± 4.6 13 261.2 ± 4.5
2 68.9 ± 5.7 14 14.5 ± 0.3
3 >300 15 108.6 ± 6.2
4 275.9 ± 8.4 20 41.8 ± 3.3
8 147.5 ± 6.5 21 92.3 ± 4.2

10 175.9 ± 10.7 41 111.6 ± 7.1
11 8.6 ± 0.8 Arbutin b 112.2 ± 5.4
12 >300

a IC50 is the concentration of the sample required to inhibit 50% of the enzyme. b Positive control.
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The results also noted interesting structure-activity relationships among the tyrosinase
inhibitory activity of these tested compounds. The anti-tyrosinase activity of them can
be ranked as follows: 11, 14 >> 20, 2 > 21 > 15 ∼= 41 ∼= arbutin > 8, 1 ∼= 10 > 13, 4 > 3, 12.
Among flavonoids, it was found that compounds with a resorcinol skeleton in the ring B
(e.g., 11 and 14) showed the most potent anti-tyrosinase activity than that bearing a catechol
moiety (e.g., 2 and 20). As compounds with catechol moiety, the activity of 20 (a flavone) is
better than 2 (a flavan), it was suggested that para-substituted hydroxy group in the B ring
attached to an α,β-unsaturated carbonyl group of flavone forms a skeleton similar to that of
tyrosine, thus, it showed better anti-tyrosinase activity than flavans. These relative activities
are consistent with previous reports [77–79]. In addition, the position of resorcinol is also
important for anti-tyrosinase activity. In comparison with 11, compound 12 dramatically
decreased the tyrosinase inhibitory effect; it can be conducted that compounds with 2′,4′-
resorcinol moiety is essential for potent enzyme inhibitor than that of 3′,5′-resorcinol moiety.
Introducing a non-hydroxy substituent at C-4′ (e.g., 3, 4, 12, and 13) notably reduced the
tyrosinase inhibitory activity. Further experiments are needed to pinpoint the mechanism
of this activity.

3. Materials and Methods
3.1. General

Silica gel 60 F254 precoated plates (Merck). Column chromatography (CC): silica gel
(Merk 70–230 mesh). High-performance liquid chromatography (HPLC): LDC Analytical-
III system; column: Keystone spherisorb silica, 5 µm, 250 × 10 mm. M.p.: Yanaco-MP-S3
micro-melting-point apparatus; uncorrected. Optical rotation: Jasco-DIP-1000 polarimeter;
in methanol. UV Spectra: Helios Beta UV-Visible spectrophotometer; λmax (logε) in nm. IR
Spectra: Perkin-Elmer-983G FT-IR spectrophotometer; ν in cm−1. 1H-, 13C-, and 2D-NMR
Spectra: Varian-Unity-Plus-400 and Bruker-DMX-500 spectrometers; δ in ppm, J in Hz. EIMS
and HREIMS: Jeol-JMS-HX300 mass spectrometer; m/z (rel. %).

3.2. Plant Material

Dianella ensifolia were collected from Taipei, Taiwan, in July 2006 and positively identi-
fied by Y.-H. K. A voucher specimen (YHK 0671) has been deposited in the Herbarium of
the College of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C.

3.3. Extraction and Isolation

Dried roots (12.8 kg) of Dianella ensifolia were sliced and extracted with cold MeOH
twice. After removal of the solvent under vacuum, the extract (376 g) was partitioned with
EtOAc and water (1:1 v/v) three times and obtained EtOAc- and water-soluble fractions.

The EtOAc-soluble fraction (90 g) was chromatographed using silica gel (2.0 kg), using
n-hexane, EtOAc, and MeOH of increasing polarity as eluent to give 10 fractions. Fraction 2
(7.6 g, n-hexane/EtOAc 95:5) was subjected to HPLC (n-hexane/EtOAc 9:1) to yield 3
(19.3 mg), 34 (583.2 mg), 38, (23.8 mg), 48 (62.5 mg), and the mixture (25.2 mg) of 56 and 57.
Fraction 3 (10.1 g, n-hexane/EtOAc 90:10) was subjected to HPLC (CH2Cl2/EtOAc 97:3)
to yield 7 (30.9 mg), 9 (85.5 mg), 24 (35.7 mg), the mixture (159.7 mg) of 54 and 55, and 69
(5.32 g). Fraction 4 (4.6 g, n-hexane/EtOAc 80:20) was subjected to HPLC (CH2Cl2/EtOAc
85:15) to yield 1 (31.9 mg), 2 (26.7 mg), 4 (33.2 mg), 6 (26.6 mg), 10 (37.0 mg), 11 (28.1 mg),
12 (24.4 mg), 16 (25.5 mg), 23 (31.0 mg), 25 (25.2 mg), 28 (22.9 mg), 29 (38.2 mg), 39
(47.8 mg), 40 (46.7 mg), 58 (15.8 mg), and the mixture (18.3 mg) of 59 and 60. Fraction 5
(4.6 g, n-hexane/EtOAc 70:30) was subjected to HPLC (CH2Cl2/EtOAc 85:15) to yield 5
(34.4 mg), 8 (33.2 mg), 26 (31.4 mg), 31 (14.1 mg), 35 (27.8 mg), 36 (18.4 mg), 41 (63.2 mg),
46 (16.5 mg), and 61 (15.6 mg). Fraction 6 (6.6 g, n-hexane/EtOAc 50:50) was subjected to
HPLC (CH2Cl2/EtOAc 80:20) to yield 15 (51.8 mg), 20 (31.0 mg), 32 (28.9 mg), 33 (232.9 mg),
37 (22.8 mg), 47 (40.0 mg), 49 (21.6 mg), 53 (30.7 mg).

The dried aerial part of D. ensifolia (4.9 kg) was chopped and extracted with cold
MeOH twice. The mixtures were filtered and concentrated to dryness under reduced
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pressure, producing a methanolic extract (331.0 g). The methanolic extract was partitioned
with EtOAc and water (1:1, v/v) to obtain EtOAc- and water-soluble layers.

The EtOAc-soluble layer (185.0 g) was subjected to silica gel (5.0 kg) column chromatog-
raphy with a gradient of n-hexane/ EtOAc /MeOH to obtain 11 fractions. Fraction 4 (35.3 g,
n-hexane/EtOAc 90:10) was subjected to preparative HPLC, eluting with n-hexane/EtOAc
(8:2) and n-hexane/CH2Cl2/EtOAc (5.5:4:0.5) to yield four steroids: 54 (1442 mg), 55
(961 mg), 56 (45.4 mg), 57 (31.5 mg). Fraction 5 (9.6 g, n-hexane/EtOAc 80:20) was subjected
to preparative HPLC, eluting with n-hexane/EtOAc (6:4), CH2Cl2/EtOAc (8.5/1.5), and
n-hexane/CH2Cl2/EtOAc (5.5:4:0.5) to yield three flavonoids: 8 (10.8 mg), 9 (21.6 mg), and
18 (6.7 mg); six aromatics: 38 (1.3 mg), 39 (2.4 mg), 40 (22.2 mg), 43 (2.2 mg), 50 (2.9 mg), and
52 (6.0 mg); four triterpenoids: 63 (7.0 mg), 64 (6.6 mg), 65 (4.8 mg), and 66 (11.5 mg); one
chromone: 29 (7.7 mg), one diterpene: 62 (21.2 mg) and a fatty acid: 71 (18.5 mg). Fraction 6
(8.9 g, n-hexane/EtOAc 70:30) was purified by HPLC, eluting with n-hexane/EtOAc (7:3) to
obtain 17 (4.8 mg), follow by CH2Cl2/EtOAc (9.5:0.5 to 8:2) to yield 1 (3.1 mg), 10 (5.2 mg),
11 (12.1 mg), 12 (27.5 mg), 13 (29.7 mg), 14 (33.3 mg), and 16 (54.2 mg) was purified by
n-hexane/EtOAc (6:4). Total are eight flavonoids isolated from fraction 6. In addition,
four aromatics, 36 (11.8 mg), 41 (9.4 mg), 42 (5.3 mg), 51 (2.5 mg), were obtained by eluting
with n-hexane/EtOAc (6.5:3.5 to 6:4) and CH2Cl2/EtOAc (8.5:1.5 to 8:2). One chromone,
44 (25.3 mg), was obtained by eluting with n-hexane/CH2Cl2/EtOAc (5.5:4:0.5). One
chalcone, 27 (3.1 mg) was obtained by eluting with n-hexane/EtOAc (6:4). A carotenoid, 67
(1.7 mg), was obtained by eluting with n-hexane/EtOAc (7:3) and CH2Cl2/EtOAc (9.5:0.5
to 8:2). Fraction 7 (12.4 g, n-hexane/EtOAc 50:50) was purified by HPLC, eluting with
n-hexane/EtOAc (6:4 to 1:1) and CH2Cl2/EtOAc (9.5:0.5 to 1:1) to yield four flavonoids
[15 (10.1 mg), 21 (9.4 mg), 22 (4.7 mg), 19 (29.6 mg)], seven aromatics [29 (7.7 mg), 30
(25.3 mg), 49 (63.8 mg), 37 (13.0 mg), one chalcone [26 (23.1 mg)], two alkaloids [68 (9.0 mg),
69 (11.6 mg)], one lignan [53 (17.8 mg)], and one monoterpene [61 (79.8 mg)].

3.4. (2S)-4’-Hydroxy-6,7-Dimethoxyflavan (1)

Yellow oil; [α]25
D −17.1◦ (c 0.01, MeOH); UV (MeOH) λmax (log ε): 286 (4.12), 225 (4.66)

nm; IR (neat) νmax: 3424, 3010, 2935, 2859, 1605, 1512, 1214, 1116 cm−1; EIMS: m/z (rel.
int.): 286 (M+, 100), 180 (8), 167 (41), 166 (13), 120 (7); HREIMS: 286.1209 (C17H18O4

+, calc.
286.1205); 1H-NMR: see Table 1; 13C-NMR: see Table 2.

3.5. (2S)-3’,4’-Dihydroxy-7-Methoxy-8-Methylflavan (2)

Brown oil; [α]25
D −15.8◦ (c 0.01, MeOH); UV (MeOH) λmax (log ε): 282 (3.66), 227 (4.08)

nm; IR (neat) νmax: 3403, 3090, 2952, 2853, 1619, 1510, 1454, 1275, 1162 cm−1; EIMS: m/z (rel.
int.): 286 (M+, 77), 269 (13), 164 (29), 151 (100), 136 (34); HREIMS: 286.1207 (C17H18O4

+, calc.
286.1205); 1H-NMR: see Table 1; 13C-NMR: see Table 2.

3.6. (2S)-2’-Hydroxy-7-Methoxyflavan (3)

Brown oil; [α]25
D −26.0◦ (c 0.01, MeOH); UV (MeOH) λmax (log ε): 280 (3.84), 221 (4.25)

nm; IR (neat) νmax: 3368, 3012, 2927, 2853, 1607, 1513 cm−1; EIMS: m/z (rel. int.): 256
(M+, 34), 239 (50), 150 (28), 137 (58), 73 (26), 59 (100); HREIMS: 256.1104 (C16H16O3

+, calc.
256.1099); 1H-NMR: see Table 1; 13C-NMR: see Table 2.

3.7. 4-Hydroxy-4-(7-Methoxy-8-Methylchroman-2-yl)-Cyclohex-2-Enone (4)

Colorless oil; [α]25
D +30.8◦ (c 0.01, MeOH); UV (MeOH) λmax (log ε): 281 (3.51), 227

(4.48) nm; IR (neat) νmax: 3435, 3044, 2935, 1676, 1601, 1493, 1434, 1113 cm−1; EIMS: m/z
(rel. int.): 288 (M+, 29), 270 (5), 178 (13), 177 (100), 112 (33); HREIMS: 288.1363 (C17H20O4

+,
calc. 288.1362); CD (MeOH): ∆ε392 0.47, ∆ε334 1.10 (dm3 mol−1 cm−1); 1H-NMR: see Table 1;
13C-NMR: see Table 2.
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3.8. In Vitro Mushroom Tyrosinase Inhibition Assay

The mushroom tyrosinase inhibitory assay has been described in detail previously [79].
Briefly, various concentrations of test compounds (100 µL) and 2 mM L-tyrosine (80 µL,
Sigma-Aldrich, St. Louis, MO, USA) were mixed in 96-well plates. 20 µL of mushroom ty-
rosinase (1000 U/mL, Sigma-Aldrich, USA) was added to initiate the assay. The absorbance
of the mixture was measured at 490 nm using a microplate reader (µQuant™, BioTek
Winooski, VT, USA). The percentage inhibition of mushroom tyrosinase was calculated
according to the following equation: Inhibition (%) = [1 − (S − SB)/(C − CB)] × 100%,
where S, SB, C, and CB are the absorbance of the sample, the blank sample, the control, and
the blank control, respectively.

4. Conclusions

Four new flavans, (2S)-4’-hydroxy-6,7-dimethoxyflavan (1), (2S)-3’,4’-dihydroxy-7-
methoxy-8-methylflavan (2), (2S)-2’-hydroxy-7-methoxyflavan (3), and (2S,1’S)-4-hydroxy-
4-(7-methoxy-8-methylchroman-2-yl)-cyclohex-2-enone (4), along with 67 known com-
pounds were isolated from whole plants (roots and the aerial part) of D. ensifolia. Selected
compounds of D. ensifolia display anti-tyrosinase properties. The presence of 2′,4′-resorcinol
(11 and 14) or catechol (2 and 20) moiety in the ring B of flavonoids appears to be required
for the anti-tyrosinase activity. Although the detailed mechanism of action of these com-
pounds remains to be determined, the results confirmed that D. ensifolia is a valuable source
of herbal medicine from which natural-based whitening agents can be derived.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants11162142/s1, Figure S1: The chemical structures of com-
pounds 1–71, and Figures S2–S33: the IR, EIMS, 1D- and 2D-NMR spectra of compounds 1–4.
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