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Abstract: Grassland is the primary land use in China, which has experienced extensive degradation
in recent decades due to overexploitation. Here, we conducted field experiments to quantify the
degraded grassland’s recovery rate in Northeast Inner Mongolia in response to restoration measures,
including fallow + enclosure (FE) and mowing + enclosure (ME) in comparison to livestock grazing
(LG), since 2005. Plant community properties were surveyed and aboveground biomass (AGB)
sampled in summer 2013. Our results showed that the regional dominant species Leymus chinensis
retained its dominance under FE, whereas a range of forb species gained dominance under LG.
Vegetative cover was maximal under FE and minimal under LG. The least amount of vegetation
development and AGB were observed under LG. However, plant diversity showed an opposite
pattern, with maximal diversity under LG and minimal under FE. Statistical analysis revealed
that AGB was negatively associated with plant diversity for all treatments except ME. For ME,
a positive AGB-diversity relationship was characterized, suggesting that mowing intensity was
a controlling factor for the AGB-diversity relationship. Overall, these results demonstrated that
enclosure plus mowing represented an effective conservation measure that provided fair support to
forage production and a progressive pathway to a more resilient grassland system.

Keywords: meadow steppe; enclosure; grazing; degradation; conservation; forage; yield

1. Introduction

Grasslands are the primary land use in China, coving 40% of the country’s land
mass [1], which is about three times that of croplands and two times that of forests. Half
of the Chinese grasslands are located in the northern temperate zone, extending from the
Northeast Plain in the east to Xinjiang in the west and forming an integral part of the
Eurasian Steppe [2]. In aggregate, grasslands in China carry one-fifth of the sheep and
one-eleventh of the cattle of the world and support the livelihood of some 400 million
people in China alone [3]. Moreover, the northern grasslands provide a range of ecosystem
services that have regional to national significance, including water conservation, climate
stabilization, carbon sequestration, dust mitigation, etc. [1,4–6]. However, grasslands in
China have experienced extensive degradation during the past few decades, mostly due to
overexploitation [7–9]. Located in northeastern Inner Mongolia, the temperate meadow
steppe in Hulunber represented one of the most conserved grasslands in the whole of China
until recently, as characterized by its native vegetation, rich biodiversity, and diversified
landscapes [10]. Grassland degradation in Hulunber expanded from 10% in extent in the
1980s to over 50% in the early 2000s, and is still developing at an average rate of 2% per
year [11]. Degradation has not only led to decreases in grassland productivity and losses
of biodiversity [12], but it has also disrupted ecosystem functioning and socioeconomic
wellbeing [13,14].
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Natural factors, such as climate and environmental changes, as well as human ac-
tivities have been recognized as the major stresses to the grassland ecosystem [15–18].
As human societies continue to expand their environmental footprints, however, anthro-
pogenic disturbances have outweighed the natural ones to become the major driver of
grassland degradation [19,20]. The way in which humans utilize grasslands not only affects
the individual grasslands, but also impacts the stability and resilience of the grassland
ecosystem as a whole [21,22]. For example, grazing, mowing and enclosure are the three
most commonly employed grassland management strategies in northern China. Increasing
attention has been given in recent years to the impact that these grassland management
regimes have on the diversity and other properties of the grassland community. Extensive
studies have been carried out to investigate the effects of management measures involv-
ing, e.g., grassland type [23] and regional environment [24,25]. Studies have also been
conducted on the attributes of the management practices, such as enclosure duration [26],
grazing intensity [27] and mowing method [28]. However, systematic investigations that in-
tegrate multiple stresses using relatively long-term field experiments are still lacking. Here,
we report experimental evidence on the effects of grazing, mowing and fence enclosure on
the productivity and stability of grassland systems from a long-term field observation in
Hulunber of Northeast Inner Mongolia in China. More specifically, the objectives of this
paper are to: (1) analyze the effects of common conservation measures on plant community
properties including species diversity and biomass productivity after five to eight years of
continuous enforcement; (2) examine the biodiversity-productivity relationship to provide
additional insights into the balance between grassland conservation and utilization; and
(3) identify the most effective conservation measure or combination of measures to help
build a more resilient grassland system.

2. Results
2.1. Plant Community Composition

Significant differences were observed in the composition of the plant communities
under the influence of the five experimental treatments (Table S1). In plot T1 under the
fallow treatment, 15 plant species were identified across 14 genera and 9 families, whereas
in plots T2 through T5 under their respective treatments, 28, 26, 12, and 43 species were
identified. The Leymus chinensis species established dominance or remained dominant
in plots T1 through T4. However, this dominance status was not observed in T5 under
livestock grazing. The importance value (IV) of the species Leymus chinensis in T5 was
measured as 0.04, which was significantly lower than, e.g., 0.68 in T1. Although the number
of Poaceae species presented in plot T5 was 1.28–4.5 times more than in plots T1 through T4,
the IVs of Poaceae species in T5 were substantially lower than in T1 through T4 by a margin
of 57.4%, 16.3%, 54.0% and 58.3%, respectively (Figure 1). The forb species were dominant
in plot T5 in terms of the number of species presented and their IVs.

2.2. Vegetation Coverage, Density and Growth

Significant differences were also observed in the vegetation coverage, density, litter ac-
cumulation and aboveground biomass (AGB) under the experimental treatments (Figure 2).
The grassland under the enclosure protection (T1 and T2) developed a significantly higher
level of plant cover than the grazed grassland (T5). Although plots T3 and T4 were also
enclosure-protected, the plant cover in T3 and T4 was not significantly higher than in
T5 because of the regular mowing disturbances. The grazed grassland not only had the
lowest plant cover, but also had the lowest plant density, biomass production and litter
accumulation. Plots that received the least disturbances (i.e., T1 and T2) produced the
highest AGB compared to the plots that received regular mowing (T3 and T4) or constant
grazing (T5). Plots T1 and T2 had relatively higher litter accumulation, whereas litter was
largely removed in plots T3, T4 and T5 by means of biomass harvest or livestock grazing.
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2.3. Plant Height and AGB of the Dominant Species

Significantly different levels of plant height were observed across plots T1 through T5
for the species Leymus chinensis (Figure 3). The average height of the Leymus chinensis species
in the grassland under fallow (T1) was measured as 68.4 cm, which was 1.3–3.8 times higher
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than those in the other treatments. Moreover, Leymus chinensis species in plot T1 also had
the highest AGB (183 g m−2), which was significantly higher than in plots T3, T4 and T5.
Unsurprisingly, Leymus chinensis in plot T5 was measured as the lowest in both plant height
and AGB, showing its nondominant status. It was interesting to observe that the difference
between T3 and T4 was insignificant, suggesting that both plant height and AGB of the
Leymus chinensis species were insensitive to mowing frequency.
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significantly different.

2.4. Species Diversity

The plant species diversity tended to increase in the order of T1, T4, T3, T2 and T5
(Figure 4). The three categories of plant diversity indicators that we used, namely, the
diversity, the evenness and the richness indices, showed a similar trend. The diversity
level was at the lowest in the degraded grassland that had been placed in fallow and, in
the meanwhile, protected by an enclosure (T1). In contrast, the highest diversity level
was found in the livestock grazing grassland T5, showing a positive correlation between
species diversity and the level of disturbances that the grassland received. Nevertheless, a
significant difference was not observed between treatments T3 and T4, despite the mowing
intensity difference between the two.
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Figure 4. Variations in plant species diversity in response to the experimental treatments T1 through
T5. Plant species diversity was measured in three groups of indices: (a) the Shannon–Wiener and
Simpson’s diversity indices; (b) Alatalo’s and Pielou’s evenness indices; and (c) the Margalef and the
Patrick richness indices. Treatments with the same lowercase letter are not significantly different.
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2.5. Relationship between AGB and Plant Diversity

Regression analyses showed that a negative trend existed between AGB and plant
diversity. The characterized trends were consistently negative for all treatments except T3
(Figure 5). For T3, a positive trend was characterized, suggesting that an increase in the
frequency of forage harvest from mowing once per three years (T4) to mowing once per
year (T3) had triggered a direction flip for the AGB-diversity relationship from negative
correlation to positive correlation. The regression analyses also showed that the AGB-
diversity trend was less negative for the grazing grassland (T5) than for the grasslands
under the other treatments. Moreover, the AGB-diversity trend under treatment T5 was
observed positive if plant diversity was measured in terms of the Margalef and the Patrick
richness indices. Complete details in the statistical characterization of the AGB-diversity
trend are given in Table S2. It is worth noting that a statistical significance was only
associated with treatment T2.
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3. Discussion

Previous research has found that, although environmental stresses adversely affected
vegetation growth and wellbeing [29,30], grassland properties, and in particular, the species
diversity in grasslands, were more affected by biotic disturbances because management
practices usually led to more ubiquitous alterations to the plant communities [31]. For
example, Niu et al. [32] found that, compared to the other species, the dominant species in a
grassland system responded differently to disturbances, causing changes to the community
composition and other properties and processes. In this study, the IV of the dominant
species Leymus chinensis decreased to the lowest level under the grazing treatment, being, on
average, 86.67%–94.29% lower than the values under the other treatments. Further analysis
indicated that this may be related to the selective feeding behavior of the livestock, because
animals preferentially graze on taller and more palatable plants [10]. As such, the growth
of Leymus chinensis in the plant community was suppressed and its competence lowered,
which jointly reduced its community dominance. From the perspective of functional groups,
livestock grazing reduced the total IV of the Poaceae species, rendering the grass populations
less competitive in the plant community, but allowing the more grazing- and trampling-
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resistant species (e.g., Potentilla acaulis) and species less palatable to livestock to gain a
relative advantage. As a result, forb species increased significantly in the livestock grazing
plot. In addition to the IVs, our data also revealed that the plots within the enclosure
had the highest percentage of plant cover, exceeding the plot outside the enclosure by a
margin of 16–37%. It is obvious that the enclosure eliminated grazing, allowing a smoother
recovery of the degraded vegetation. Likewise, the number of perennial forbs in the
community increased, whereas extra annual and biennial species were observed emerging,
permitting the vegetation cover to reach sub-climax to climax levels over time. With
regard to vegetation density, although the plants in plot T3 were significantly denser
than in plots T2 and T5, plant density in T3 was only slightly higher than the other plots
within the enclosure, showing that the perennial grass Leymus chinensis, in association with
the herbaceous grass Heteropappus altaicus and the succulent grass Orostachys fimbriatus,
maintained its dominance in the vegetation community (Table S1).

Being one of the most frequently used quantitative ecosystem parameters, biomass is
also a robust indicator of ecosystem stability and function [33–35]. In our study, five to eight
years after livestock grazing was avoided, the highest AGB potential was achieved in the
abandoned and degraded grasslands, which showed that the enclosure treatment ensured
the aboveground parts of the plant to resume reproduction and propagation [36,37]. The
lowest level of AGB was found in plot T5, which had been under constant grazing during
the entire experiment, showcasing the strong, negative effects of grazing on grassland
productivity that was in line with earlier studies [38,39]. Contrary to the AGB effect,
grazing had significantly positive effects on plant diversity, evenness and richness indices.
The reason was that grazing promoted species competition regarding the photoperiod by
actively suppressing the tall, dominant species Leymus chinensis in the plant community [40].
It had been elaborated by Endara and Coley [41] that a change in the grassland community
structure usually led to changes in the light transmission rate across the vertical vegetation
layers. Evidence obtained from our study clearly illustrated that the shortest species in plot
T5 benefitted from higher levels of light penetration following the removal of the dominant
Leymus chinensis species. Another process that could have contributed to an increase in
diversity is that the litter layer was removed by grazing. An important side effect of the
litter removal by grazing was that the seeds of these shorter species became easier to come
into contact with the soil and, therefore, had a higher rate of germination.

Studying the relationship between the productivity and species diversity of a grassland
community is essential for understanding the structure and function of the grassland ecosys-
tem [2,42]. Many studies have suggested that a positive correlation existed between species
diversity and ecosystem productivity. Based on data obtained from a semi-arid grassland
neighboring ours, for example, Zheng et al. [39] found that the grassland’s aboveground
biomass was significantly positively associated with the Shannon–Wiener diversity index
from 2005 to 2007. Evidence from an alpine steppe on the Qinghai–Tibet Plateau also showed
a positive correlation of the species richness or diversity indices with both the above- and be-
lowground biomass [43]. Contrary to these findings, our study showed consistently negative
correlations between biomass productivity and the diversity indices on all experimental plots
except T3. The same relationship turned positive on the annual mowing plot of T3, suggest-
ing the mowing intensity triggered the sign switch for the diversity-productivity relationship,
but further research is needed. Similar to our suggestion that mowing intensity may be a
sign changer in diversity-productivity relationships, Wang [44] found, based on modeling
evidence, that a change to the strength of many ecosystem processes had the potential to
cause the diversity-productivity relationship to change sign. Moreover, in the same study that
found a positive correlation above, Li et al. [43] also found that if the diversity-productivity
relationship was evaluated based on Pielou’s evenness index, the sign of the relationship
turned negative. They therefore proposed that spatial scale might be the sign changer for
diversity-productivity relationships. What is more fundamental in the diversity-productivity
relationship research is that a clear understanding of the control mechanisms of the comple-
mentarity or the selection effects among plant species is still lacking [45], and uncertainty
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remains in how to achieve a positive productivity response to diversity [46], especially during
the recovery of degraded grasslands.

Grassland productivity is strongly related to the grassland’s long-term stability and
resilience [47]. A high plant species diversity in a grassland community can meet the
nutritional needs of the grazing livestock, resulting in better growth, higher reproduction
and improved health [48]. Plot T1 in this study had the highest biomass value, but it
had the lowest species diversity too, which is regarded as an unbalanced system from a
systems perspective [49]. Although T5 under grazing management had increased species
diversity, its sacrifice in livestock carrying capacity meant higher competition for grassland
areas. Overall, plots T3 and T4 under mowing disturbances had suboptimal biomass and
suboptimal species diversity in the same period of time. However, a balance between
stability and performance was achieved in T3 and T4 and is, therefore, a recommendable
management option in grassland conservation and sustainable use.

In conclusion, we found through field experiments that grassland biomass productivity
was negatively associated with plant diversity. Although our data suggested that mowing
intensity was a control over this productivity-diversity relationship, further research is still
needed. We also found that mowing and enclosure were the best combination of management
measures for the degraded meadow steppe to recover and produce, representing a progressive
pathway to a more resilient grassland system based on current technologies.

4. Materials and Methods
4.1. Study Area

Field observations were conducted in the Xie’ertala Rangeland in the northern suburb
of Hulunber City in Northeast Inner Mongolia, China (Figure 6). The elevation of the study
area ranges between 600 and 660 m above sea level. The whole area sits in the transition
zone from the Greater Khingan Mountains to the Mongolian Highlands. A temperate
continental climate prevails in the region. The annual precipitation totals 350–400 mm,
most of which falls between June and September. The annual temperature averages
between −3 and 1 ◦C. The accumulative thermal units account for 1700–2300 degree-days
per annum on the base temperature of 10 ◦C, which corresponds to a frost-free period
of about 110 days. The dominant land use in the area is the Leymus chinensis meadow
steppe, where a range of associated species including Stipa baicalensis, Carex spp, Cleistogenes
squarrosa, Poa sphondylodes, Achnatherum sibiricum, etc., coexist. The dominant soils in the
area are classified as Kastanozems [50].
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4.2. Experimental Setting and Design

Experiments were conducted on a fence-enclosed field of 1500 m by 2500 m in size
at Farm No. 12 of the Xie’ertala Rangeland (Figure 6). In June 2005, four treatments
were implemented on the fence-enclosed field, which represented four management levels,
namely, fallow (T1), zero mowing (T2), mowing once per year (T3) and mowing once per
three years (T4). A plot outside the fence-enclosed field, which was open for livestock
grazing, was also included in the experiment as the fifth treatment (T5). Grazing intensity
on T5 was classified as intermediate. A summary of the characteristics of these treatments
is given in Table 1.

Table 1. Description of the experimental treatments.

Plot Treatment Fence-Enclosed Size (Hectares) Description

T1 Fallow Yes 13 Degraded forage grassland supplementally
seeded with smooth bromegrass at 30 kg ha−1. In

fallow since 2008.
T2 Fallow Yes 46 Degraded forage grassland under natural

restoration. Fence-enclosed since 2005.
T3 Mowing once per year Yes 12 Degraded forage grassland. Fence-enclosed since

2005. Forage harvested by mowing in August
every year at 7 cm above soil surface.

T4 Mowingonce per three
years Yes 12 Degraded forage grassland. Fence-enclosed since

2005. Forage harvested by mowing once every
three years in August at 7 cm above soil.

T5 Livestock grazing No 60 Degraded grazing grassland. Grazing intensity at
0.69 standard sheep units per hectare.

4.3. Vegetation Survey

A vegetation survey was conducted in July 2013 when the plant growth was at the
maximal level of the year using quadrats of 1 m × 1 m in size. Until 2013, T1 had been
fence-enclosed for 5 years, and T2, T3 and T4 had been fence-enclosed for 8 years. Ten
locations were randomly selected in each plot. Plant communities within the quadrat were
surveyed to determine the coverage, height, density and aboveground biomass (AGB) for
each plant species that appeared within the quadrat. The area under vegetation cover
and the area of bare soil were visually estimated in situ by experienced field staff and the
percent of vegetative area was derived as the coverage per plant species. Plant height
was determined by the average height of five randomly selected plant individuals of the
surveyed species. Plant density was measured by counting the total number of plant
individuals per species. AGB was determined by collecting and weighing the aboveground
part of the plant per species in each quadrat. Standing plants were cut at the soil surface per
species and collected in sample bags. Fallen, withered parts on the soil surface were also
collected. Plant samples were separated into green parts and dead parts in the laboratory.
Fallen, withered parts were regarded as dead parts. Collected green and dead parts were
weighed to record the fresh weight per sample. Dry weights were measured after the
samples were oven-dried at 85 ◦C for 12 h.

4.4. Diversity Indices

The relative importance of a plant species in the plant community was evaluated using
the importance value (IV), which is given by the following Equation (1) [51]:

IV =
1
4
(RC + RH + RD + RBa) (1)

where RC is the relative coverage of a plant species; RH is the relative height; RD is the
relative density and RBa is the relative AGB. Here, the values of RC, RH, RD and RBa are
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defined as the percentage of a plant species’ value of the coverage, height, density and AGB
to the sum of all plant species, respectively.

Plant diversity was evaluated using six indices, including the Shannon–Wiener diver-
sity index [52], the Simpson diversity index [53], Pielou’s evenness index [54], Alatalo’s
evenness index [55], the Margalef richness index [56] and the Patrick richness index [57].
These indices are defined by Equations (2) to (7), respectively. These indices are statistical
representations of plant diversity in different aspects. The Shannon–Wiener and the Simp-
son indices reflect the species’ diversity within the plant community, Pielou’s and Alatalo’s
indices measure the species distribution evenness across the community, and the Margalef
and Patrick indices indicate the quantity of species of the plant community.

H = −∑(Pi · ln Pi) (2)

D = 1 − ∑
(

P2
i

)
(3)

J =
H

ln S
(4)

Ea =

(
∑ P2

i
)−1 − 1

e∑ Pi ·ln Pi − 1
(5)

M =
S − 1
ln N

(6)

R = S (7)

where Pi is the relative importance value of plant species i, S is the total number of plant
species sampled and N is the number of plant individuals sampled.

4.5. Data Analysis

Data were processed and analyzed using the R 4.1.3 software [58]. The analysis of
variance (ANOVA) method coupled with the LSD test [59] was employed for multiple
comparisons of diversity indices and biomass productivity against the field treatments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11152037/s1, Table S1: The importance values of plant
species surveyed in experimental plots T1 through T5; Table S2: Single linear regression models fitted
to plant aboveground biomass in response to plant diversity index under field treatments. NS means
not significant.
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