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Abstract: Due to their chemical properties and biological activity, antioxidants of plant origin have
gained interest as valuable components of the human diet, potential food preservatives and additives,
ingredients of cosmetics and factors implicated in tolerance mechanisms against environmental
stress. Plant polyphenols are the most prominent and extensively studied, albeit not only group of,
secondary plant (specialized) metabolites manifesting antioxidative activity. Because of their potential
economic importance, the productive and renewable sources of the compounds are desirable. Over
thirty years of research on hairy root cultures, as both producers of secondary plant metabolites and
experimental systems to investigate plant biosynthetic pathways, brought about several spectacular
achievements. The present review focuses on the Rhizobium rhizogenes-transformed roots that either
may be efficient sources of plant-derived antioxidants or were used to elucidate some regulatory
mechanisms responsible for the enhanced accumulation of antioxidants in plant tissues.

Keywords: Agrobacterium rhizogenes; chalcone; ellagitannin; flavone; flavonol; isoflavonoid; proantho-
cyanidin; resveratrol; Rhizobium rhizogenes

1. Introduction

The interest in hairy root (HR) cultures as fast-growing, genetically stable axenic roots
that are effective producers of both biomass and specialized plant metabolites started in
the 1980s [1]. Since then, numerous culture systems have been established to produce
compounds of economic value or potential economic interest to produce recombinant
proteins to obtain transgenic plants of altered phenotype to obtain artificial seeds and
perform metabolic engineering of plants [1–6]. The ability of Rhizobium rhizogenes (also
known as Agrobacterium rhizogenes) [7] to transfer and permanently incorporate a foreign
genetic material into the plant genomic DNA has also been used to study the regulatory
mechanisms of plant metabolism [6,8,9]. Additionally, the enzymatic activity of HRs may
be utilized for biotransformation and phytoremediation processes [10–14].

In contrast to other fast-growing types of plant tissue cultures, HRs are usually cul-
tivated in nutrient media with a reduced concentration of macronutrients and without
the addition of growth regulators that lower the costs of biotechnological processes. Sev-
eral strategies were employed to scale up HR cultures from the laboratory to industrial
applications, including various bioreactor designs [15,16], e.g., airlifts, bubble columns and
nutrient mist, etc. The production of biologically active natural products and proteins by
HR cultures has been a subject of numerous patents and shows potential for successful
industrial applications.

Until now, the main limitations that hamper the industrial use of HR cultures are still
unsatisfactory upscaling results (the need for large-volume bioreactors) and unsatisfactory
cost/profit ratios.
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Nearly every class of plant-specialized metabolite includes some compounds of an-
tioxidative activity [17–20], but the most effective antioxidants, acting by direct free-radical
scavenging, originate mostly from phenolics and terpenoids [21,22]. Numerous natural
products known as antioxidants are also recognized as potent chemopreventive and anti-
cancer agents, influencing various intracellular signaling pathways [23,24]. Antioxidants
of plant origin may also be useful as protective factors against dysfunctions of nervous
system connected with aging [25].

Plant metabolites with antioxidant activity, which are the constituents of widely grown
food plants, can be isolated from post-production waste or obtained as side products in the
process of food manufacturing [26–29]. Some natural antioxidant products are a common
occurrence and their isolation from either cultivated or wild plants seem to be the optimal
solution. The yields of these natural products may be improved by bioengineering using
the transformation by R. rhizogenes. In the case of threatened or overexploited plant species,
HR cultures offer an opportunity to produce rare and valuable compounds with no harm
to the natural habitats of the plant.

The present review is based on the results published in journals indexed in the Web of
Science and Scopus databases. Due to the large number of studies dealing with polypheno-
lic metabolites of HRs, we decided to limit the scope of the review to flavonoids, stilbenoids
and hydrolyzable tannins.

2. Polyphenolic Antioxidants in HRs

Phenolics are one of the largest classes of plant-specialized metabolites. They all
originate from the shikimate pathway leading to aromatic amino acids phenylalanine
and tyrosine and also share the phenylpropanoid pathway (Figure 1). The compounds
are divided into several subclasses, including flavonoids, tannins, stilbenoids, lignans,
hydroxycinnamates and phenylethanoids, to mention a few of the most popular subclasses.
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Figure 1. Simplified scheme of biosynthesis of selected plant polyphenols and positions of biosyn-
thetic enzymes mentioned in the review (PAL—phenylalanine ammonia lyase; C4H—cinnamate 4-
hydroxylase; 4CL—4-coumarate:CoA ligase; STS—stilbene synthase; RS—resveratrol synthase; CHS—
chalcone synthase; CHI—chalcone isomerase; FNS—flavone synthase; IFS—isoflavone synthase;
F3βOH—flavanone 3-β-hydroxylase; F3H—flavone 3-hydroxylase; F6H—flavone 6-hydroxylase;
F8H—flavone 8-hydroxylase; IFD—isoflavone dehydratase; DFR—dihydroflavonol 4-reductase;
ANS—anthocyanidin synthase; ANR—anthocyanidin reductase; LAR—leucoanthocyanidin reduc-
tase). Hydroxybenzoic acids group include gallic acid, a precursor of hydrolyzable tannins; PAs—
proanthocyanidins).
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2.1. Flavonoids
2.1.1. Anthocyanins and Proanthocyanidins (PAs)

Numerous factors may influence anthocyanin and PA production by HRs. The most
frequently studied were the effects of light, plant growth regulators, sucrose concentration
and the R. rhizogenes strain used in the experiment. The overexpression or heterologous
expression of genes-encoding transcription factors implicated in the regulation of flavonoid
biosynthesis (especially members of myb gene family) or the overexpression of genes-
encoding biosynthetic enzymes (DFR, LAR, ANR) are strategies often used to increase
anthocyanins and PAs content in the HRs or transgenic plants regenerated from the roots.

Morris and Robbins [30] observed that the HRs of Lotus corniculatus L. (Fabaceae),
maintained in the dark, accumulated insoluble tannins, which presented cyanin and del-
phinidin at a ratio like that found in the intact plant after hydrolysis. Supplementation
with auxins reduced the content of tannins in the roots. On the contrary, in the HR cultures
of Leontopodium alpinum Cass. (Asteraceae), the addition of 6-benzylaminopurine (BAP)
to the culture medium 14 days prior to harvest increased the anthocyanins content [31].
An effect of auxin supplementation on anthocyanin contents in the HRs of Tartary buck-
wheat (Fagopyrum tataricum (L.) Gaertn., Polygonaceae) cultivar “Hokkai T10” was also
studied [32]. Indole-3-butyric acid (IBA) added to a nutrient medium at a concentration
of 4.92 µM, caused enhanced accumulation of cyanidin 3-O-glucoside and cyanidin 3-O-
rutinoside in the roots (for structures, see Figure 2). The anthocyanin content reached
0.89 and 1.15 mg/g dry weight (DW), respectively, and was about three times higher than
that found in the control cultures.
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Figure 2. Chemical structures of selected anthocyanins and procyanidin B1. 
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Nishiyama and Yamakawa investigated effects of the culture illumination, composition
of nutrient medium and sucrose content on the anthocyanin production in the HRs of
Ipomea batatas (L.) Lam. (Convolvulaceae) [33]. They found that light and high sucrose
concentration in the medium (5%) favored anthocyanin production. The beneficial effect of
light on cyanidin 3-O-rutinoside accumulation was also observed in Tartary buckwheat
HRs [34]. Motomori et al. [35] studied polyphenolics accumulation in the HRs of Fragaria x
ananassa Duch. cv. Reikou (Rosaceae). In optimum conditions, the root culture produced
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up to 8 mg/g DW of procyanidin B-3, but the roots of the field-grown plant contained three
times as much of the compound (24.2 mg/g DW).

The expression of full-length cDNA encoding dihydroflavonol 4-reductase (DFR)
from Antirrhinum majus L. (common snapdragon, Plantaginaceae) in the HRs of Lotus
corniculatus L. led to several high-producing clones. The maximum content of condensed
tannins in the control roots was estimated as 0.62 mg/g fresh weight (FW), whereas the
transgenic roots produced up to 1.06 mg/g FW of the compounds [36]. The proportions
of subunits (procyanidin, prodelphinidin and propelargonidin) yielded on the hydrolysis
of condensed tannins were also measured, and significant differences in propelargonidin
accumulation were observed in the transgenic clones in comparison with the controls. The
plasmid 121.Sn carrying the maize gene Sn, which is responsible for the transactivation
of the anthocyanin pathway in different tissues, was introduced into the genomes of ten
different plant species using the transformation with R. rhizogenes. Over 50% of the obtained
Medicago sativa L. (Fabaceae) and Lotus angustissimus L. accession CPI 113587 HR clones
showed pigmentation. On the other hand, the HRs of Lotus corniculatus, L. japonicus (Regel)
K. Larsen and L. angustissimus accession CPI 113590 produced no pigment. The results
suggested the transcription factor Sn derived from monocotyledonous plant may function
in several dicot species [37].

The HRs of Medicago truncatula Gaertn. (Fabaceae) and Vitis vinifera L. (Vitaceae) were
used to investigate the mechanisms of anthocyanin biosynthesis regulation by transcription
factors encoded by the members of myb gene family [38–45]. The expression of Arabidopsis
TT2 (Transparent Testa 2) transcription factor from the MYB family in the HRs of M. truncat-
ula led to the induction of the genes for flavonoid and proanthocyanidin (PA) biosynthesis
pathway and enhanced accumulation of PAs in the roots. The average soluble PAs content
in TT2-carrying transformants was over ten times higher than that in the control HRs
transfected with an “empty”vector. Insoluble PAs content in TT2-expressing roots was
over 24-fold higher [38]. The induction of genes for PAs biosynthetic pathway was also
true when the transcription factors: GmTT2A, GmTT2B or GmMYB5A were ectopically
expressed in soybean (Glycine max L.) HRs [46]. Expression of AtTT2 in chickpea HRs
resulted in a high accumulation of soluble PAs (>1200 µg catechin equivalents (eq.)/g
FW) [47]. MtPAR MYB transcription factor expressed in M. truncatula HRs dramatically
increased soluble PAs content (up to 100-fold higher than that in the control roots) but
did not influence insoluble PAs accumulation and diminished the anthocyanin content.
Maximum content of soluble PAs reached 10 µM of (−) epicatechin eq. per g FW [40].
Li et al. [48] found that transgenic M. truncatula HRs that over-expressed MtPAR were
characterized by enhanced accumulation of soluble PAs and diminished production of
isoflavones. The role of MtPAR in the distribution of precursors to flavonoid, isoflavonoid,
anthocyanin and PA pathways was emphasized by the same study. The HRs of M. truncat-
ula overexpressing MYB2 demonstrated suppression of the expression of genes-encoding
dihydroflavonol 4-reductase (DFR1) and anthocyanidin synthase (ANS). Anthocyanin
accumulation characteristic of wild-type roots was ceased in the MYB2-overexpressing
roots [43]. Wild-type HRs of M. truncatula with the ectopic expression of MtTT8 transcrip-
tion factor showed enhanced expression of the flavonoid biosynthesis pathway genes and
elevated production of PAs and anthocyanins. Contents of anthocyanins (as cyanidin
3-O-glucoside eq.), soluble PAs (as epicatechin eq.) and insoluble PAs (as proanthocyanidin
B1 eq.) in the MtTT8-expressing roots reached 600 µg/g FW, 27 µg/g FW and 180 µg/g
FW, respectively [44]. Heterologous expression of GhMYB36—a gene for TT2-type MYB
transcription factor from a tetraploid Gossypium hirsutum L. (Malvaceae), in the HRs of M.
truncatula made it possible to achieve 100 µg/g FW of total soluble PAs (epicatechin eq.)
and over 1600 µg/g FW of total insoluble PAs (proanthocyanidin B1 eq.) [44]. VvMybPA1
and VvMybPA2 are transcription factors involved in the regulation of PA biosynthesis
in V. vinifera seeds, leaves and exocarp of young berries. The ectopic expression of the
genes-encoding these transcription factors in the HRs of V. vinifera caused activation of the
enzymes of the flavonoid pathway and enhanced accumulation of PAs (up to 8 mg/g FW).
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Moreover, the VvMybPA1- and VvMybPA2-expressing transformed roots started to produce
PAs with trihydroxylated ring B [39].

The overexpression of VvMYBC2-L1 in grapevine HRs negatively affected PAs biosyn-
thesis, as it can be expected for a member of subgroup 4 MYB transcription factors [41]. A
similar effect was achieved in V. vinifera HRs by an overexpression of VvMYBC2-L3 [42].
Transgenic HRs of Litchi chinensis Sonn. (Sapindaceae), overexpressing LcMYB1, contained
over 3 mg/g FW of anthocyanidins and nearly 15 mg/g FW of PAs. Wild-type lychee HRs
accumulated about 5 mg/g FW PAs and minute amounts of anthocyanidins [49]. Regula-
tory functions of PpMYB10.1 and MYB 182 transcription factors in anthocyanidin biosyn-
thesis were also investigated using peach and poplar HR cultures, respectively [50,51].
Expression of Camellia sinensis (L.) Kuntze-derived genes-encoding leucoanthocyanidin
reductase (LAR) and anthocyanidin reductase (ANR) in the HRs of M. truncatula resulted
in slightly elevated content of insoluble PAs. The ectopic expression of CsLAR enhanced
the accumulation of anthocyanins, whereas CsANRs expressing roots tend to accumulate
more soluble PAs than the control roots [52].

HRs of Tartary buckwheat were frequently used to investigate the effects of different
factors on anthocyanins accumulation. Thwe et al. [53] examined seven wild-type R.
rhizogenes strains to assess transformation efficiency and anthocyanin content in regenerated
hairy root clones of F. tataricum cv. “Hokkai T10”. The R1000 strain, except for the highest
transformation efficiency and growth rate of roots, provided high transcript levels for most
genes of the flavonoid biosynthetic pathway and the highest contents of cyanidin 3-O-
glucoside (800 µg/g DW) and cyanidin 3-O-rutinoside (2410 µg/g DW). A plant growth
regulator—ethephon—at the concentration of 0.5 mg/L, significantly increased cyanidin
3-O-glucoside and cyanidin 3-O-rutinoside accumulation in hairy roots of buckwheat.
Moreover, upregulation of the genes involved in flavonoid biosynthesis upon ethephon
treatment was observed [54]. Overexpression of FtMYB1, FtMYB2, FtMYB3 and FtMYB-
like in the HRs of Tartary buckwheat up-regulated the genes of the phenylpropanoid
biosynthetic pathway and enhanced anthocyanin production. FtMYB18 overexpression
negatively influenced anthocyanin biosynthesis in the roots [9,55].

The black or purple carrot (Daucus carota L. ssp. sativus var. atrorubens Alef, Apiaceae)
belongs to the Eastern group of domesticated carrots and is cultivated and commonly eaten
in India, Pakistan, Turkey and Afghanistan. In contrast to the Western orange carrots,
the roots of the plant accumulated anthocyanins. Acylated anthocyanidin triglycosides
produced by the plant, due to their chemical stability, are used as food colorants [56]. The
HRs of black carrot were obtained by the infection of taproot and hypocotyl explants of
black carrot inbred line “43” and taproot explants of cv. “Night Bird”. The maximum total
monomeric anthocyanin content, spectrophotometrically measured, exceeded 3 mg/g DW
and was found in the HRs derived from hypocotyl explants, cultivated in 1

2 MS [57] liquid
medium at a photoperiod (12/12 h, light:dark). The content was elevated by the addition
of ethephon (200 mg/L) at the 10th day after the inoculation in the fresh medium. The
more accurate measurement of anthocyanins content, by UHPLC-PDA, revealed that the
black carrot HRs derived from roots of the inbred line “43” accumulated over 4 mg/g
DW of the pigments and upon the treatment with ethephon up to 8 mg/g DW. Eight
anthocyanins, derivatives of cyanidin and pelargonidin, were identified and quantified
using UHPLC-PDA-TOF MS [56]. Supplementation of the nutrient medium with 60 g/L
sucrose, increased dry mass and anthocyanin accumulation in the culture. Elicitation
with 200 µM of H2O2, on 12th day of culture resulted in about 20% higher anthocyanin
content [58].

Two gene-encoding transcription factors: a bHLH gene AmDelila and an R2R3-MYB
gene AmRosea1 were concomitantly introduced into the HRs of common snapdragon and
induced expression of anthocyanin-related genes in the roots. Further research demon-
strated that AmRosea1 alone was enough to start anthocyanin accumulation in the root
tissues. The total anthocyanin content in the roots expressing AmRosea1 reached 2 mg/g
FW versus 0.3 mg/g FW in the control HRs [59].
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Overexpression of PAP1 (production of anthocyanin pigment 1) gene in Panax ginseng
C.A. Meyer (Araliaceae) HRs induced expression of phenylpropanoid and flavonoid biosyn-
thetic pathway genes and led to 191- to 341-fold increase in anthocyanins production in
comparison to the controls. The increase of anthocyanin accumulation was accompanied by
the rise in the antioxidant and radical scavenging activity of PAP1-overexpressing roots and
their improved anti-melanogenic activity [60]. Further investigation suggested improved
antimicrobial and anti-elastase activities of PAP1-overexpressing ginseng HRs [61].

2.1.2. Flavonols and Flavanols

Except for the optimization of culture conditions (light, growth regulators, sucrose
concentration, bacterial strain used to initiate the culture) and overexpression of genes from
the myb gene family, elicitation with abiotic (UV-B irradiation) and biotic (yeast extract,
chitosan, inactivated fungal preparations) elicitors was used to enhance production of
flavonols and flavanols in the HRs. Plant hormones (methyl jasmonate, MeJa) and plant
growth regulators (ethephon), in some studies classified as abiotic elicitors [16], were also
applied to stimulate biosynthesis of the compounds.

HRs of buckwheat (Fagopyrum esculentum Moench) and Tartary buckwheat, except
for anthocyanins and PAs, accumulated substantial amounts of flavonols (kaempferol,
quercetin, rutin) and flavanols (catechin, epicatechin). Trotin et al. [62] estimated contents
of (+)-catechin, (−)-epicatechin and (−)-epicatechin 3-O-gallate (for structures, see Figure 3)
in a HR culture of buckwheat obtained by transformation with R. rhizogenes 15834. (−)-
Epicatechin gallate was the major flavanol found in the roots. Its content reached 10 mg/g
DW after 21 days of culture and was like that estimated in normal root culture. The HRs
produced twice as much of (+)-catechin as normal roots (up to 8 mg/g DW) but the content
of (−)-epicatechin in the transformed roots was significantly lower. It is worth noting, that
after 21 days in culture dry weight of roots reached 720 mg DW per flask and 180 mg DW
per flask for hairy and normal roots, respectively. The HRs of buckwheat accumulated
higher yields of rutin (quercetin 3-O-rutinoside, 1.3 mg/g DW) than did untransformed
roots (0.5 mg/g DW) [63]. Overexpression of Arabidopsis transcription factor AtMYB12 in
buckwheat HRs led to the increased expression levels of flavonoid biosynthetic enzymes
and enhanced rutin production in comparison with the control HRs [64]. Roots of Tartary
buckwheat cv. “Hokkai T8” and “Hokkai T10”, obtained by infection of hypocotyl explants
with R. rhizogenes strain R1000 were cultivated in both light and dark conditions. The
roots contained higher amounts of flavonols when exposed to light. Quercetin content
reached its maximum (nearly 1 mg/g DW) 5–10 days after the transfer of roots to the
fresh medium and then dropped, whereas the highest content of rutin was found after
15 days of culture (59 mg/g DW) [35]. Catechin and rutin contents in the HRs of Tartary
buckwheat differed depending on the R. rhizogenes strain that was used to obtain the culture.
The quercetin content remained unchanged irrespective of the bacterial strain used [53].
The ethephon treatment (0.5–2.0 mg/mL) significantly increased rutin accumulation in
the roots [54]. A similar effect was achieved with overexpression of FtMYB6, an SG7
R2R3-MYB transcription factor induced by light [65]. Overexpression of FtUGT73BE5, an
UDP-glycosyltransferase, in the HRs of Tartary buckwheat caused increase in rutin content
in the biomass from 0.77 to 1.29-fold when compared with the control (up to 80 mg/g
DW) [66]. Choi et al. [67] investigated expression of 11 genes of the phenylpropanoid
biosynthetic pathway in seedling roots, adventitious roots and HRs of F. tataricum. Five of
the examined genes were highly expressed in the studied HR clones. The HRs accumulated
significantly higher amounts of (+)-catechin, (−)-epicatechin and rutin than those found in
the untransformed axenic roots and roots of the seedlings.
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Tusevski and coworkers [68], by means of HPLC-PAD-ESI-MSn, identified and quan-
tified numerous phenolic compounds produced by HRs of Hypericum perforatum L. (Hy-
pericaceae) obtained by a transformation with R. rhizogenes A4. Flavonols (quercetin 6-C-
glucoside, unidentified isorhamnetin-O-hexoside, rutin, kaempferol), flavanol (catechin)
and two proanthocyanidin dimers were present in the dark grown roots in small quantities
(<1 mg/g DW). Contents of epicatechin and one proanthocyanidin dimer exceeded 1 mg/g
DW. The phenolic profile changed when the roots were exposed to light [69]. Selected
lines of H. perforatum HRs, transformed with R. rhizogenes A4M70GUS, accumulated up to
4.7 mg/g DW catechin, negligible amounts of procyanidin dimers, and up to 5.9 mg/g DW
of quercetin and kaempferol derivatives [70].

Overexpression of LcMYB1 in lychee HRs led to the twofold increase in total flavonol
content, in reference to the control roots [49]. The HRs of Linum album Kotschy ex Boiss.
(Linaceae) transformed with R. rhizogenes LBA9402, upon elicitation with a cell wall prepa-
ration from Piriformospora indica (1%, v/v; 48–120 h treatment), demonstrated enhanced
expression of genes-encoding several enzymes of phenylpropanoid biosynthetic pathway
and enhanced flavonols and flavanols accumulation. The roots accumulated up to 0.1 mg/g
DW catechin, kaempferol (<3.6 µg/mg DW) and myricetin (<2.4 µg/mg DW). The total
flavonoid content did not exceed 0.15 mg/g DW [71–73]. According to Thiruvengadam
et al. [74] HRs of Polygonum multiflorum Thunb. (Polygonaceae) transformed with R. rhi-
zogenes strain KCTC 2703 produced rutin, myricetin, quercetin and kaempferol, although
in low quantities (0.35, 0.40, 0.29 and 0.11 mg/g DW, respectively). In the HR cultures of
P. multiflorum transformed with R. rhizogenes KCCM 11,879 quercetin was the most abun-
dant flavonol (up to 4.59 mg/g DW). Elicitation with MeJa (50 µM) caused a 3.83-fold
increase in quercetin content [75].

A series of papers on HR cultures of Momordica charantia L., Momordica dioica Roxb.
ex Willd., Cucumis anguria L. (Cucurbitaceae), Brassica rapa L. ssp. rapa and Brassica rapa L.
ssp. pekinensis (Brassicaceae) [76–81] described the quantification of flavonols by an UPLC
method with UV detection, using a set of commercially available standards comprising: rutin,
myricetin, quercetin, kaempferol and catechin. The estimated contents of flavonols were low
(<0.8 mg/g DW), except for M. charantia HRs that produced over 1 mg/g DW of catechin.

HRs of Isatis tinctoria L. (Brassicaceae), obtained by inoculation with R. rhizogenes
LBA9402 and cultivated in the optimum conditions, produced rutin (94 µg/g DW), quercetin



Plants 2022, 11, 1950 8 of 36

(53 µg/g DW), kaempferol (134 µg/g DW) and isorhamnetin (84 µg/g DW). Contents of the
flavonols were higher than those found in the roots of two-year-old I. tinctoria field-grown
plants [82]. Elicitation with 150 mg/L of chitosan, for 36 h, led to a significantly higher
flavonol accumulation (rutin—812 µg/g DW; quercetin—733 µg/g DW; kaempferol—
285 µg/g DW; isorhamnetin—618 µg/g DW) [83]. A co-culture of the HRs with an immobi-
lized Aspergillus niger caused oxidative stress in the plant tissue and triggered up-regulation
of the flavonoid biosynthetic pathway. As a result, under the optimum conditions (ca.104

spores/mL, 30 ◦C, initial pH value 7.0, 72 h treatment), higher contents of all flavonols
but rutin were detected in the examined I. tinctoria HRs (quercetin—up to 1500 µg/g DW;
isorhamnetin—up to 700 µg/g DW; kaempferol—up to 1000 µg/g DW) [84]. The roots
exposed to UV-B radiation (108 kJ/m2) demonstrated substantial up-regulation of the
chalcone synthase gene and increased accumulation of all monitored flavonols (rutin—up
to 1500 µg/g DW; quercetin—up to 1700 µg/g DW; isorhamnetin—up to 2000 µg/g DW;
kaempferol—up to 2200 µg/g DW) [85].

Ghimire et al. [86] found that elicitation either with yeast extract (100 mg/L) or with
MeJa (100 µM) significantly increased flavonol accumulation in the HRs of Aster scaber
(Asteraceae, full botanical name not provided). Upon elicitation with MeJa, biomass of the
roots contained: 2.07 mg/g DW of myricetin, 0.69 mg/g DW of quercetin, 0.26 mg/g DW
of kaempferol and 0.19 mg/g DW of rutin. The HRs of Ligularia fischeri Turcz. f. spiciformis
(Nakai) (Asteraceae), obtained by inoculation with R. rhizogenes KCTC 2703, were found
to produce myricetin (2.38 mg/g DW), quercetin (0.51 mg/g DW, kaempferol (0.12 mg/g
DW) and rutin (0.14 mg/g DW) [87].

HRs may be a source of new, previously unknown natural products. Two unusual,
biologically active, derivatives of kaempferol and quercetin (4′-O-methylkaempferol-3-O-
[(4′ ′→13′ ′ ′)-2′ ′ ′,6′ ′ ′,10′ ′ ′,14′ ′ ′-tetramethylhexadecan-13′ ′ ′-olyl]-β-D-glucopyranoside and 3′,4′-
di-O-methylquercetin-7-O-[(4′ ′→13′ ′ ′)-2′ ′ ′,6′ ′ ′,10′ ′ ′,14′ ′ ′-tetramethylhexadec-13′ ′ ′-ol-14′ ′ ′-enyl]-
β-D-glucopyranoside) were isolated from the HRs of Catharanthus roseus (L.) G. Don (Apocy-
naceae) [88].

2.1.3. Flavones and Flavanones

The procedures employed to enhance the production of flavones and flavanones in
the HRs were similar to those described earlier for the other groups of flavonoids and
include overexpression of the genes-encoding biosynthetic enzymes (CHI, PAL, C4H and
4CL), elicitation (UV-B irradiation, MeJa, yeast extract, bacterial lysates, β-cyclodextrin, iron
oxide nanoparticles) and heterologous expression of transcription factors.

One of the most spectacular examples of a plant that accumulate substantial amounts
of flavones is Scutellaria baicalensis Georgi (Lamiaceae). Roots of the plant contain up to 27%
DW of flavones, mainly glycosidic derivatives of baicalein, wogonin and oroxylin A [89]
(for structures, see Figure 4). S. baicalensis is valued for its medicinal properties [90,91],
including the antioxidant activity of its major constituents [92]. First attempts to develop a
HR culture system to produce pharmacologically active flavones of S. baicalensis were made
in the 1990s [93–95]. Those studies, apart from the identification of over twenty known
phenolic compounds synthesized by the roots, including flavones and phenylethanoids,
led to the isolation and identification of two formerly unknown flavones. However, the
yields of biologically active flavones from the cultures were unsatisfactory (up to 1.2%
DW of baicalein 7-O-glucuronide). The HRs that emerged as a result of S. baicalensis
transformation with R. rhizogenes LBA 9402, in optimum culture conditions produced 6.9%
DW of total baicalein glycosides and 1.5% DW of total wogonin glycosides, measured by
HPLC after the acidic hydrolysis of the native compounds [96]. Kuzovkina et al. [97,98], by
a transformation of S. baicalensis with R. rhizogenes A4 obtained HRs that produced 5% DW
of flavonoids (spectrophotometrically measured). The content increased 1.8-fold after the
72 h of treatment with 100 µM of MeJa. More accurate quantification by HPLC revealed
1.27% DW of baicalin (baicalein 7-O-glucuronide), 1.07% DW of wogonoside (wogonin
7-O-glucuronide) and 0.38% DW of their aglycones in the analyzed roots. Maximum yields
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of baicalin and wogonoside after MeJa treatment reached 10 mg/g DW and 24 mg/g
DW, respectively [98,99]. Hirotani et al. [100] found that accumulation of mRNA for an
enzyme UDP-glucose:baicalein 7-O-glucosyltransferase (UBGT) in the HRs of S. baicalensis
was induced in response to wounding and salicylic acid treatment. Overexpression of
chalcone isomerase gene (SbCHI) in the HRs of Baikal skullcap resulted in the increased
accumulation of baicalin (42–60 mg/g DW), baicalein (8.9–12.1 mg/g DW) and wogonin
(2.2–5.4 mg/g DW) in reference to GUS-control HR line. As expected, SbCHI-silenced HRs
produced less flavones than the controls [101]. The HRs overexpressing phenylalanine
ammonia-lyase genes (SbPAL1, SbPAL2 or SbPAL3) produced significantly higher amounts
of flavone aglycones (baicalein: 11–29 mg/g DW; wogonin 2.5–6.7 mg/g DW) than the
GUS-control HRs and wild type field-grown roots. Baicalin content in PAL-overexpressing
roots (57–136 mg/g DW) was slightly lower than that in wild type field-grown roots
(146 mg/g SbCYP82D2DW) but much higher than that found in the GUS-control HRs [102].
Also, overexpression of cinnamate 4-hydroxylase (C4H) and 4-coumaroyl CoA ligase (4CL)
increased flavone production in S. baicalensis HRs [103]. Heterologous expression of the
transcription factor Lc from Zea mays in the HRs of Baikal skullcap led to the enhanced
accumulation of baicalin, baicalein and wogonin in the roots, but higher yields were
achieved when the Arabidopsis PAP1 transcription factor was overexpressed in the same
experimental system (up to 102 mg/g DW of baicalin) [104]. Some improvement in yields
of flavones from the cultures was achieved as well by an optimization of the nutrient
medium composition [96,105,106]. Aglycones:glucuronides ratios in the cultures may be
at least partially controlled by the activities of the endogenous β-glucuronidase of Baikal
skullcap (baicalinase, sGUS) and baicalein 7-O-glucuronosyltransferase (UBGAT) [107,108].
Hydroxylation of chrysin is the step in the biosynthesis of baicalein and wogonin that
requires the respective CYP450 enzymes: flavone 6-hydroxylase (F6H) and flavone 8-
hydroxylase (F8H). Two enzymes: SbCYP82D1.1 (F6H) and SbCYP82D2 (F8H) from S.
baicalensis were described and the role of SbCYP82D2 in the wogonin biosynthesis was
confirmed by its silencing in the HRs of the plant [109]. Baikal skullcap collected in the
Dauria region (shared by Mongolia, Russian Federation and China) demonstrated high
contents of polymethoxylated flavones. The HRs obtained from the plants retained their
metabolic profile [110].

Several other species of the Scutellaria genus like S. lateriflora L., S. andrachnoides Vved.,
S. bornmuelleri Hausskn. ex Bornm. S. przewalskii Juz. and S. pycnoclada Juz. Bunge
were also investigated in respect of their prospective use as a source of biologically active
flavones [111–117]. American skullcap (S. lateriflora) is the second most popular species
of Scutellaria used for medicinal purposes. Wilczańska-Barska et al. [111] obtained HRs
of S. lateriflora by a transformation with R. rhizogenes strain A4. The roots produced a
phenylethanoid glycoside—acteoside (19 mg/g DW) and flavones (scutellarin 0.6 mg/g;
baicalin 14.5 mg/g; wogonoside 12.0 mg/g; wogonin 11.5 mg/g; chrysin 0.1 mg/g DW). Ex-
cept for the wogonin, flavone contents were lower than those in S. baicalensis HRs [111,112].
The root culture of S. lateriflora upon elicitation with yeast extract (YE, 200 mg/L) demon-
strated increased biomass accumulation and enhanced acteoside production. The optimum
for flavones accumulation was 50 mg/L YE (flavone total content ca. 50 mg/g DW). Bacte-
rial lysates applied as elicitors were less effective [111]. The HRs of the American skullcap
transformed with R. rhizogenes ATCC 15834 were cultivated under continuous illumination
or in the dark and elicited with β-cyclodextrin and MeJa [113]. Maximum contents of
baicalein and wogonin (5.4 mg/g DW and 0.71 mg/g DW, respectively) were found in
the cultures maintained in the dark, treated with 15 mM of β-cyclodextrin. Maximum
contents of flavone glycosides—scutellarin (scutellarein 7-O-glucuronide) and wogonoside
(ca. 0.5 mg/g DW each) were accumulated in the roots grown in the light using the same
treatment. β-Cyclodextrin (15 mM) turned out to be more effective than MeJa (100 µM)
as an inducer of flavone accumulation, after 24 h treatment. Better yields of the flavones
(baicalin—22.5 mg/g DW; wogonin—5.4 mg/g DW) were achieved by Tuan et al. [114] after
72–96 h treatment with 100 µM MeJa. The HRs used in the experiment were obtained by
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the transformation with R. rhizogenes strain R1000. Stepanova et al. [115] investigated HRs
of S. baicalensis, S. lateriflora, S. przewalskii and S. pycnoclada derived from the transformation
of the plant material with wild-type R. rhizogenes A4. The roots of S. baicalensis and S. prze-
walskii showed the best growth indices when cultured in a liquid nutrient medium. Baicalin
was the major flavone accumulated in all examined cultures. The HRs of S. przewalskii
were characterized by a high content of flavones (ca. 33 mg/g DW in total) compared to
the HRs of S. baicalensis (ca. 17 mg/g DW) and HRs of the two remaining species (about
5–13 mg/g DW). The HRs of S. andrachnoides and S. bornmuelleri produced low amounts
of flavones [116,117]. The HRs of S. viscidula Bunge, S. orientalis L. and S. araxensis Grossh.
have not been examined in respect of their flavone content yet [118,119].
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Dracocephalum kotschyi Boiss (Lamiaceae) is a rare plant of medicinal properties that
synthesizes polymethoxylated flavones and flavonols of antioxidative and anti-inflammatory
activity [120]. The HRs of the plant induced by inoculation with R. rhizogenes LBA 9402 pro-
duced: apigenin, cirsimaritin, isokaempferid, penduletin, xanthomicrol and calycopterin,
but the contents of individual compounds varied widely depending on the root clone. The
HRs were a better source of flavonoids than the roots of the intact plant. The leaves of
D. kotchyi, however, contained nearly eight times more flavonoids (1.7 mg/g DW) than the
most productive HR clone [121]. A HR culture of D. kotschyi transformed with R. rhizogenes
ATCC 15834 accumulated 0.19 mg/g FW of apigenin. Upon elicitation with iron oxide
nanoparticles (75 mg/L, 24 h) the apigenin content increased up to 0.37 mg/g FW [122].

The genus Saussurea comprises ca. 400 plant species. Some of the plants from the
genus have been traditionally used as medicines [123,124]. The HRs of S. medusa Maxim,
transformed with R. rhizogenes strain R1601 and maintained in the liquid N6 medium [125],
produced ca. 6.1 mg/g DW jaceosidin [126] in a 24–28-day culture. Overexpression of
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chalcone isomerase gene from S. medusa in the HRs of S. involucrata Kar. et Kir. ex Maxim.,
led to the increased accumulation of apigenin (ca. 2.6 mg/g DW) and a higher content of
total flavonoids [127].

Erigeron breviscapus (Vaniot) Hand.-Mazz. (Asteraceae) synthesizes pharmacologically
active flavones apigenin and scutellarein together with their glycosides. The major flavone
accumulated by the plant is scutellarein. The HRs of E. breviscapus were obtained by
transformation with R. tumefaciens strain C58C1 harboring pRiA4 plasmid or with the
same bacterial strain modified by introducing a construct containing EbCHI gene encoding
chalcone isomerase. The roots overexpressing EbCHI produced 2.2 mg/g DW of scutellarin,
whereas the roots of the intact plant contained 0.21 mg/g DW of the compound (whole
plant 2.6 mg/g DW). Elicitation with MeJa induced expression of several genes engaged
in the flavonoid biosynthesis, including the genes-encoding chalcone synthase (CHS)
and chalcone isomerase (CHI). The HRs of E. breviscapus treated with MeJa transiently
accumulated up to 4.7 mg/g scutellarin [128].

HRs of Catharanthus roseus (L.) G. Don (Apocynaceae) harboring the gene encoding
tryptophan feedback-resistant anthranilate synthase holoenzyme (ASαβ) produced naringin
(naringenin 7-O-neohesperidoside) as the major phenolic metabolite (0.65–0.86 mg/g DW).
Hesperidin (hesperetin 7-O-rutinoside) was accumulated in the roots in smaller amounts
(0.11–0.23 mg/g DW) [129].

Silencing of two flavone synthase II (FNSII) genes: GmFNSII 1 and GmFNSII -2, in the
HRs of soybean cultivar Hefeng 47, substantially decreased apigenin accumulation and
reduced tolerance to salt stress but increased isoflavonoid production in the investigated
root clones [130]. Glucose, mannitol, MeJa and NaCl significantly increased expression
of GmFNSII 1 and GmFNSII -2 in the HRs of soybean. The motifs responsive to MeJa
and glucose were found in the GmFNSII 1 and GmFNSII -2 promoter sequences. It was
suggested that the oxidative damage induced by the salt stress may be mitigated by the
flavone accumulation [131].

Components of the flavonoid fraction were analyzed in roots, HRs and a cell suspension
culture derived from roots of M. truncatula [132]. M. truncatula HRs were obtained by
inoculation with R. rhizogenes strain Arqua1. The HRs contained three luteolin glycosides,
chrysoeriol and two flavanones: naringenin and liquiritigenin. Extracts from roots of the
intact plant analyzed by the same method revealed the presence of seven flavone glycosides,
derivatives of luteolin and chrysoeriol. Flavonoid aglycones, as well as flavanones, were not
detected in the roots of the plant. Five flavones: orientin (luteolin 8-C-glucoside), vitexin
(apigenin 8-C-glucoside), isovitexin (apigenin 6-C-glucoside), luteolin and apigenin were
quantified in seeds, leaves, roots, calli and HRs of Cajanus cajan (L.) Millsp. (Fabaceae). The
contents of orientin, vitexin and isovitexin in the HRs were higher than those in the roots
of the intact plant but much lower than those detected in the plant leaves. Apigenin and
luteolin contents in the roots of pigeon pea plants were significantly higher than those in
the HRs [133]. An effect of UV-B irradiation on accumulation of phenolic constituents in
C. cajan HRs was investigated by Gai et al. [134]. Contents of orientin, vitexin, isovitexin,
luteolin and apigenin increased after 2–8 h UV-B treatment and were 1.27–4.44-fold higher
than those in the control roots. However, the yields of the individual compounds were low.
The content of the major flavone, luteolin, after 2 h of UV-B irradiation reached 19 µg/g DW.

2.1.4. Isoflavonoids

Isoflavonoids, like the remaining flavonoids, are regarded as dietary antioxidants,
i.e., compounds that may protect against oxidative stress linked to inflammation and
the risk of macromolecule damage by free radicals. The group of compounds includes
isoflavones, isoflavanones, isoflavans, rotenoids and pterocarpans. Although they are
reported from many plant families, isoflavonoids are particularly abundant in Leguminosae
plants. The most known dietary source of the compounds are the yellow-skin seeds of
Glycine max [135,136]. While the isoflavones are normally present in relatively low amounts
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in mature soybean tissues, several attempts were made to develop soybeans that accumulate
much higher contents of isoflavones than those found in the wild-type seed.

To study the role of isoflavonoids in the plant resistance to fungal infection, HRs
were initiated from two soybean genotypes with different susceptibility to the SDS dis-
ease (sudden death syndrome) caused by the soil-borne fungal pathogen, Fusarium solani
f. sp. glycines. Daidzein derivatives predominated in the isoflavone fraction extracted
both from the soybean hairy roots and intact soybean. The principal isoflavones (genistin,
daidzin, their malonyl conjugates and aglycones) and isoflavonoid phytoalexins (coume-
strol, coumestrol conjugates and glyceollin) (for structures, see Figure 5) were determined
in extracts from the Fusarium-inoculated and non-inoculated hairy roots. Inoculation with F.
solani negatively affected accumulation of all monitored isoflavonoids except for glyceollin.
The compound demonstrated better antifungal activity against the investigated Fusarium
species than the remaining isoflavonoids used in the assay (daidzin, daidzein, genistin,
genistein, glycitin, glycitein) [137].
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Simultaneous silencing of flavone synthase II genes (GmFNSII-1 and GmFSNII-2) in
the HRs of soybean led to the reduction or cessation of apigenin biosynthesis. At the same
time, increased accumulation of genistein was observed [130]. Synchronous silencing of
FNSII and flavanone-3-hydroxylase (F3H) genes caused an increase of daidzein content
in soybean HRs up to 1.55 mg/g DW (0.9 mg/g DW in control roots) [138]. Overexpres-
sion of GmMYB100, a gene encoding a R2R3 MYB transcription factor, in G. max HRs
resulted in diminished expression of the genes-encoding enzymes engaged in flavonoid
biosynthesis and diminished isoflavone content. Silencing of the GmMYB100 did not affect
expression of the genes for the biosynthetic enzymes (GmCHS7, GmCHS8, GmCHI, GmIFS,
GmF3H) but significantly increased isoflavonoid content [139]. Soybean cotyledon HRs
harboring GmIFS1 showed better tolerance to salt stress and increased isoflavone content
under salt stress conditions [140]. GmMYB58 and GmMYB205 are seed-specific flavonoid
biosynthesis activators. Their overexpression in soybean HRs increased transcription of:
GmCHS8, GmCHI, GmIFS2, GmFLS1, UGT73F2 (isoflavone UDP-glucosyltransferase gene)
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and IF7Mat (isoflavone 7-O-glucoside-6”-O-malonyltransferase gene). An unidentified
daidzein derivative, which dominated the isoflavonoid profile of the control roots (1 mg/g
DW), was excessively produced by the transgenic HRs. The daidzein derivative content
reached 3.2 mg/g DW in GmMYB58-overexpressing HRs and 6.7 mg/g DW in the roots
overexpressing GmMYB205 [141]. Soybean isoflavonoids are mainly glycoconjugates and
their biosynthesis is catalyzed by different UDP-glycosyltransferases (UGT). Six genes for
GmUGTs were overexpressed in soybean HRs. In the transgenic root lines overexpress-
ing UGT72Z3, UGT73C20 and UGT88E19, the total content of isoflavonoids increased
1.1- to 1.6-fold in reference to the control and reached over 7 mg/g DW [142]. Increased
resistance to Phytophthora sojae infection was observed in G. max HRs overexpressing Gm-
CHI1A (chalcone isomerase gene from the soybean cv. Nannong 10-1). This observation
agreed with experimentally proven induction of GmCHI1A expression and enhancement
of daidzein accumulation by P. sojae [143]. Fungal infection in soybean seedlings enhance
also glycitein production. The last step in the biosynthesis of this compound is methylation
catalyzed by isoflavone O-methyltransferase (IOMT). IOMT, when co-expressed with the
flavonoid 6-hydroxylase gene (F6H, normally not expressed in the HRs) increased the
content of glycitein-related metabolites by ca. 100% compared to the control [144]. The
HRs overexpressing GmMaT2 and GmMaT4, genes-encoding malonyl-CoA:flavonoid acyl-
transferases, produced more malonyldaidzin, malonylgenistin and malonylglucitin than
the control. The major isoflavone, malonyldaidzin, content reached ca. 6.3 mg/g FW in
GmMaT2 overexpressing HRs. GmMaT2 but not GmMaT4 knockdown resulted in the re-
duced accumulation of malonylated isoflavonoid glycosides and reduced nodule numbers.
GmMaT2 is also upregulated by the rhizobial infection what implicates its participation in
the nodulation process and malonylated isoflavone secretion into the rhizosphere [145]. An
attempt was made to enhance isoflavonoid production in soybean HRs by elicitation with
MeJa (100 µM), salicylic acid (SA, 200 µM), sonication and vacuum infiltration. Treatment
with MeJa (72 h) resulted in 10.67-fold higher total isoflavonoid content (53.16 mg/g DW)
than that in the untreated control. Daidzin content reached ca. 33.9 mg/g DW. Elicitation
with SA, after 96 h, caused 5.78- and 65-fold increase in total isoflavonoid and genistein
contents, respectively. Maximum isoflavonoid production, 75.26 mg/g DW, was achieved
with 2 min sonication and subsequent 2 min vacuum infiltration of HRs on 30th day of the
culture [146].

Pigeon pea HRs produced genistin (0.11 mg/g DW) and genistein (0.04 mg/g DW) [133].
Their accumulation in the HRs was enhanced by an exposition to UV-B radiation [134].
Leaves of Lotus japonicus cv. Miyakojima line MG-20 seedlings supplied with genistein
produced isoprenylated isoflavonoid, wighteone. This observation led to the identification
of novel prenyltransferase gene LjG6DT. The enzyme encoded by the gene worked only with
genistein as a substrate and its expression was induced by the reduced glutathione (GSH),
MeJa and SA. Overexpression of LjG6DT in L. japonicus HRs, together with GSH and genis-
tein supplementation, induced enhanced wighteone production (0.18–0.24 µg/g DW) [147].
Twenty isoflavonoids, derivatives of 2′-hydroxyformononetin, afrormosin, biochanin A,
daidzein, formononetin, genistein and irisolidone were detected in the HRs of M. truncatula.
In the roots of the intact plant 32 isoflavonoids were detected and tentatively identified. In
contrast to the plant roots HRs preferably accumulated isoflavonoid aglycones [132].

Red clover (Trifolium pratense L., Fabaceae) is a forage legume producing formononetin,
biochanin A, daidzein and genistein as major isoflavone constituents [148]. Kumar et al. [149]
described stable production of isoflavones by HRs of T. pratense. One of the fast-growing HRs
clones, displayed a high accumulation of all four pharmaceutically important isoflavones:
daidzein (8.56 mg/g DW), genistein (2.45 mg/g DW), formononetin (15.23 mg/g DW) and
biochanin A (1.10 mg/g DW). The HRs of T. pratense var. URS-BRS Mesclador were ob-
tained by inoculation with R. rhizogenes strain A4TC24 and 23 isoflavonoids were tentatively
identified as their metabolites. The isoflavonoids were, putatively, derivatives of: daidzein,
pseudobaptigenin, pratensin, biochanin, irilone, formononetin and 3′,7-di-O-methylorobol.
Isoflavonoid contents were monitored in the selected clones of roots up to five months of cul-
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ture. One of the examined clones (6HR) accumulated 5.5 mg/g DW biochanin A, 20.8 mg/g
DW formononetin and ca. 0.7 mg/g genistein after 90 days of culture. The HRs were elicited,
7 days after subculture, using either elevated sucrose content in the medium (60 g/L) or
SA (10 and 30 mg/L). Sucrose (60 g/L) increased accumulation of isoflavonoids in the
HRs. After 3.5 days of treatment, roots of clone 4HR contained 12.8 mg/g DW daidzein,
0.7 mg/g DW genistein, 13.4 mg/g DW formononetin and 1.1 mg/g DW biochanin A,
whereas the roots of clone 8HR produced 1.9 mg/g DW daidzein, 0.4 mg/g DW genistein,
14.8 mg/g DW formononetin and 4.1 mg/g DW biochanin A. Untreated roots (controls)
accumulated 1.2–2.9 mg/g DW daidzein, 0.1–1.3 mg/g DW genistein, 2.1–3.0 mg/g DW
formononetin and 0.7–4.4 mg/g DW biochanin A. Elicitation with SA was less effective
than the treatment with sucrose [150].

Astragalus membranaceus (Fisch.) Bunge (proper name A. propinquus Schischkin, Fabaceae)
has a long history of use in traditional Chinese medicine. Roots of the plant are also com-
mercially available in Europe and USA as dietary supplements and functional foodstuffs.
Calycosin and calycosin 7-O-glucoside were the major isoflavone components of the HRs
derived from the plant. The two compounds, together with ononin (formononetin 7-O-
glucoside), formononetin and astraisoflavan 7-O-glucoside were quali-quantitatively de-
termined by LC-MS/MS. Under optimum conditions, the total isoflavonoid content in
34-day old A. membranaceus HRs reached 0.24 mg/g DW. This yield was significantly higher
compared to that of three-year-old field-grown roots (0.19 mg/g DW) [151,152]. The HRs
exposed to UV-B (86.4 kJ/m2) synthesized more isoflavonoids (up to 0.53 mg/g DW). All
investigated genes involved in isoflavonoid biosynthesis were also up-regulated following
the UV-B irradiation. PAL and C4H were found to be the key genes implicated in the control
of the process [153]. Elicitation of 34 days old HRs of A. membranaceus with MeJa (283 µM,
33.75 h treatment) raised the content of isoflavonoids to 2.25 mg/g DW and upregulated the
genes related to isoflavone biosynthesis [154]. A co-culture of A. membranaceus HRs with
immobilized Aspergillus niger enhanced accumulation of calycosin (0.73 mg/g DW) and
formononetin (1.12 mg/g DW) in the roots [155].

Psoralea corylifolia L. (Babchi, Fabaceae) is a plant used in traditional medicine of China
and India. The plant accumulates coumarins, flavonoids and terpenophenols, including
pharmacologically active bakuchiol, which gained some popularity as a component of
cosmetics [156,157]. The first study on isoflavonoid production in the HRs of Psoralea
spp. was published in 1999 [158]. HR lines derived from seven distinct species were
examined in respect of their daidzein content. The examination revealed that P. leucantha F.
Muell. and P. lachnostachys F. Muell HRs were the best isoflavonoid producers. One, highly
productive line (daidzein 10.2 mg/g DW, coumestrol 0.48 mg/g DW) was chosen for further
investigation. The roots were elicited with 30 mg/L of chitosan at the end of the exponential
phase of growth (21st day). After the addition of chitosan, the content of daidzein in biomass
dropped to ca. 8 mg/g DW due to the release of the compound into the culture medium.
Coumestrol and genistein contents in the roots increased from ca. 0.40 to 0.52 mg/g DW
and from ca. 0.03 to 0.07 mg/g DW, respectively. Coumestrol was also liberated to the
medium after the elicitation with chitosan. HR cultures of P. corylifolia L., transformed with
R. rhizogenes ATCC 15834, similarly to the control roots, accumulated daidzin as a major
isoflavonoide. The compound was accompanied with smaller amounts of formononetin
glucoside, genistin and daidzein. Bakuchiol was absent from the cultures [159]. Clones
of P. corylifolia HRs, obtained by inoculation with R. rhizogenes LBA 9402, in optimum
conditions produced up to 20.6 mg/g DW daidzein and up to 3.7 mg/g DW genistein [160].

Pueraria spp. (Fabaceae) due to isoflavonoid content is traditionally used to relieve
menopausal symptoms [161]. The HRs of Pueraria phaseoloides (Roxb.) Benth induced by R.
rhizogenes ATCC 15834 contained ca. 1 mg/g DW puerarin (daidzein 8-C-glucoside) [162].
The culture was scaled up to a 2.5 L bioreactor and the culture medium was modified
to achieve better yield. In optimum conditions, roots cultivated in the bioreactor pro-
duced ca. 5.6 mg/g DW of puerarin and the product was partially liberated to the nu-
trient medium [163]. A HR culture of P. candollei Wall. Ex Benth. was established using
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R. rhizogenes ATCC 15834. The total isoflavonoid content in the roots reached 36.48 mg/g
DW. Daidzin was the major product (29.9 mg/g DW), and the puerarin content was esti-
mated as 3.4 mg/g DW [164]. Chitosan (50, 100 and 150 mg/L), MeJa (50, 100 and 200 µM),
SA (50,100 and 200 µM), YE (0.5, 1 and 2 mg/mL) and autoclaved Rhizobium culture (1,
2 and 3% v/v) were applied as elicitors to enhance isoflavonoid production in the HRs.
Though all of the applied treatments increased isoflavonoid accumulation, the yeast ex-
tract addition (0.5 mg/mL, 3 days) proved to be the most effective (60.5 mg/g DW total
isoflavonoids) [165]. P. candollei var. myrifica (Airy Shaw & Suvat.) Niyomdham, except
for the isoflavonoids, synthesizes another phytoestrogen, deoxymiroestrol. The HRs of the
plant produced up to 7 mg/g DW isoflavonoids (mainly daidzin and genistin) and up to
77 µg/g DW of deoxymiroestrol. The contents were higher than those found in the roots of
the intact plant (3.5 mg/g DW and 15 µg/g DW, respectively). Chitosan, YE and MeJa were
applied to study effects of elicitation on the active metabolite content. The HRs elicited
with MeJa (200 µM) accumulated puerarin (0.54 mg/g DW), daidzin (8.68 mg/g DW),
genistin (5.27 mg/g DW), daidzein (0.45 mg/g DW), genistein (0.16 mg/g DW), kwakhurin
(1.39 mg/g DW) and deoxymiroestrol (0.25 mg/g DW), after 6 days of the treatment. The
remaining elicitors also induced productivity of the roots, though to a lesser extent [166].
P. candollei Grah. ex. Benth. var. candollei was genetically transformed using two different
R. rhizogenes strains (ATCC 15834 and 43,057) to obtan several clones of HRs.

The effect of the inoculum size (1 and 2% w/v) and temperature (25 or 32 ◦C) on
the growth of the obtained HRs and on their isoflavonoid content was investigated. The
maximum flavonoid accumulation (31 mg/g DW with daidzein and puerarin as major
compounds) was found in the cultures started with 1% inoculum and cultivated at 32 ◦C.
Moreover, it was found that cultivation of the HRs at higher temperature reduced browning
of the tissue [167]. Kim et al. [168] obtained HRs from two different lines of P. lobata (Willd.)
Ohwi (kudzu), collected in two different regions of Korea. The roots accumulated more
puerarin and daidzin than the respective callus cultures, but the contents of the compounds
in the tubers of the intact plants were higher. P. lobata C-glycosyltransferase (PlUGT43)
uses daidzein and genistein as substrates. The overexpression of PlUGT43 in soybean hairy
roots that synthesize daidzein, but not puerarin, led to the production of puerarin in the
transgenic roots [169].

The transformed root cultures of Ononis spinosa L. and Ononis arvensis L. (Fabaceae)
were obtained by Nóra Gampe et al. [170]. The most abundant compounds in the HRs
were medicarpin, sativanone and pseudobaptigenin glucosides (16.9–28.9 mg/g DW,
1.3–11.4 mg/g DW and 0.9–2.0 mg/g DW, respectively). Formononetin and onogenin
derivatives were present in smaller amounts. Two new phenolic compounds were found in
the HRs (bulatlactone 2”-O-glucoside and ononilactone). The total isoflavonoid production
in the cultures was comparable to that in the wild-grown O. arvensis and approximately
twofold higher than that in wild-grown O. spinosa samples.

2.1.5. Miscellaneous Flavonoids

Though the HRs of Glycyrrhiza glabra L. (Fabaceae) do not produce glycyrrhizic acid, a
sweet-tasting saponin responsible for the major pharmacological activity of the liquorice
root (peptic ulcer healing), they synthesize vast array of biologically active polyphenols
of unique structures [171,172] (see Figure 6). Two new compounds, licoagrochalcone and
licoagrocarpin (chalcone- and pterocarpan-type compounds), were isolated from the HRs
of licorice transformed with a Rhizobacterium strain harboring pRi15834 and pBI121 (GUS).
Eight known compounds were also found in the HRs, including three chalcones, four
prenylated flavanones and one prenylated flavanol [173]. Further investigation of the same
plant material led to the isolation of licoagrodione, another new compound, together with
five known flavonoids. The ntimicrobial activities of the isolated compounds were assessed
by the disc diffusion method. Glyinflanin K was the only compound that did not show
activity against the bacteria and fungi used in the experiment [174]. The continuation of
this research allowed for the isolation of unusual prenylated biaurone, licoagrone, together
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with five known flavonoids (kanzonol D, afrormosin, odoratin, phaseol, echinatin) [175].
Li et al. [176] isolated and described a new biflavonoid, licoagrodin and another four
new flavonoids (licoagrochalcone B, licoagrochalcone C, licoagrochalcone D and licoa-
groaurone), as well as four known flavonoids. More polar fractions separated from the
HRs gave licoagroside A, ononin, calycosin 7-O-glucoside, wistin, vicenin-2, afrormosin
7-O-(6”-malonylglucoside) and isoschaftoside. Licoagroisoflavon and licoagrosides C–F
were isolated as new compounds from the HRs of G. pallidiflora Maxim. The compounds
were accompanied by eleven known flavonoids [177,178]. In the HRs of G. uralensis Fisch.
two-fold increase in total flavonoid content (up to 30 mg/g DW) was observed following
the combined 48 h of treatment with YE (0.1%) and polyethylene glycol (PEG8000, 2%) [179].
Tween 80, added to 20-day-old HRs of G. uralensis, caused enhanced production of licochal-
cone A accompanied by elevated mRNA levels for PAL, 4CL (4-coumarate:coenzyme A
ligase) and C4H. After 15 days of the treatment, the roots yielded over 3 mg of licochalcone
A per flask, and the product was almost entirely liberated to the culture medium. The
control HRs accumulated up to 0.35 mg/flask of the compound in their biomass [180]. The
verexpression of CHS in G. uralensis HRs resulted in the increased production of chalcones
and liquiritigenin in the transgenic roots. The number of CHS copies in the examined
clones of HRs was determined as 9, 10, 11, 13 and 18. The root clone with nine copies of
CHS accumulated the highest contents of flavonoids [181].

The Genista tinctoria L. HRs synthesized neither isoflavone, derivatives of daidzein
and genistein, nor the derivatives of apigenin and luteolin characteristic of the intact plant.
Instead, the roots accumulated isoliquiritigenin (daidzein precursor, 23 mg/g DW) absent
from the roots of the intact plant. Abscisic acid (ABA, 37.8 µM), added to the culture on the
42nd day of growth, induced the release of the product (80%) to the culture medium [182].

Alikaridis et al. [183] investigated roots obtained by a transformation of Silybum mari-
anum Gaertner with R. rhizogenes ATCC 15834. The roots contained only minute amounts
(0.4 µg/g DW) of silychristin and silydianin. Silybins A and B were not detected, whereas
the contents of isosilybins A and B were higher than those in the untransformed roots
(isosilybin A—0.01 mg/g DW). The S. marianum HRs examined by Rahnama et al. [184]
contained up to 0.14 mg/g DW silychristin. The other flavonolignans were present in
smaller amounts.

2.2. Stilbenoids

Stilbenoids are a class of polyphenolic plant constituents that have the general struc-
tural formula C6-C2-C6 and share an initial part of their biosynthetic pathway with
flavonoids. The compounds could be found in various plant species, including peanut
(Fabaceae), grapevine (Vitaceae), berries (Ericaceae), pine (Pinaceae) and tomato (Solanaceae).
Their main function is the protection of the host plant against pathogen infestation and
oxidative stress generated by different environmental stimuli [185]. Stilbenoids, due to
their biological activity, may find application as protective agents in cardiovascular disease,
diabetes, neurodegeneration, obesity and other ailments [186].

The compounds were primarily detected in elicited HRs and the procedures used to
enhance the productivity of the cultured roots included elicitation (MeJa, paraqat, H2O2) with
concomitant use of permeabilizing agent (methyl-β-cyclodextrin) to liberate the products into
the culture medium. R2R3-MYB-type transcription factors are engaged in the up-regulation
of stilbenoid biosynthesis, and this may find an application in genetic engineering.
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Medina-Boliwar et al. [187] found that HRs obtained by the transformation of Arachis
hypogaea L. cv. Andru II (Fabaceae) with R. rhizogenes ATCC 15834, upon elicitation with
sodium acetate, produced stilbenoids that are excreted into the culture medium. Trans-
resveratrol and trans-pterostilbene (for structures, see Figure 7) were identified as metabo-
lites present in the elicited cultures. Trans-resveratrol, trans-arachidin-1 and trans-arachidin-
3 were isolated from the HRs of peanut cv. Hull elicited with 10.2 mM sodium acetate.
Among the three compounds, arachidin-1 was the most active as an inhibitor of lipoprotein
oxidation. In the applied assay, arachidin-1 was more active than butylohydroxytoluen
(BHT). In contrast to resveratrol, arachidins at a dose of 55 µM showed some cytotoxicity to-
wards HeLa and RAW 264.7 cells [188]. The same culture was used to investigate the effects
of medium optimization, and the age of the elicited roots on growth performance and root
culture phenotype. The effect of elicitation on biosynthesis and liberation of stilbenoids
into the culture medium was also studied. The HRs elicited on the ninth day of the culture
produced trans-resveratrol (ca. 90 µg/g DW), trans-arachidin-1 (ca. 33 µg/g DW), and
trans-arachidin-3 (ca. 37 µg/g DW) when cultivated in modified MS instead of Gamborg’s
B5 nutrient medium. As the stilbenoids were secreted into the medium, the biomass of
HRs contained only minute amounts of the compounds (ca. 1 µg/g DW, ca. 0.75 µg/g
DW and ca. 0.71 µg/g DW, respectively) [189]. In a search for the optimum elicitation
method, hydrogen peroxide (10 mM), MeJa (100 µM), methyl-β-cyclodextrin (9 g/L), and
combination of MeJa with methyl-β-cyclodextrin were used as elicitors, instead of sodium
acetate. The application of either H2O2 or cyclodextrin caused secretion of piceatannol,
another stilbenoid formerly not found in the HRs of A. hypogaea cv. Hull. The contents of
stilbenoids in the culture medium were monitored until 96 h after elicitation. Individual
compounds reached their maximum content in the analyzed medium at different time
intervals. The best results were achieved with HRs treated with the combination of MeJa
and cyclodextrin. Sixty hours after elicitation, the roots produced resveratrol (ca. 5.3 mg/g
DW), piceatannol (ca. 0.3 mg/g DW), arachidin-1 (ca. 4 mg/g DW) and arachidin-3 (ca.
17.1 mg/g DW) [190].
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Yang et al. [191] found that the prenyl subunit of the prenylated stilbenoids like
arachidins originated from the plastidic terpenoid pathway. Moreover, they purified
and described membrane-bound stilbenoid-specific prenyltransferase from peanut HRs.
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Elicitor-treated A. hypogaea HRs were used to discover genes-encoding stilbenoid prenyl-
transferases. Transcripts encoding five enzymes were identified and two of the enzymes
were characterized, including AhR4DT-1 that catalyzes prenylation of resveratrol at C-4
to form arachidin-2 [192]. The prenylated stilbenoids of the peanut manifest an array of
interesting biological activities (e.g., anti-inflammatory, antiviral, antioxidant and cytotoxic
towards human cancer cells) and have better bioavailability than resveratrol [193–195].
To achieve higher yields of the prenylated stilbenoids from peanut HRs, the elicitation
procedure was further optimized using 125 µM MeJa (signaling molecule implicated in
secondary metabolism regulation), 18 g/L cyclodextrin (permeabilizing agent that may
trap the product and prevent feedback inhibition), 3 mM H2O2 (inducer of piceatannol
production in the HRs of the peanut) and 1 mM MgCl2 (Mg2+ as a co-factor of resveratrol
prenyltransferases) [194]. The formerly applied treatment [190] allowed for ca. 56 mg/L
of arachidin-1 and ca. 148 mg/L of arachidin-3 to be obtained. With the new procedure,
the yields increased to 227.4 mg/L and 370.6 mg/L, respectively. Moreover, arachidin-2
(83.1 mg/L) and arachidin-5 (68.4 mg/L) were produced by the HRs. The new optimized
elicitation method was used to induce stilbenoid production in A. ipaensis and A. duranensis
HRs, obtained in the same way as HRs of the peanut cv. Hull. The HRs of the wild rela-
tives of peanut, upon elicitation synthesized less arachidin-1 and arachidin-3, but more
arachidin-2 and arachidin-5 [194].

The HRs of A. hypogaea cv. Tainan9 were obtained by inoculation with R. rhizogenes
strain K599 (NCPPB 2659). The production of stilbenoids in the roots was induced by the
treatment of nine-day-old HRs with 100 µM MeJa in combination with 6.87 mM methyl-
β-cyclodextrin. After 24 h of treatment, resveratrol (72.0 µg/g DW), arachidin-1 (179.3 µg
resveratrol eq./g DW) and arachidin-3 (21 µg resveratrol eq./g DW) were found in the
culture medium. MeJa applied alone did not induce the liberation of stilbenoids into
the medium. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) was
applied to analyze the metabolites present in the spent medium from the elicited cul-
tures. Except for the phenolic acids (hydroxybenzoic acid and caffeic acid), the following
stilbenoids were detected in the medium; trans-piceatannol, trans- and cis-resveratrol,
three isomers of trans-arachidin-1, 4-isopentadienyl-3,5,3’,4’-tetrahydroxystilbene, two
isomers of trans-arachidin-3, two isomers of arahypin 7 and trans-3’-isopentadienyl-3,5,4’-
trihydroxystilbene [196].

Another elicitation strategy was used with the HRs of A. hypogaea cv. Kalasin2 trans-
formed with R. rhizogenes K599. Paraquat (PQ), a broad-spectrum herbicide that generates
reactive oxygen species (ROS) in the plant tissue, was used in combination with MeJa
and cyclodextrin. As was in the case of MeJa, PQ alone did not induce the liberation of
stilbenoids from the roots. The most effective elicitation procedure that utilized 24 h of
pretreatment with 500 µM PQ followed by the induction with 100 µM MeJa in combination
with 6.87 mM methyl-β-cyclodextrin caused a sharp increase in stilbenoid biosynthesis.
The elicited roots produced trans-resveratrol (1.3 mg/g DW, after 120 h), trans-arachidin-1
(180.1 mg/g DW, after 192 h) and trans-arachidin-3 (444.2 mg/g DW, after 120 h). LC-
MS/MS analysis of the extract from the spent nutrient medium revealed the presence of
hydroxybenzoic acid, two trans-piceatannol isomers, trans- and cis-resveratrol, jasmonic
acid, four trans-arachidin-1 isomers, trans-arachidin-3, two isomers of arahypin 7 and
arahypins 5 and 6 [197].

Wongshaya et al. [198] investigated an effect of mechanical stress (cutting) and light on
stilbenoid biosynthesis in A. hypogaea cv. Tainan9 HRs. Mechanical stress increased the total
phenolic content and antioxidant capacity of the cultures in both light and dark conditions.
Roots cultivated in the dark showed a better response to elicitation than those grown in the
light. Maximum yields of stilbenoids that were achieved using the elicitation procedure
described earlier [197] were as follows: trans-resveratrol > 4 mg/g DW (uncut roots, dark,
72 h), trans-arachidin-1 ca. 240 mg/g DW (uncut roots, dark, 72 h), trans-arachidin-3 ca.
250 mg/g DW (uncut roots, dark, 72 h). The same elicitation procedure was applied to
the A. hypogaea cv. Tainan9 HRs cultivated in a 5 L capacity stirred tank bioreactor or in
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500 mL Erlenmayer flasks. Two densities of inoculum were evaluated: 5 g/L and 20 g/L.
The optimum production of arachidins was achieved using 20 g/L inoculum grown in
a 500 mL flask. Upon elicitation (72 h treatment), the HRs yielded ca. 1700 mg/L of
trans-arachidin-1 and ca. 4800 mg/L of trans-arachidin-3. The roots grown in the bioreactor
showed maximum productivity with 20 g/L inoculum, after 48 h treatment [199].

Three cultivars of peanut, including “Tifrunner,” “Hull,” and “Georgia Green” were
transformed with R. rhizogenes ATCC 15843. The obtained HRs were treated with 125 µM
MeJa, 18 g/L cyclodextrin, 3 mM H2O2 and 1 mM MgCl2 for 168 h. The extracts from the
spent culture media were qualitatively and quantitatively analyzed to assess the content
of stilbenoids. The HRs of the “Tifrunner” cultivar were found to be rich in arachidins
1, 2, 5 and 6, whereas the HRs of “Hull” cultivar preferably synthesized resveratrol and
arachidin-3. The yields of the analyzed stilbenoids ranged from ca. 5 mg/L (arachidin-5 in
“Georgia Green”) to ca. 170 mg/L (arachidin-1 in “Tifrunner”) [200].

Muscadine grape (Vitis rotundifolia Michx.), a grapevine species native to the south-
eastern part of North America, is a source of polyphenols that possess antioxidative and
antimicrobial activity [201]. The HRs of V. rotundifolia (21 days old) were treated with
100 µM MeJa for 24 h. Extracts prepared from the root biomass and from the spent nutrient
medium were subsequently analyzed in a search for stilbenoid metabolites. Resveratrol,
piceid (resveratrol 3-O-glucoside) and ε-viniferin (resveratrol dehydrodimer) were present
mainly in the biomass, whereas piceatannol was detected exclusively in the culture medium.
Growth regulators IBA (0.05 mg/L) and BAP (0.05 mg/L) added to the culture medium
did not affect yields of stilbenoids. Piceatannol and ε-viniferin were the best antioxidants
among the analyzed HRs metabolites [202].

Ñopo-Olazabal et al. [203] used the HRs of muscadine grape to study the biochemical
and molecular regulation of stilbenoid biosynthesis upon treatment with either 100 µM
MeJA or with 10 mM H2O2, over a 96 h period. Both treatments induced the transcription
of PAL, STS and resveratrol synthase gene (RS) as soon as 3 h after elicitation. Resveratrol,
piceid, and ε-viniferin were identified in the control and in the elicited HRs. Except for
resveratrol, the stilbenoids were accumulated in the roots. After the elicitation with MeJa,
piceid content in the roots increased from 164 µg/g DW (0 h) to 337 µg/g DW at the
end of experiment. The increase, however, was similar to that in the control roots. In
the culture medium, piceid was undetectable until 12 h of the treatment and reached
4.7 µg/g DW at the end of the experiment. Maximum accumulation of resveratrol took
place at 12 h after elicitation (106 µg/g DW) and then the content of the compound in the
roots declined. The resveratrol content in the medium reached maximum at 18 h after
exposition to MeJa (48 µg/g DW) and subsequently decreased to 6.4 µg/g DW at the 96 h.
ε-Viniferin accumulated in the MeJa elicited roots up to 379 µg/g DW at the end of the
experiment. The content was over twofold higher than that in the control roots. The culture
medium contained up to 11.8 µg/g DW ε-viniferin. Hydrogen peroxide treatment was less
effective as an inductor of stilbenoid biosynthesis. The piceid and resveratrol contents in
the H2O2 treated roots increased to a lesser extent than it was observed for MeJa treatment.
ε-Viniferin accumulated in the biomass (up to 434 µg/g DW, 96 h) and only ca. 5 µg/g DW
of the compound was found in the nutrient medium. At 24 and 96 h after the treatment
with H2O2, ca. 72.5 µg/g DW and 24.6 µg/g DW of resveratrol, respectively, were found in
the nutrient medium. In the studied cultures, an increase in stilbenoid content correlated
with an increased antioxidant capacity. The HRs of V. vinifera Pinot Noir cv. PN40024,
obtained by inoculation with R. rhizogenes ATCC 15834 were cultivated in 1

2 SH (Schenk
and Hildebrandt) medium supplemented with 2% sucrose. Piceid, resveratrol and two
resveratrol dehydrodimers: ε-viniferin and δ-viniferin were constitutively present in the
roots. δ-Viniferin was the major component of the stilbenoid fraction. The total stilbenoid
content reached 217 µg/flask at the stationary phase of culture. The elicitation with MeJa
(100 µM or 200 µM) on the 18th day of the culture (before the end of the exponential
growth phase) increased an excretion rate of stilbenoids from 11% (control roots, after
10 days of the experiment) to 37% (200 µM MeJa, 10-day treatment). The control roots
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contained ca. 2.42 mg/g DW of stilbenoids at the end of experiment. The HRs elicited
with 100 and 200 µM MeJa accumulated 6.98 mg/g DW and 4.34 mg/g DW of stilbenoids,
respectively. The maximum stilbenoid content in the nutrient medium (19 mg/L) was
found 10 days after the addition of MeJa (final concentration 200 µM). The concomitant use
of MeJa (100 µM, added on the 18th day of culture) and methyl-β-cyclodextrins (30, 50 and
70 mM, added to the fresh culture medium before autoclaving) resulted in the increased
stilbenoid contents in both root biomass and the culture medium. Maximum total stilbenoid
contents, measured four days after the addition of jasmonate were 6.4 mg/g DW in the roots
(30 mM cyclodextrins) and 165 mg/L in the medium (50 mM cyclodextrins). The combined
treatment with MeJa and cyclodextrins caused enhanced liberation of stilbenoids (80–90%)
into the nutrient medium [204]. Tisserant et al. [205], based on 13C and 1H NMR data and
results of LC-MS analysis, identified major metabolites of V. vinifera Pinot Noir HRs. The
main polyphenols found in the culture were stilbenoids (trans-resveratrol, trans-piceatannol,
pallidol, ε-viniferin, scirpusin A, vitisin B and maackin) and flavanones (eriodictyol and
naringenin).

Höll et al. [206] found that two R2R3-MYB-type transcription factors from grapevines
regulated the stilbenoid biosynthetic pathway by the activation of the promoters of genes-
encoding stilbene synthases (STS). One of the transcription factors, MYB15, expressed in
the HRs of V. vinifera cv. Chardonnay increased levels of STS and PAL transcription. The
content of trans-piceid in the MYB15 transgenic HR lines was fivefold higher than that in
the control roots. Accumulation of the remaining stilbenoids was less affected.

V. vinifera subsp. sylvestris, accessions W2 and W16 and cv. Rasha, were transformed
using three different strains of R. rhizogenes: ArA4, Ar318 and LBA 9402. Although all
the three bacterial strains induced HRs from the grapevine explants, HR lines obtained
with the strain ArA4 showed the most vigorous growth. The highest resveratrol contents,
2 to 31 times higher than that found in the control roots, were found in the HRs obtained
from internodal explants. The HR cultures originated from cv. Rasha, accession W2 and
accession W16 contained up to 95, 256 and 273 µg/g DW of resveratrol, respectively. The
elicitation with MeJa or sodium acetate caused approximately a twofold higher production
of the stilbenoid and enhanced release of the product into the culture medium [207]

Ectopic expression of the genes-encoding enzymes and transcription factors engaged
in stilbenoid biosynthesis and metabolism in the HRs of tobacco led to the production
of biologically active stilbenoids. V. vinifera resveratrol-O-methyltransferase (VvROMT)
and human cytochrome P450 hydroxylase 1B1 (HsCYP1B1) catalyze methylation of trans-
resveratrol to trans-pterostilbene and hydroxylation of trans-resveratrol to trans-piceatannol.
Tobacco leaf segments were inoculated with R. rhizogenes harboring the pRiA4 plasmid
alone or pRiA4 with the binary plant expression vector pK7WG2_CYP1B1 or pJCN52_ROMT
for the HsCYP1B1 or VvROMT genes, respectively. The transgenic HRs expressing CYP1B1
converted exogenously added trans-resveratrol into piceatannol, especially when treated
with methyl-β-cyclodextrin as the permeabilizing agent. Biotransformation rates were:
0.4% in wildtype HRs and 1.4–1.6% in the transgenic HRs lines. In contrast to the trans-
genic HRs, piceid was the major biotransformation product in the wild-type HRs. The
yields of piceatannol from the transgenic HR cultures carrying CYP1B1 and wild type
HRs were 1888 µg/L and 819 µg/L, respectively. Addition of cyclodextrin to the medium
may enhance the productivity up to 7 mg/L. Transgenic HRs carrying VvROMT metabo-
lized exogenously added trans-resveratrol into trans-pterostilbene, piceid and piceatannol.
Pterostilbene was found both in the roots and the culture medium. Maximum accumulation
of the compound (2.6 µg/L) was observed 24 h after resveratrol feeding [208]. Tobacco
HRs carrying VvSTS (gene for stilbene synthase from V. vinifera) and AtMYB12 (gene for
the transcription factor from Arabidopsis thaliana) produced over 450 µg/L stilbenoids and
more flavonoids than the wild type HRs [8].

The R. rhizogenes-transformed roots of pigeon pea occurred to be an excellent source
of cajaninstilbene acid, superior to seeds, leaves and roots of the parent plant [209]. The
elicitation of HRs by 10 h of exposure to UV-B radiation resulted in over a twofold in-
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creased accumulation of cajaninstilbene acid (up to 6.6 mg/g DW). The radiation induced
oxidative stress and caused damage to the roots, which, in turn, enhanced the production
of signal molecule, salicylic acid, implicated in the regulation of the secondary metabolism
biosynthetic pathways [134].

The HRs of pigeon pea induced by infection with R. rhizogenes strain K599 showed
good biomass increase (17.3 g DW/L was obtained in 18 days of culture). The roots were
elicited using the method described earlier for peanut HRs [194]. In 12-day-old cultures,
the standard nutrient medium was replaced by the elicitation medium containing 125 µM
MeJA, 18 g/L methyl-β-cyclodextrin, 3 mM H2O2 and 1 mM MgCl2 and the HRs were
cultivated in the dark for another 7 days. After 144 h of treatment, the total content of
cajaninstilbene acid in the culture reached over 8 mg/g DW. Almost 96% of the compound
was secreted into the medium; thus, 7.7 mg/g DW of the product was extracted from the
medium and the remaining 0.35 mg/g DW originated from the biomass. In the control
roots, content of cajaninstilbene acid was 0.03 mg/g DW and the product could not be
detected in the extract from the nutrient medium [210].

2.3. Hydrolyzable Tannins

Plants that accumulate considerable amounts of hydrolysable tannins are traditionally
used as anti-diarrhea medicines. They are also used topically as hemostatic, antiphlogistic
and astringent agents. Hydrolyzable tannins (for structures, see Figure 8) are components
of numerous food plants including the strawberry, raspberry, pomegranate and walnuts,
but their bioavailability is poor. When ingested, hydrolyzable tannins are metabolized
by gut microbiota to urolithins that are much better absorbed and are found in plasma
mostly as glucuronides. The tannin metabolites have gained much interest as potential
anticancer agents and estrogen receptor modulators of potential use in cardiovascular
disorders, osteoporosis and several hormone-dependent diseases [211–213]. Hydrolyzable
tannins production in the HRs has been studied chiefly to elucidate the regulation of the
biosynthesis of these compounds.

Sanguisorba officinalis L. (Rosaceae) has been traditionally used as hemostatic and
wound healing medicine. The HRs of the plant were obtained by inoculation with R. rhizo-
genes strain A4. Five phenolic compounds were identified in the investigated roots: gallic
acid, 1,2,3,6-tetra-O-galloyl-β-D-glucose, 1,2,3,4,6-penta-O-galloyl-β-D-glucose, sanguiin
H-6 and sanguiin H-11. Five lines of the studied HRs preferably synthesized sanguiin
H-6 (0.217–0.569% FW) and one, showing the fastest growth, accumulated mainly 1,2,3,6-
tetra-O-galloyl-β-D-glucose (0.322% FW) and sanguiin H-11 (0.221% FW). An intact plant
contained 0.206% FW sanguiin H-6. The contents of hydrolysable tannins in the HRs were
simililar to those found in adventitious roots; however, the biomass of HRs obtained in
one four-week growth cycle was up to six times larger than that produced by adventitious
roots [214].

The HRs of Geranium thunbergii Siebold ex Lindl. & Paxt. (Geraniaceae), transformed
with R. rhizogenes strain A4 synthesized: gallic acid, ellagic acid, (+)-catechin, β-glucogallin
(1-O-galloyl-β-D-glucopyranoside), 1,6-di-O-galloyl-β-D-glucose, 1,2,3,6-tetra-O-galloyl-
β-D-glucose, 1,2,3,4,6-penta-O-galloyl-β-D-glucose, corilagin and geraniin. The HRs grown
in 1

2 MS medium accumulated mainly 1,2,3,4,6-penta-O-galloyl-β-D-glucose whereas Gam-
borg’s B5 medium favored biosynthesis of geraniin [215]. Phyllanthus niruri L. (Phyllan-
thaceae) partly owes its medicinal properties to a high content of corilagin. The HRs of
P. niruri produced neither corilagin nor geraniin but yielded several phenolic metabolites in-
cluding gallic acid, (−)-epicatechin 3-O-gallate, (+)-gallocatechin and (−)-epigallocatechin
3-O-gallate [216]. Fragaria ananassa cv. Reikou infected by R. rhizogenes strain ATCC 15834
developed hairy roots that produced pedunculagin (2,3,4,6-tetra-O-galloyl-β-D-glucose).
The tannin was present in the HRs grown in MS medium in the initial phase of growth
(0.6% DW) and then its content declined (0.4% in 3-week culture). After 5 weeks of culture
pedunculagin was not detected in the HRs. Two other nutrient media used in the study
were less favorable for both biomass and pedunculagin production [35].
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Lawsonia inermis L. (Lythraceae) is a source of henna, a pigment used to dye hair, skin
and fingernails. A naphthoquinone, lawsone, is the compound responsible for dyeing
properties as well as for bacteriostatic activity. Except for lawsone, gallic acid, flavonoids,
coumarins and xanthones are known metabolites of the plant. The HRs of L. inermis were
derived from the explants infected with R. rhizogenes strain NCIB 8196. The optimum
growth of roots was achieved using MS medium. The HRs grown in the dark accumu-
lated 1,2,3,6-tetra-O-galloyl-β-D-glucose (0.43% DW), 1,2,3,4,6-penta-O-galloyl-β-D-glucose
(3.04% DW) and (+)-catechin. Normal roots contained up to 0.5% galloylglucoses, but up to
60 times more (+)-catechin [217].

Punica granatum L. (Lythraceae) cv. Wonderful was used to establish pomegranate
HR culture. Three wild-type R. rhizogenes strains: MSU440, ATCC 15834 and A4, were
transformed with a binary vector containing YFP (yellow fluorescent protein). The modified
bacterial strains were used to initiate HRs. Punicalagin α and β were produced by the HRs
with better efficiency than that achieved by in vitro cultured normal roots. The roots of the
wild-type seedlings, however, contained more punicalagins.

The glycosylation of gallic acid to β-glucogallin is the first step in punicalagin biosyn-
thesis. The reaction is catalyzed by a specific UDP-glycosyltransferase (UGT). Transcrip-
tomic analysis of pomegranate fruit peel (rich in tannins) allowed for the identification of
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32 putative UGTs. By comparison with the results of transcript level analyses made for
other tissues, two candidate genes were identified (PgUGT1 and PgUGT13) that correlated
with the tissue-specific abundance of tannins. To verify whether the two genes as well
as the genes for the other UGTs are expressed in the HRs, RT-PCR was performed using
RNA extracted from fruit peel, wild type roots and HRs. Expression of 26 putative UGTs
was confirmed in all of the investigated tissue types [218]. Four candidate UGTs from
pomegranate were cloned and biochemically characterized of which only two (UGT84A23
and UGT84A24) catalyzed formation of β-glucogallin. The overexpression or knockdown
of the gene encoding one of the two UGTs in the HRs did not cause any obvious alterations
in punicalagin accumulation. Double-knockdown HR lines accumulated less punicalagin
but started to synthesize galloyl glucosides (ether-linked gallic acid and glucose). The
new metabolites of the double-knockdown HR lines were gallic acid 3-O-glucopyranoside,
gallic acid 4-O-glucopyranoside and digalloyl glucose conjugate. The results suggested
that in the HRs, gallic acid may be utilized by an unknown UGTs for glucoside forma-
tion [219]. In a search for the UGTs engaged in the synthesis of gallic acid glycosides
11 candidate UGTs were identified by the comparison of UGTs expression in control root
lines and double knockdown lines of pomegranate HRs. Of the 11 candidate UGTs, only
one was active toward gallic acid and catalyzed the formation of a single product: gallic
acid 4-O-glucoside [220].

3. Conclusions

Table 1 summarizes the most spectacular achievements of the research on highly
productive hairy root cultures or genetically modified plants containing polyphenolic an-
tioxidants from the flavonoid, stilbenoid and hydrolyzable tannin group. The high yields
of the polyphenolic products were obtained using procedures like optimization of culture
conditions, selection of the plant material and bacterial strain used to initiate the HRs, elicita-
tion, permeabilization of plant tissue, adding the enzyme cofactors and genetic engineering
(overexpression, heterologous expression or silencing of genes-encoding the regulatory
transcription factors and biosynthetic enzymes). It should be considered, however, that high
contents of polyphenols in the HRs may be not accompanied by the vigorous root growth.
This can hamper applications of the cultures that accumulate products in the cells.

Table 1. Hairy root cultures that produced high yields of antioxidative natural products.

Plant Species Hairy Roots Natural Product Maximum Content
in the Biomass Lit.

Fragaria x ananassa Duch cv.
Reikou Wild type Procyanidin B-3 8 mg/g DW [35]

Litchi chinensis Sonn. Overexpressing LcMYB1 Anthocyanins
Proanthocyanidins

3 mg/g FW
15 mg/g FW [48]

Vitis vinifera L. Overexpressing VvMybP1,
VvMybP2 Proanthocyanidins 8 mg/g FW [38]

Fagopyrum tataricum (L.)
Moench. cv. Hokkai T10 Wild type Cyanidin 3-O-glucoside

Cyanidin 3-O-rutinoside
0.8 mg/g DW
2.4 mg/g DW [52]

Daucus carota L. ssp. sativus
var. atrorubens Alef

Wild type, treated with
ethephon Anthocyanins 8 mg/g DW [9]

Antirrhinum majus L. Overexpressing AmRosea1 Anthocyanins 2 mg/g FW [58]

Fagopyrum esculentum
Moench Wild type (−)-Epicatechin 3-O-gallate

(+)-Catechin
10 mg/g DW
8 mg/g DW [61]
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Table 1. Cont.

Plant Species Hairy Roots Natural Product Maximum Content
in the Biomass Lit.

Fagopyrum tataricum (L.)
Moench cv. Hokkai T10 Wild type Rutin 59 mg/g DW [34]

Fagopyrum tataricum Overexpressing FtUGT73BE5 Rutin Up to 80 mg/g DW [65]

Polygonum multiflorum
Thunb.

Wild type, elicited with MJ
(50 µM) Quercetin Up to 14 mg/g DW [74]

Isatis tinctoria L. Wild type, exposed to UV-B

Rutin
Quercetin

Isorhamnetin
Kaempferol

Up to 1.5 mg/g DW
Up to 1.7 mg/g DW
Up to 2.0 mg/g DW
Up to 2.2 mg/g DW

[84]

Ligularia fischeri (Ledeb.)
Turcz. Wild type Myricetin 2.4 mg/g DW [86]

Scutellaria baicalensis Georgi Wild type
Baicalein derivatives
Wogonin derivatives

Oroxylin A derivatives

68.7 mg/g DW
15.1 mg/g DW
11.9 mg/g DW

[96]

Scutellaria baicalensis Georgi Overexpressing SbPAL
Baicalin
Baicalein
Wogonin

136 mg/g DW
29 mg/g DW
6.7 mg/g DW

[102]

Scutellaria lateriflora L. Wild type
Baicalin

Wogonoside
Wogonin

14.5 mg/g DW
12.0 mg/g DW
11.5 mg/g DW

[111]

Saussurea medusa Maxim Wild type Jaceosidin 6.1 mg/g DW [126]

Saussurea involucrata Kar. et
Kir. ex Maxim Overexpressing SmCHI Apigenin 2.6 mg/g DW [127]

Erigeron breviscapus (Vaniot)
Hand.-Mazz. Overexpressing EbCHI Scutellarin 2.2 mg/g DW [128]

Glycine max (L.) Merr. Overexpressing GmMYB205 Daidzein derivative 6.7 mg/g DW [141]

Glycine max (L.) Merr. Overexpressing GmMaT2 Malonyldaidzin 6.3 mg/g FW [145]

Glycine max (L.) Merr. Wild type, elicited with MeJa
(100 µM) Daidzin 33.9 mg/g DW [146]

Trifolium pratense L. Wild type

Daidzein
Genistein

Formononetin
Biochanin A

8.6 mg/g DW
2.5 mg/g DW

15.2 mg/g DW
1.1 mg/g DW

[149]

Astragalus membranaceus
(Fisch.) Bunge

Wild type, co-cultivated with
the immobilized Aspergillus

niger

Calycosin
Formononetin

0.7 mg/g DW
1.1 mg/g DW [155]

Psoralea lachnostachys
F. Muell Wild type Daidzein

Coumestrol
10.2 mg/g DW
0.5 mg/g DW [158]

Psoralea corylifolia L. Wild type Daidzin Over 10 mg/g DW [159]

Pueraria candollei Wall.
Ex Benth Wild type Daidzin

Puerarin
Up to 29.9 mg/g DW
Up to 3.4 mg/g DW [164]

Ononis spinosa L. Wild type
Medicarpin glucoside
Sativanone glucoside

Pseudobaptigenin glucoside

22.3–28.9 mg/g DW
5.6–11.4 mg/g DW
1.2–2.0 mg/g DW

[170]

Arachis hypogaea L.
cv. Hull

Wild type, elicited with MeJa
(100 µM) and cyclodextrin

(9 g/L)

Resveratrol
Piceatannol
Arachidin-1
Arachidin-3

5.3 mg/g DW
0.3 mg/g DW

4.0 mg/g DW (56 mg/L)
17.1 mg/g DW (148 mg/L)

[190]
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Table 1. Cont.

Plant Species Hairy Roots Natural Product Maximum Content
in the Biomass Lit.

Arachis hypogaea L.
cv. Hull

Wild type, elicited with MeJa
(125 µM), cyclodextrin (18
g/L), H2O2 (3 mM), and

MgCl2 (1 mM)

Arachidin-1
Arachidin-2
Arachidin-3
Arachidin-5

227.4 mg/L
83.1 mg/L
370.6 mg/L
68.4 mg/L

[194]

Arachis hypogaea L.
cv. Kalasin2

Wild type, elicited with
paraquat (500 µM), MeJa

(100 µM) and cyclodextrin
(6.87 mM)

Resveratrol
Arachidin-1
Arachidin-3

1.3 mg/g DW
180.1 mg/g DW
444.2 mg/g DW

[197]

Arachis hypogaea L.
cv. Tainan9

Wild type, elicited with
paraquat (500 µM), MeJa

(100 µM) and cyclodextrin
(6.87 mM)

Arachidin-1
Arachidin-3

1700 mg/L
4800 mg/L [199]

Vitis rotundifolia Michx. Wild type, elicited with MeJa
(100 µM)

Piceid
ε-Viniferin

0.34 mg/g DW
0.38 mg/g DW [203]

Vitis rotundifolia Michx Wild type, elicited with
H2O2 (10 mM) ε-Viniferin 0.43 mg/g DW [203]

Vitis vinifera Pinot Noir cv.
PN40024

Wild type, elicited with MeJa
(100 µM) Total stilbenoids 6.98 mg/g DW [204]

Vitis vinifera Pinot Noir cv.
PN40024

Wild type, elicited with MeJa
(100 µM) and cyclodextrin

(50 mM)
Total stilbenoids 165 mg/L (medium)

6.4 mg/g DW [204]

Vitis vinifera subsp.
sylvestris acc. W16 Wild type Resveratrol 0.27 mg/g DW [207]

Cajanus cajan (L.) Millsp. Wild type, irradiated with
UV-B Cajaninstilbene acid Up to 6.6 mg/g DW [134]

Cajanus cajan (L.) Millsp.

Wild type, elicited with MeJa
(125 µM), cyclodextrin (18
g/L), H2O2 (3 mM), and

MgCl2 (1 mM)

Cajaninstilbene acid Over 8 mg/g DW [210]

HR cultures provide a valuable tool for the rapid characterization of regulatory mecha-
nisms in plant polyphenol biosynthesis, and elucidation of the roles played by the particular
biosynthetic enzymes or transcription factors. The use of HRs has led to the identification
and description of several enzymes implicated in polyphenol biosynthesis. Nowadays,
it seems that HR culture is primarily a useful tool in the genetic engineering of plants.
The implementation of the industrial process using HRs to produce antioxidant natural
products looks like a distant prospect.
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Abbreviations

4CL 4-coumarate:CoA ligase (4-coumaroyl CoA ligase)
ANR anthocyanidin reductase
ANS anthocyanidin synthase
BAP 6-benzylaminopurine
bHLH basic helix-loop-helix
BHT butylohydroxytoluen
C4H cinnamate 4-hydroxylase
CHI chalcone isomerase
CHS chalcone synthase
DFR dihydroflavonol 4-reductase
DW dry weight
F3H flavone 3-hydroxylase
F3βOH flavanone 3-β-hydroxylase
F6H flavone 6-hydroxylase
F8H flavone 8-hydroxylase
FNS flavone synthase
FW fresh weight
GUS β-glucuronidase
HPLC-PAD-
ESI-MSn

high-performance liquid chromatography with photodi-
ode detection, electrospray ionization, and multi-stage
mass spectrometry

HR hairy roots
IBA indole-3-butyric acid
IF7Mat isoflavone 7-O-glucoside-6”-O-malonyltransferase
IFD isoflavone dehydratase
IFS isoflavone synthase
IOMT isoflavone-O-methyltransferase
LAR leucoanthocyanidin reductase
LC-MS/MS liquid chromatography with tandem mass spectrometry
MaT malonyl CoA:flavonoid acyltransferase
MeJa methyl jasmonate
MS Murashige and Skoog
PA proanthocyanidin
PAL phenylalanine ammonia lyase
PAP1 production of anthocyanin pigment 1 gene
PQ paraquat
RS resveratrol synthase
SA salicylic acid
SH Schenk and Hildebrandt
STS stilbene synthase
TOF-MS time-of-flight mass spectroscopy
TT2 transparent testa 2 transcription factor
UBGT UDP-glucose:baicalein 7-O-glucosyltransferase
UGT UDP-glucosyltransferase
UHPLC-PDA ultra-high-performance liquid chromatography with pho-

todiode detection
YE yeast extract
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