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Abstract: The Brière equation (BE) is widely used to describe the effect of temperature on the
development rate of insects, and it can produce both symmetrical and asymmetrical bell-shaped
curves. Because of its elasticity in curve fitting, the integrated form of BE has been recommended for
use as a sigmoid growth equation to describe the increase in plant biomass with time. However, the
start time of growth predicted by the sigmoid growth equation based on the BE is not completely
comparable to empirical crop growth data. In the present study, we modified the BE by adding an
additional parameter to further increase its elasticity for data fitting. We termed this new equation
the modified Brière equation (MBE). Data for the actual height and biomass of 15 species of plants
(with two cultivars for one species) were fit with the sigmoid growth equations based on both the
BE and MBE assuming that the growth start time was zero for both. The goodness of fit of the BE
and MBE sigmoid growth equations were compared based on their root-mean-square errors and the
corresponding absolute percentage error between them when fit to these data. For most species, we
found that the MBE sigmoid growth equation achieved a better goodness of fit than the BE sigmoid
growth equation. This work provides a useful tool for quantifying the ontogenetic or population
growth of plants.

Keywords: axial symmetry; curve fitting; ontogenetic growth; sigmoid curve; symmetry

1. Introduction

The ontogenetic growth trajectories of animals and plants usually exhibit a sigmoid
pattern, and many mathematical equations have been proposed to describe the changes in
growth data (e.g., biomass, diameter at breast height, height, length, etc.) with time [1–6].
Among these, the logistic equation is perhaps the most commonly used [5–8]. The three-
parameter logistic equation assumes that the growth rate versus time curve is perfectly
symmetrical but is not suited to all empirical datasets [9]. Thus, some equations predicting
asymmetrical (skewed) growth rate curves have been used instead to reflect the growth
trajectories of animals and plants [3,9,10].

In thermal biology, the development (or growth) rate (i.e., the proportion or amount
of development or growth, respectively, completed per unit time) of organisms has been
demonstrated to be an asymmetrical (usually left-skewed), bell-shaped function of tem-
perature [11,12]. There are many different mathematical models that can produce skewed
and symmetrical development (or growth) rate versus temperature curves [13,14]. Among
these temperature-dependent development rate models, the equation proposed by Brière
et al. [15] is relatively simple, yet it can produce an asymmetrical curve, includes bio-
logically meaningful parameters, and is able to describe the effect of temperature on the
development rate of many organisms:

r(T) = ax(T − Tmin)(Tmax − T)1/m, (1)
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where r(T) represents the development rate at temperature T; Tmin and Tmax represent
the lower and upper threshold temperatures of development, respectively, and r(T) = 0
when T < Tmin or T > Tmax; and a and m are parameters to be estimated. Brière et al. [15]
suggested that a simplified version of Equation (1) could be used by fixing m = 2; this
simplified equation, referred to as the Brière-1 equation (versus the original Brière equation,
or Brière-2 equation), is not considered further herein. All subsequent references to the
Brière equation hereinafter refer to the original Brière equation, or Brière-2 equation. Up to
25 May 2022, the original paper by Brière et al. [15] has been cited 745 times according to
Google Scholar.

Yin et al. [3] introduced a new sigmoid growth equation using the integrated form
of the beta equation while replacing temperature with time as the independent variable,
and it has been shown to provide a good fit to the actual growth data of plants [3,9,16,17].
Similarly, Cao et al. [18] presented a sigmoid growth equation based on the Brière equation.
However, although the new growth equation introduced by Cao et al. [18] could fit the
growth data of some crops very well, the start times of growth predicted by it were not
reliable as the predicted start time seriously deviated from the actual sowing time [18].
Further, when the start time is manually set to zero, the prediction errors for the sigmoid
equation proposed by Cao et al. [18] relative to empirical data can be quite large.

In this study, we propose a modification of the Brière equation by adding an extra
parameter to render the new equation more flexible in curve fitting and reduce the de-
pendency of the curve fitting on the start time of growth. We used empirical data from
15 species of plants (with two cultivars for one species) to test the validity of a new sigmoid
growth equation based on this modified Brière equation (MBE) and compared the goodness
of fit of the sigmoid growth equation based on the MBE to that based on the original Brière
equation (BE).

2. Materials and Methods
2.1. Plant Materials

The seeds of 11 species of common agricultural crops (with two cultivars for one
species, 12 crops in total), including sunflower (Helianthus annuus), peanut (Arachis hy-
pogaea), black soybean (Glycine max ‘Kuromame’), soybean (Glycine max), kidney bean
(Phaseolus vulgaris), garden pea (Pisum sativum), adzuki bean (Vigna angularis), mung bean
(Vigna radiata), cotton (Gossypium herbaceum), sweet sorghum (Sorghum bicolor), corn (Zea
mays), and Mexican corn (Zea mexicana), in northern China were sown in a field at Jinan,
China on 27 June 2011. We then randomly sampled 20 individuals from each species (or
each cultivar) to measure their dry mass on each of 15 subsequent investigation dates from
11 July to 20 September 2011 once every five days on average. In total, 3000 individual
samples were collected. All individuals were sampled between 7:00 a.m. to 8:00 a.m., and
the roots were washed with running water to remove soil. For small crops, whole plants
were dried for 24–48 h at 60 ◦C. However, for large crops, such as sunflower, sweet sorghum,
corn, and Mexican corn, whole plants were dried for 72 h at 80 ◦C. Here, we defined the
crops with mean whole-plant dry mass ≥ 150 g and mean aboveground height ≥ 1.5 m on
the last investigation date (i.e., 85 days from the sowing time) as large crops and those with
mean whole-plant dry mass < 150 g and mean aboveground height < 1.5 m at this time as
small crops. Samples were weighed after drying to obtain their dry mass. Shi et al. [5] can
be consulted for further details of the sampling procedures.

We also used the height data from four species of bamboo (Phyllostachys iridescens,
Phyllostachys mannii, Pleioblastus maculatus, and Sinobambusa tootsik) previously collected at
different investigation dates [9]. The bamboo shoots were grown at the Nanjing Forestry
University campus in the spring of 2016. We defined the time when a bamboo shoot tip
was first observed at ground level as time = 1, and the previous day as time = 0. We
measured the height of each shoot at 12:00 p.m. every day at the early growth stage, and
then measured the height at 12:00 p.m. once every three days when the height changed
more slowly.
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The above datasets were obtained from the ‘crops’ and ‘shoots’ datasets, respectively,
included in the R (version 4.2.0) [19] package ‘IPEC’ (version 1.0.3) [20].

2.2. Methods

The original Brière equation was proposed to describe the effect of temperature on the
development rate of many organisms, especially arthropods [13,15,21] (see Equation (1)).
After replacing temperature T with time x, and the development rate r(T) with the growth
rate f (x) in the original Brière equation, we have:

f (x) = ax(x− xmin)(xmax − x)1/m, (2)

where f (x) represents the growth rate at time x; xmin and xmax represent the start and end
times of growth, respectively, and f (x) = 0 when x < xmin or x > xmax; and a and m are
parameters to be estimated.

Herein, we propose including an additional parameter to be estimated, δ, in Equation (2)
to render it more elastic in curve fitting as follows:

f (x) = a
∣∣∣x(x− xmin)(xmax − x)1/m

∣∣∣δ. (3)

We refer to Equations (2) and (3) as the BE and MBE for convenience hereinafter. The
integrated forms of the BE and MBE were used to fit the dry mass versus time data of crops
and those of height versus time data of bamboo shoots. Figure 1A illustrates the influence
of the new δ parameter on the curve shapes plotted by the modified BE.
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Figure 1. Influence of the new additional parameter, δ, on the shape of the curves plotting the
modified Brière equation (A), and on those plotting the sigmoid equation based on the integrated
form of the modified Brière equation (B). Here, a = 0.01, m = 3, xmin = 0, and xmax = 35. In this example,
no specific units are used; the x-axis represents a generic time variable (hours, days, weeks, etc.) and
the y-axes generic (A) growth rate (cm day−1, g h−1, etc.) and growth (cm, g, etc.) metrics.

After integrating the BE and MBE, two sigmoid growth equations are obtained, i.e.,

y =


0 x < xmin∫ x

xmin
f (x) dx x ∈ [xmin, xmax]

0 x > xmax

. (4)

Here, we obtained two sigmoid growth equations when using Equations (2) and (3) to
represent f (x), respectively. There is an explicit mathematical expression for the sigmoid
equation based on the integrated form of BE [3,17], which is referred to as the BE sigmoid
equation hereinafter for convenience. However, there is no explicit mathematical form for
the integrated form of MBE. Thus, we calculated the numerical integral of MBE, which
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we refer to as the MBE sigmoid equation for convenience. Figure 1B illustrates the curves
produced by the MBE sigmoid equation with different δ values.

The Nelder–Mead optimization method [22] was used to fit the above equations to
each plant dataset by minimizing the residual sum of squares (RSS) between observed and
predicted y values. For the empirical crop biomass and bamboo shoot height data we used,
the start time of growth is actually known. Thus, we fixed the starting time to be zero, in
which case Equation (3) had four parameters and Equation (2) had three parameters. We
then calculated the root-mean-square error (RMSE) for each dataset:

RMSE =
√

RSS/n, (5)

where n represents the number of data points. To examine whether the additional parameter
in Equation (3) was warranted relative to using the simpler Equation (2), we used the
percentage error of the absolute difference (APE, in %) between the RMSE of the BE
sigmoid equation and that of the MBE sigmoid equation [23,24] as follows:

APE =
|RMSEBE − RMSEMBE|

RMSEBE
× 100%. (6)

As a rule of thumb, when APE > 5%, the introduction of the additional parameter (δ)
in Equation (3) versus (2) is justified; otherwise, it is not worthwhile.

The whole-plant dry mass tends to be proportional to the whole-plant fresh mass [5,25]
if there is no water loss. In that case, if the sigmoid equation based on the integrated form
of MBE can fit the dry mass data well, it should also be applicable to fresh mass data. The
difference here would only affect the numerical value of the parameter a in Equation (3).
However, given the water loss during crop sampling, the dry mass is more reliable than
the fresh mass. Thus, for the crops, we used the dry mass rather than the fresh mass to test
the validities of the BE and MBE sigmoid equations.

The package ‘biogeom’ (version 1.0.5) [26,27] was used in R (version 4.2.0) [19] to
estimate model parameters, and R (version 4.2.0) was also used to carry out all other
calculations.

3. Results

For each of the crop species tested except kidney bean (11/12 datasets), the MBE
sigmoid equation had a lower RMSE than the BE sigmoid equation, and the APE was
greater than 5% (Figure 2). This confirmed the validity of the MBE sigmoid equation and
its superiority relative to the BE sigmoid equation. Because of the lack of biomass data at
the mature stages of sunflower and peanut, both sigmoid functions overestimated the end
time of growth, leading the predicted curves to exhibit exponential growth at the early and
middle growth stages (Figure 2A,B).

For each of the four species of bamboo considered, the MBE sigmoid equation also
had a lower RMSE than the BE sigmoid equation, and the APE was larger than 5% for three
of the four species (Figure 3). For Pleioblastus maculatus, the APE was equal to 4.68%, or
approximately 5%. These results demonstrate that the BE and MBE sigmoid equations are
both suited to representing data for growth in terms of height for bamboo shoots, at least
provided that the initial time at which growth starts (i.e., x = 0) can be accurately known.
Nevertheless, the MBE sigmoid equation is still better.

The estimated values of the parameters of the BE sigmoid equation and the MBE
sigmoid equation for the 15 species of plants (with two cultivars for one species) tested are
listed in Tables S1 and S2 in the online Supplementary Materials.
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Figure 2. Results of fitting two sigmoid functions (based on the BE and MBE) to the whole-plant dry
mass versus time data of 11 crop species (with two cultivars for one crop species). The small open
circles represent the observed dry mass at different times after the sowing date; the red dashed curves
represent the dry mass values predicted by the BE sigmoid equation; the blue solid curves represent
the dry mass values predicted by the MBE sigmoid equation. RMSE represents the root-mean-square
error between the observed and predicted y values; APE represents the percentage error of the
absolute difference between the two equations’ RMSE values; n represents the sample size. Panels
(A–L) represent different crops.
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Figure 3. Results of fitting two sigmoid functions (based on the BE and MBE) to the shoot height
versus time data of four species of bamboo. The small open circles represent the observed shoot
height at different times (days) after the date when the shoot tip first emerged from the soil; the
red dashed curves represent the height values predicted by the BE sigmoid equation; the blue solid
curves represent the height values predicted by the MBE sigmoid equation. RMSE represents the
root-mean-square error between the observed and predicted y values; APE represents the absolute
percent error difference between the two equations’ RMSE values; n represents the sample size.
Panels (A–D) represent different bamboo species.

4. Discussion
4.1. Elasticity in Curve Fitting of the Two Sigmoid Equations

The inclusion of an additional parameter, δ, in the MBE greatly increased the elasticity
of the MBE sigmoid equation in curve fitting; i.e., it increased the range of sigmoid curves
with different curvatures that can be fit relative to the BE sigmoid equation (Figure 1).
The larger the numerical value of δ is, the greater the curvature of the line will be that is
generated by the MBE sigmoid equation. For 14 of the 16 tested datasets, the APE values
were greater than 5%, which indicates that the increased elasticity in curve fitting achieved
by the additional parameter in the MBE sigmoid equation outweighed the cost of the
model’s increased complexity [28]. In fact, the elasticities of the two sigmoid equations
in curve fitting mainly depend on the abilities of the BE and MBE to accurately describe
growth rates. However, it is more difficult to directly measure the growth rate per unit time
in practice than to measure accumulated biomass or height after some time interval has
elapsed. Although Cao et al. [18] showed that the BE sigmoid growth function achieved a
good fit to the dry mass data of six of the twelve datasets of crops used herein, the estimated
growth start times were later than the actual sowing time and the times seedings appeared
(see Figure 1 in Ref. [18]). It is apparently reasonable to fix the start time to the sowing
time given that all the seeds were planted on the same day. In our study, the MBE sigmoid
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function achieved a good fit to observations without estimating unreasonable start times,
and it showed good elasticity in curve fitting through changes in the numerical value of the
δ parameter. After all, the xmin parameter of the BE and MBE has an explicit geometrical
and biological meaning, so it is unreasonable to over- or underestimate its numerical value.
An over- or underestimated xmin value can easily mislead the user of such equations to
predict inaccurate growth. On the other hand, the new δ parameter has no clear biological
or geometrical meaning, and it only serves as a constant to be estimated to improve the
flexibility of the equation in curve fitting.

4.2. Why We Did Not Compare the Two Sigmoid Equations with Other Equations

As stated in the Introduction section, there are many temperature-dependent develop-
ment (or growth rate) equations that can produce a skewed curve [9,13,14,21]. Shi et al. [17]
found that the sigmoid equation based on the integral of the beta equation [3] can achieve
better goodness of fit than traditional growth equations, including the exponential and lo-
gistic equations [8], Gompertz equation [29], von Bertalanffy equation [1], and ontogenetic
growth equation [2]. Shi et al. [9] demonstrated that the sigmoid equation based on the
integral of the modified beta equation and that of the modified Lobry–Rosso–Flandrois
(LRF) equation [30,31] can be better-suited to representing the ontogenetic growth data of
animals and plants. However, the mathematical expressions of the BE and MBE are simpler
than those of the beta equation, modified beta equation, LRF equation, and modified LRF
equation (Equations (2) and (3) versus those published in Ref. [9]). In the present study,
we did not compare the BE and MBE sigmoid equations with other sigmoid equations
because we mainly wanted to examine the strengths and drawbacks of the BE and MBE
sigmoid equations and to test whether the latter is better than the former for curve fitting. A
systematic comparison among sigmoid equations is worth carrying out using more datasets
in future studies.

4.3. Reliability of Estimated Parameters in the Two Sigmoid Equations

Although the estimated parameters, especially the start and end times of growth, are
considered to be meaningful for predicting when these time points will occur during the
growth of plants, the reliability of the prediction is largely constrained by whether the
dataset includes a full range of growth data, especially those at the mature stage (i.e., the
asymptotic values of plant biomass or height). If the asymptotic values of plant size at
the mature stage are known, the predicted end time of growth tends to be reliable [6,9,18];
however, if such data are lacking, the predicted end time tends to be overestimated (see
Figure 2A,B,L). To reduce the uncertainty of predictions and the complexity of the model,
we suggest fixing the starting time and allowing the δ parameter to vary. It is more
important to estimate the end time rather than the start time of growth for a crop product or
forest resource management. If the estimated end time of growth is reliable, it can produce
a reliable growth rate curve with which one can predict when plants reach their maximum
growth rate.

4.4. Other Potential Applications of the Modified Brière Equation

Given that the MBE is flexible in fitting a skewed bell-shaped curve, it is potentially
useful to model the profiles of ovate leaves [32]. Shi et al. [32] formed two axially sym-
metrical curves using the modified beta equation (also the modified LRF equation) to
fit the ovate leaf shapes of Neocinnamomum plants (Lauraceae). Given that the MBE can
generate similar skewed curves, the MBE should be similarly useful in describing ovate
leaf shape. Relative to the BE, the MBE is more flexible due to its inclusion of an additional
parameter, δ, as discussed above, and it can thus also fit the actual boundary coordinates of
ovate leaves (Figure 4). Like the original BE, the MBE may also be useful in data-fitting
and modelling of temperature-dependent development and growth rates in animals and
plants [15,21]. While such additional applications of the MBE are beyond the scope of the
present work (and, thus, we do not discuss them in detail here), it will be worthwhile for
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future studies to assess the validity of the MBE in fitting ovate and obovate leaf shapes and
temperature-dependent development rate data.
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Figure 4. Results of fitting the MBE to the boundary coordinates of the leaves of four species of
Neocinnamomum. The gray curves are scanned (actual) leaf perimeters, and the red curves are leaf
perimeters predicted by the MBE. The boundary coordinate data came from the dataset ‘Neocin-
namomum’ in R package ‘biogeom’ (https://cran.r-project.org/web/packages/biogeom/index.html;
accessed on 30 May 2022).

5. Conclusions

A better goodness of fit was obtained with the MBE sigmoid equation for 15 of the 16
datasets of plants than the BE sigmoid equation, and it had the same RMSE as that of the BE
sigmoid equation for the one remaining species. For most datasets (14/16), the percentage
errors of the absolute difference between the RMSE of the MBE sigmoid equation and that
of the BE sigmoid equation were greater than 5%, which indicates that the addition of the δ

parameter to the original Brière equation was worthwhile, improving the validity of the
MBE sigmoid equation in reflecting the actual growth data of plants. In addition, by virtue
of the estimated model parameters, whether the growth curve of a given species is left- or
right-skewed can be evaluated (i.e., based on the derivative of the MBE sigmoid equation),
and, thus, one can use this to predict the time associated with the maximum growth rate.
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