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Abstract: The results of the computational and the physicochemical studies of the encapsulation
of resveratrol with β-cyclodextrin are presented here. At first, the molecular docking experiments
predicted good binding. Several MD simulations and MM-PBSA experiments confirmed the reliable
binding, showing optimal kinetics and energy. As an application, resveratrol inclusion complexes
with β-cyclodextrin were obtained in an aqueous alcohol medium via microwave treatment. The
results of thermographic measurements of the obtained clathrates using a differential scanning
calorimeter are presented, and the obtained activation energy was calculated using the Ozawa–Flynn–
Wall and Friedman methods, as well as nonparametric kinetics. The effect of complexation on the
kinetic parameters of thermal destruction of the β-cyclodextrin–resveratrol inclusion complex was
considered. The morphology of the surface of the obtained clathrate complexes was described using
a scanning electron microscope. The spectral properties of the inclusion complex were characterized
by FT-IR, 1H, and 13C NMR spectroscopic data. The obtained in silico, morphological, thermogravi-
metric, and spectral results confirmed the formation of the resveratrol–β-cyclodextrin complex. The
antioxidant activities of the inclusion complex were determined to be 12.1 µg/mL, compared to
14.3 µg/mL for free resveratrol, indicating an improvement in the bioactivity.

Keywords: cyclodextrins; β-cyclodextrin; vitamin resveratrol; molecular modeling; inclusion
complexes; antioxidant activity; clathrate

1. Introduction

Resveratrol, (Figure 1) is a natural stilbene that is produced by various plants as a
phytoalexin responding to infection or injury [1]. Extracts containing resveratrol have
previously been used in traditional Chinese and Japanese medicine for treating various
diseases [2]. Some studies have provided evidence that resveratrol modulates inflammation
through TLR-4 attenuation [3], and inhibits platelet activation and aggregation [4]. Resver-
atrol showed anticancer effects through targeting the mitochondrial- and p53-signaling-
dependent apoptosis [5], NF-κB and AP-1 [6], and the p53 tumor-suppressor protein [7], in
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addition to several preclinical and clinical trials that indicated the anticancer activities of
resveratrol [8–11]. Resveratrol exhibited activity against bacterial and fungal species that
are major etiological agents in human skin infections [12–15]. However, the effectiveness of
resveratrol preparations in vivo is still limited due to their low bioavailability, which is a
consequence of their low solubility in water and rapid removal from circulation [16]. On the
other hand, resveratrol deserves great attention as a food additive that has antioxidant, and
antimicrobial properties [17–19]. To overcome the poor pharmacokinetics of resveratrol,
some trials have been carried out to encapsulate it with cyclodextrins (CDs) to increase
its bioavailability, solubility, and stability against light, oxygen, and inorganic salts [20,21].
However, there is still a need to search for new methods to improve its solubility, bioavail-
ability, and oxidation resistance. In this investigation, we tried to study the features of the
encapsulation process of resveratrol with β-CD at different ratios (i.e., 1:2 and 1:4), using
various in silico (i.e., modeling, MD simulations, and MM-PBSA) and physicochemical
methods. The in silico results showed accurate binding, with perfect kinetics and energy.
Additionally, the physicochemical studies determined the kinetic characteristics of the
thermal decomposition process, namely, the activation energy and the pre-exponential
multiplier. These parameters were determined based on the Freeman–Carroll, Sharpe–
Wentworth, Ahar, and Coates–Redfern methods, which have good convergence. The
dependence of the reaction rate on the temperature in a nitrogen medium has been studied
by nonparametric kinetics methods.
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Figure 1. Structural formulae of resveratrol contain aromatic rings A and B, β-cyclodextrin, and
inclusion complexes (IC).

2. Results and Discussion
2.1. Molecular Docking Studies
2.1.1. Investigation of Binding Free Energy and Binding Mode

Discovery Studio was employed to investigate the binding pattern of resveratrol with
β-CD. β-CD cavity is O-shaped; it consists of seven glucose units. These units are involved
in a hydrogen bond network between the β-CD and resveratrol.

As shown in Figures 2 and 3, resveratrol exhibited a good binding mode with β-CD,
with a binding score of −23.25 kcal/mol.
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Figure 2. Docked poses of the best-ranked docking score of resveratrol with β-CD (front view): (A) 

resveratrol (sticks) and β-CD (sticks) pointing at β-CD, (B) resveratrol (sticks) and β-CD (sticks) 

pointing at resveratrol, (C) resveratrol (CPK) and β-CD (sticks), (D) resveratrol (sticks) and β-CD 
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Figure 2. Docked poses of the best-ranked docking score of resveratrol with β-CD (front view):
(A) resveratrol (sticks) and β-CD (sticks) pointing at β-CD, (B) resveratrol (sticks) and β-CD
(sticks) pointing at resveratrol, (C) resveratrol (CPK) and β-CD (sticks), (D) resveratrol (sticks)
and β-CD (CPK).
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Figure 3. Docked poses of the best-ranked docking score of resveratrol with β-CD (top view): (A) resver-
atrol (sticks) and β-CD (sticks) pointing at β-CD, (B) resveratrol (sticks) and β-CD (sticks) pointing at
resveratrol, (C) resveratrol (CPK) and β-CD (sticks), (D) resveratrol (sticks) and β-CD (CPK).
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The proposed binding mode of resveratrol with β-CD formed many important interac-
tions. The resorcinol moiety of resveratrol formed three hydrogen bonds with the different
OH groups of the glucose subunits.

As shown in Figures 2 and 3, the resveratrol was incorporated correctly inside the
β-CD. However, one essential drawback emerged, as the size of resveratrol was greater
than the length of β-CD (Figure 2B,C). Consequently, another modeling study of β-CD–
resveratrol complexes was performed using the HyperChem 8.0 program (Hypercube Inc.,
Gainesville, FL, USA) to examine the ability of one β-CD molecule to enclose more than
one resveratrol molecule.

2.1.2. Molecular Modeling of β-CD–Resveratrol Complexes with Different Ratios

The mechanisms of encapsulation of resveratrol with β-CD at different ratios were
studied by molecular modeling. Molecular modeling of β-CD–resveratrol complexes was per-
formed using the HyperChem 8.0 program. The calculation method was AM1. Initially,
the geometry of the objects of study was optimized—the molecular structures of trans-
resveratrol (Etotal = −67,293.92194 kcal/mol, µ = 0.3399 Debye) and cis-resveratrol (Etotal =
−67,295.77961 kcal/mol, µ = 0.6555 Debye), as well as β-CD (Etotal = −405,117.9107 kcal/mol,
µ = 3.283 Debye). It is known from the literature [16] that resveratrol exists in two biologically
active conformations, while in the condensed phase trans-resveratrol is more stable than
cis-resveratrol. The geometric parameters of the optimized structures of the research objects
showed the possibility of the formation of a complex between β-CD and resveratrol molecules.
The spatial “elongation” of the trans-resveratrol molecule does not exclude the possibility of
the formation of complexes with cyclodextrins, with the stoichiometry of both 1:1 and 2:1.

At the next stage, molecular modeling of trans-resveratrol complexes with a β-CD ratio
of 1:1 was implemented. The structures of the optimized complexes are shown in Figure 4.
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The data presented in Figure 4 demonstrate that based on the interaction of trans-
resveratrol with β-CD at a ratio of 1:1, the generation of two types of inclusion complex
is feasible:

- Type I—as a result of the penetration of the A (Figure 4) ring with two hydroxyl groups
of trans-resveratrol into the β-CD cavity;

- Type II—as a result of the penetration of the B (Figure 4) ring with one hydroxyl group
of trans-resveratrol into the β-CD cavity.

Comparison of the total energies that resulted from the generation of these two
types in Figure 4 shows that the formation of the β-CD–resveratrol inclusion complex
by type I at ∆E = 8.925 kcal/mol is thermodynamically more favorable. However, a small
difference in energies implies an equal probability of the formation of complexes of types
I and II. It should also be noted that the dipole moments of the two types of complexes
were practically the same, emphasizing the similarity of their characteristics and stability.
Then, molecular modeling of β-CD–resveratrol inclusion complexes was conducted at a
ratio of 2:1. Molecular models of β-CD–resveratrol complexes obtained after geometric
optimization by the semi-empirical AM1 method at a 2:1 ratio are shown in Figure 5.
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The data presented in Figure 5 show that as a result of the complexation of resveratrol
with two β-cyclodextrin molecules, the molecule of the former was noticeably “stretched”,
while its benzene rings were located at an angle of ~10o to one another. Moreover, the
system of hydrogen bonds in the cyclodextrin molecule could be noted in the β-CD–
resveratrol inclusion complexes. However, the formation of hydrogen bonds between
resveratrol and cyclodextrin molecules was not observed.

It was interesting to observe the change in the total energy after the formation of
the β-CD–resveratrol complex. The complexation energy was estimated for all types of
complexes as the difference between the sum of the total energies of the molecules of the
starting substances and the total energy of the resulting complex, as follows:

∆Ecomplex = (Etotal (cyclodextrin) + Etotal (ligand)) - Etotal (inclusion complex)

The calculated values of the complex formation energies are presented in Table 1.
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Table 1. Calculated values of the complexation energy of the studied inclusion complexes of
β-CD: resveratrol.

Complex
Etotal, kcal/mol

∆Еcomplex, kcal/mol
Initial Substances Complex

Composition 1:1 Type I −472,411.8326 −472,423.6333 11.80066
Composition 1:1 Type II −472,411.8326 −472,414.7083 2.8757

Composition 2:1 −877,529.7433 −877,569.1649 39.42156

It can be seen from the data in Table 1 that the complexation energy of the studied
complexes ranged from 2.87 to 39.421 kcal/mol. It should be noted that the energy of
formation of the 2:1 complex was more than three times higher than for the 1:1 complex.
This suggests that the 2:1 complex is more stable and can be formed more easily. As follows
from the data presented in the table, the initial state of the system lies higher in energy on
the energy curve compared to the resulting inclusion complex (Figure 6).
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The data presented in Table 1 and Figure 6 demonstrate that the difference in the energy
of individual resveratrol and β-CD molecules and the complexes is about 2.87–11.80 kcal/mol.
This excess energy should be released from the system during the formation of the complex,
due to the process of complex formation in the β-CD–resveratrol system.

2.2. Molecular Dynamics Simulations

The dynamic conformational changes of the resveratrol–β-CD complex were inves-
tigated by several MD simulation studies. Initially, RMSD was estimated to expose the
stability of the resveratrol–β-CD complex upon both initial and bonding states over a time
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period of 100 ns. Interestingly, the resveratrol–β-CD complex was stable, exhibiting no
major oscillation until the end of the 100 ns (Figure 7A). Secondly, the flexibility of the
resveratrol–β-CD complex was studied over an atomic resolution employing the RMSF.
The RMSF computation exposed the regions in the target molecule (CD) that fluctuated
after binding. Figure 7B illustrates that the binding of resveratrol makes the β-CD slightly
flexible in 100–120-atom (CD) areas. Additionally, the compactness of the resveratrol–β-
CD was represented by the radius of gyration (Rg). As Figure 7C indicates, the Rg of the
resveratrol–β-CD complex was lower at the end of the 100 ns than at the starting time,
indicating the stability and compactness of the resveratrol–β-CD system. Furthermore,
the interaction between the resveratrol–β-CD complex and the encompassing solvents
was examined by solvent-accessible surface area (SASA) over 100 ns. SASA values are an
essential indicator of the conformational transformations that eventuate after the binding
of components of any complexity. Interestingly, as shown in Figure 7D, the β-CD exhibited
a decrease in its surface area, demonstrating a relatively stable SASA value after 100 ns
of simulation.
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Hydrogen bonds that were included in the resveratrol–β-CD complex were investi-
gated, as they are a very vital factor in the stability of the complex. Figure 7E shows that
the highest number of conformations of the β-CD formed up to three hydrogen bonds
with resveratrol.

2.3. MMPBSA

The precise binding free energy of the resveratrol–β-CD complex was studied during
the last 20 ns of the MD simulation study, employing a 100 ps interval from MD trajecto-
ries, depending on the MM/PBSA method. Furthermore, the MmPbSaStat.py script was
employed to estimate the average binding free energy as well as the standard deviation
and or the standard error of the outputted files from the g_mmpbsa. As demonstrated in
Figure 8, resveratrol displayed binding free energy of −86 KJ/mol with the β-CD.
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Figure 8. MM-PBSA study of the resveratrol–β-CD complex.

The obtained data confirmed the binding of the resveratrol–β-CD complex through
the optimal kinetics, ideal energy, and correct conformational changes.

2.4. Thermographic Measurements

DSC characterization was employed to examine the crystallinity and physical state
of resveratrol in the β-CD complex system through the variation of both temperature
and heat flow at phase transitions [22]. To estimate the decomposition temperature of
β-cyclodextrin inclusion complexes with resveratrol at ratios of 2:1 and 4:1, we performed
a thermogravimetric analysis. In order to obtain reliable kinetic analysis results, according
to the recommendations of the ICTAC Kinetics Committee [23], the decomposition process
was carried out at four different heating rates (Figure 9). The thermoanalytical parameters of
the decomposition of β-cyclodextrin with resveratrol at ratios of 2:1 and 4:1 are represented
by the TG (mass change) and DTG (rate of mass change) curves.
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Figure 9. TG curves of the analysis of β-CD–resveratrol inclusion complexes that were obtained at
ratios of 2:1 (a,b) and 4:1 (c,d) at heating rates from 5 to 12.5 ◦C/min.

According to the experimental data of the thermogravimetric analysis, it can be
seen that the thermal decomposition of the inclusion complexes of β-cyclodextrin with
resveratrol at ratios of 2:1 and 4:1 occurred with slight differences. As follows from the data
in Figure 9a, when the β-CD–resveratrol clathrate was heated (2:1), a noticeable decrease
in mass began at a temperature of ~50 ◦C. This temperature value refers to the release of
water molecules from the inner cavity of the clathrate [24]. In the case of β-CD–resveratrol
(4:1) (Figure 9a,b), the endothermic peak (Tonset = 50 ◦C) associated with water loss was
present, but it was less pronounced. Thermograms (Figure 9a,b) of β-CD–resveratrol
clathrates show characteristic thermal effects occurring at a temperature of 230–380 ◦C for
β-CD–resveratrol complexes (2:1), and at 250–370 ◦C for β-CD–resveratrol complexes (4:1).

A comparative analysis of the data shows that the peak heat absorption caused by
the activation of thermal degradation of β-cyclodextrin was in the range of 290–380 ◦C for
pure β-cyclodextrin, and 230–380 ◦C for β-CD–resveratrol clathrates (Figure 9). These data
indicate a decrease in the thermal stability of cyclodextrin when resveratrol is included
in its cavity. This phenomenon can be considered proof of the formation of stable β-
CD–resveratrol inclusion complexes (2:1, 4:1) and strong intermolecular bonds due to
the formation of van der Waals hydrophobic forces that break down with increasing
temperatures, while the β-CD molecule itself begins to break down at a higher temperatures
(Tonset = 290 ◦C) (Figure 9). Based on this information, the thermal decomposition reactions
and recrystallization changes were as follows:

β-CD-resveratrol ·H2O (s)→ β-CD-resveratrol (s) + H2O (g);

β-CD-resveratrol (s)→ β-CD (s) + resveratrol (s);

β-CD (s)→ CO2 (g) + H2O (g).
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An objective analysis of the process of thermal destruction of β-CD–resveratrol in-
clusion complexes (2:1, 4:1) is possible when comparing the activation energies of the
process, since the activation energy is a reliable criterion by which a direct comparison can
be made. From a large number of conversion methods, we selected the Ozawa–Flynn–Wall
(OFW) [24] and Friedman (FR) methods [25]. The main difference between these methods
and others is that in order to calculate the kinetic parameters, it is not necessary to know
the order of the thermal destruction process beforehand. Calculated data on the thermal
destruction of β-CD–resveratrol clathrates (2:1, 4:1) are presented in Table 2, on the basis of
which logarithmic dependences and lnβ on 1/T were constructed by the OFU method [26]

(Figure 10), and ln
[
βdα

dTα

]
from 1/T according to the Friedman method [24] (Figure 11).

Table 2. Kinetic parameters of the thermal degradation of β-CD–resveratrol clathrates (2:1, 4:1).

Sample EOFW, kJ/mol lnAOFW, c−1 EFR, kJ/mol lnAFR, c−1

β-CD–resveratrol (2:1) 135.03 2.06 × 103 177.65 7.12 × 1020

β-CD–resveratrol (4:1) 131.68 1.08 × 103 173.25 1.65 × 1017
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Figure 10. Logarithmic dependence ln
[
β dα

dTα

]
on 1/T, constructed according to thermogravimetric

analysis: (a) β-CD–resveratrol (2:1) and (b) β-CD–resveratrol (4:1) (Friedman method) at heating
rates from 5 to 12.5 ◦C/min.
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Figure 11. Logarithmic dependence of lnβ on 1/T, constructed according to thermogravimetric
analysis (a) β-CD–resveratrol (2:1) and (b) β-CD–resveratrol (4:1) (Flynn–Ozawa–Wall method) at
heating rates from 5 to 12.5 ◦C/min.

As can be seen from Figures 10 and 11, using various approximations, a wide range of
bioconversion methods can be obtained. The calculation results that we obtained (Table 2
and Figure 12) clearly show the effectiveness of these methods.
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Figure 12. Dependences of activation energy (Ea) on the degree of transformation (α) for (a) β-CD–
resveratrol (2:1) and (b) β-CD–resveratrol (4:1).

The analysis of the dependence of Eα on α shows (Figure 12a) that with an increase in
the degree of transformation, the activation energy value increases from 110 to 130 kJ/mol
in the OFU method, and from 120 to 170 kJ/mol in the FR method. Such a character of the
activation energy values indicates a change in the reaction mechanism as they proceed,
which can be explained by at least two reasons. At the beginning of the process, the value
of Eα = 110 kJ/mol at α = 0.1, which indicates the thermal decomposition of several atomic
layers adjacent to the surface of the solid. With an increase in the degree of transformation
from 0.1 to 0.9, the reaction rate increases rapidly, reaching a maximum value at the inflec-
tion point. Similarly, the thermal degradation of β-CD–resveratrol inclusion complexes
(4:1) occurs (Figure 12b).

For kinetic analysis of the process of thermal destruction of the studied sample, a
nonparametric kinetic (NPK) method was applied as well [27]. Response time experimental
values were found in the matrix, which were expressed as two vectors’ multiplication,
containing the information on k(T) and f (α). This mathematical model is a consequence of
Equation (1):

r = f (α) · k(T) (1)
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The NPK method applies the algorithm of singular value decomposition (SVD) for the
matrix M’s decomposition into two vectors [27]. Matrix M is analyzed as follows:

M = U(diag · S) ·VT (2)

The reaction model g(α) is dependent on the conversion degree, while f (T) is depen-
dent on temperature. Reaction velocity βdα/dTα was explored by different experiments
at several heating rates, β, and was interpolated as a surface in 3D space (βdα/dTα, α, Т)
(Figure 13). This surface was organized as a matrix, where the lines represent the conversion
degrees from α1 to αj, and columns represent temperatures from Ti to Tj. The results of the
kinetic analysis are shown in Figure 13 and Table 3.
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the temperature (T) and the degree of transformation (α) in the air—(a) β-CD–resveratrol (2:1) and
(b) β-CD–resveratrol (4:1).

Table 3. Kinetic parameters of the thermal decomposition of β-CD–resveratrol (2:1, 4:1), calculated
by the method of nonparametric kinetics (NPK).

Sample λ E, kJ/mol lnA, с−1

β-CD–resveratrol (2:1) 5.4 177.43 6.85 × 1016

β-CD–resveratrol (4:1) 5.0 173.24 3.15 × 1015

According to the obtained data of thermogravimetric analysis, all three methods were
satisfactory for calculation E within the required accuracy.

2.5. Morphology of β-CD Particles and the Binary System β-CD–Resveratrol

SEM is an important tool for measuring surface roughness and visualizing the sur-
face texture of components [28]. The morphology of both β-CD particles and the β-CD–
resveratrol binary system was examined using SEM. Figure 14 displays scanning electron
micrographs of the β-CD–resveratrol inclusion complex (2:1). The studied clathrate sam-
ples were previously sprayed with a conductive carbon layer. The images were procured
at accelerating voltages of 3 and 7 kV. The magnification in Figure 14a–c is from 1010 to
7560×, while that in Figure 14d–e is from 931 to 7000×.
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Figure 14. Scanning electron micrographs of β-CD (a–c) and the β-CD–resveratrol (2:1) inclusion
complex (d–f) at various magnifications.

Scanning electron micrographs showed the formation of crystals for inclusion com-
plexes. The obtained images (Figure 14a–c) showed the layered structure of β-cyclodextrin,
while the samples of β-CD–resveratrol (2:1) (d–f) showed a sharp change in the shape and
morphology of the imaged crystals. The crystallization of raw materials was observed,
the layered structure was not visible, and the shape of the crystals was different and was
covered with a film.

2.6. FTIR and 1H NMR Measurements

The combined use of various methods of describing the objects under study, depending
on the physical condition under consideration, currently gives the best results in terms
of model reliability. The infrared spectra of resveratrol, β-CD, and the inclusion complex
β-CD–resveratrol (2:1) are shown in Figure 15. In the FTIR spectra of β-CD and β-CD–
resveratrol, valence bond oscillations of the hydroxyl group O-H had the form of a wide
band, with maxima at 3387 cm−1 and 3391 cm−1, respectively. Infrared absorption of
resveratrol in the range of 1700–450 cm−1 showed three characteristic intense bands at
1610, 1588, and 1378 cm−1, corresponding to the absorption of the aromatic C-C double
bond, the absorption of the olefin C-C bond, and the absorption of C-O, respectively. The
FTIR spectra of inclusion compounds showed changes in the spectral characteristics of the
“guest” molecule—in fact, the intensity of the bands at 1378 cm−1 and 970 cm−1 decreased,
while the bands at 1610 cm−1 and 1588 cm−1 disappeared. These facts may be related to
the formation of inclusion complexes [28,29].
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Figure 15. FTIR spectra of resveratrol (a), β-CD (b) and β-CD–resveratrol (2:1) (с).

The 1H and 13C NMR spectroscopic methods are among the most informative methods
for confirming the formation of inclusion complexes [30]. In the β-CD structure, protons H3
and H5 are located inside a conical cavity—in particular, H3 is located next to a wider edge,
while H5 is located next to a narrower edge, while the remaining protons H1, H2, and H4
are located on the outer surface of the β-CD molecule [29]. This method allows registering
a pronounced chemical shift of protons H3 and H5 in β-CD (∆δ = δ− δ0). They are oriented
inside the cavity of the torus, which is due to the placement of the “guest” molecule in
the hydrophobic cavity of cyclodextrin. In the 1H-NMR spectrum of β-CD–resveratrol
(2:1), the greatest difference in the values of the chemical shift (∆δ, ppm) was characteristic
of the intraspheric protons H3 (∆δ = −0.094) and H5 of β-CD (∆δ = −0.015) (Table 4).
This allowed us to conclude about the formation of an internal (inclusive) complex in
clathrate. A proportional increase in the chemical shift in the 1H-NMR vibrational spectra
was observed with an increase in the concentration of “guest” compounds (resveratrol) due
to a shift in the equilibrium state towards the formation of an inclusion complex. These
conclusions are consistent with the data of the authors [30,31].
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Table 4. 1Н and 13C NMR chemical shift values for β-CD in the absence and the presence of β-CD
(molar ratio 2:1).

Proton
δ0, ppm (β-CD) δ, ppm (β-CD: Resveratrol) ∆δ (δ − δ0), ppm

δ (1Н) δ (13C) δ (1Н) δ (13C) δ (1Н) δ (13C)

H-1 4.780 102.416 4.770 102.493 −0.010 0.076
H-2 3.312 72.853 3.268 72.974 −0.044 0.121
H-3 3.452 73.514 3.358 73.608 −0.094 0.094
H-4 3.283 82.021 3.267 82.125 −0.016 0.104
H-5 3.330 72.493 3.315 72.595 −0.015 0.102
H-6 3.58 60.408 3.57 60.492 −0.017 0.084

2.7. Antioxidant Properties of Resveratrol and β-CD–Resveratrol (2:1)

Table 5 shows the antioxidant properties of resveratrol and β-CD–resveratrol. It was
noted that resveratrol, as along with its inclusion complex (IC), has very strong antioxidant
activity, which is consistent with the data previously described in [32]. The ability to elimi-
nate the DPPH radical in the inclusion complex was somewhat reduced after resveratrol
was encapsulated by β-CD. A slight decrease in the IC50 in β-CD–resveratrol (2:1) indicates
the enhancement in the antioxidant activity. All reported data were repeated three times
(Table 5). Thus, the formed IC retained the antioxidant activity of resveratrol, meaning that
the complexation increased the antioxidant activity and, accordingly, can potentially be
used in the food industry to improve the shelf life of products.

Table 5. Antioxidant activity of resveratrol and β-CD–resveratrol a.

Samples IC50 (µg/mL)

Resveratrol 14.3 ± 0.4
β-CD–resveratrol (2:1) 12.1 ± 2.3

a All of the data obtained were repeated three times (p ≤ 0.05).

3. Material and Methods

The utilized materials as well as the detailed methods of (Molecular modeling, Docking
simulation, Molecular dynamics simulations, Preparation of resveratrol inclusion com-
plexes with β-cyclodextrin, Thermal properties, Spectroscopic measurements of inclusion
complexes, Antioxidant activity of Resveratrol and β-CD:Resveratrol) are presented in the
Supplementary Materials.

4. Conclusions

This paper presents the results of a study of the encapsulation of resveratrol with
β-cyclodextrin. The use of microwave treatment in an aqueous–alcohol medium made
it possible to obtain resveratrol inclusion complexes with β-cyclodextrin at high yields.
The molecular docking experiments indicated the good binding between resveratrol and
β-cyclodextrin. Then, five MD simulations and MM-PBSA experiments confirmed the
accuracy of that binding. The results of thermographic measurements with a differential
scanning calorimeter were obtained. Using the Ozawa–Flynn–Wall and Friedman methods,
as well as the method of nonparametric kinetics, the values of the activation energy of
thermo-oxidative destruction of resveratrol clathrate complexes were calculated. The kinetic
parameters of thermal decomposition obtained by various methods were in satisfactory
agreement, and confirmed the reliability of the results. Molecular modeling of resveratrol
inclusion complexes with β-cyclodextrin was carried out. The total energy of the studied
systems was estimated by the semi-empirical method AM1. It was shown that complexes
with a ratio of 1:2 are more stable and can be formed more easily than complexes with
a ratio of 1:1. The structure and physicochemical properties of the inclusion complexes
were systematically determined by 1H and 13C NMR, FTIR spectra, DSC, and SEM. Both
resveratrol and its inclusion complexes showed good antioxidant activity. It was shown
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that encapsulation with β-cyclodextrin leads to the enhancement of the antioxidant activity
(IC50) of resveratrol in the clathrate complex (2:1).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants11131678/s1, 1H and 13C -NMR spectra of free (a) β-CD and
(b) β-CD:Res (2:1) inclusion complex besides the details of method.
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