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Abstract: The flower of Pueraria lobata (Puerariae Flos) is a reddish-purple to violet-purple flower
that blooms between July and September. In our preliminary study, Puerariae Flos extract exhibited
significant activity against a human ovarian cancer cell line. This research aims to identify the
active compounds in Pueraria Flos. By repeated chromatography, one new tryptophan derivative
(1), two new flavanones (4 and 5), and 19 known compounds, including tryptophan derivatives
(2 and 3), flavonoids (6–9), isoflavonoids (10–20), a flavonolignan (21), and a phenolic compound
(22), were isolated from a methanol extract of Puerariae Flos. The structures of new compounds
were elucidated as 13-N-benzoyl-L-tryptophan-1-N-β-D-glucopyranoside (1), 2-hydroxy-5-methoxy-
naringenin (4), and 2-hydroxy-5-methoxy-naringenin 7-O-β-D-glucopyranoside (5). Among the
isolates, afromosin (17), tectorigenin (11), apigenin (8), glycitein (16), (-)-hydnocarpin (21), irilin D
(12), irisolidone 7-O-glucoside (14), and genistein (10) showed cytotoxicity against human ovarian
cancer cell line A2780. Apigenin (8) and (-)-hydnocarpin (21) were the most active (IC50 values of
9.99 and 7.36 µM, respectively).

Keywords: Pueraria lobata; Puerariae Flos; tryptophan derivatives; flavonoids; cytotoxicity; ovarian
cancer

1. Introduction

Pueraria lobata (Willd.) Ohwi (Leguminosae) is one of the most important Chinese
traditional medicines native to East Asia, Central and South America, and Europe [1]. The
flower of P. lobata (Puerariae Flos) is a reddish-purple to violet-purple flower that blooms
between late July and September [2]. It has been commonly used as a hangover treatment
in traditional oriental medicine due to its enhancing activity of acetaldehyde removal [3,4].
Puerariae Flos mainly contains isoflavonoids, flavonoids, saponins, tryptophan derivatives,
and phenolic compounds [5–8]. Extracts and secondary metabolites from Puerariae Flos
have shown potential pharmacological effects, such as an anti-diabetic effect [9,10], an
anti-inflammatory effect [11], estrogen-like activity [12], an anti-cancer property [12], an
anti-endometriotic effect [13], and a sensitizing effect on paclitaxel-resistant ovarian cancer
cells [14].

Ovarian epithelial cancer is one of the most fatal cancers in women [15]. A previous
investigation has shown that the 5-year relative survival rate for patients with ovarian
epithelial cancer was only 30% [16]. Platinum–taxane chemotherapy after surgical resection
is the most usual treatment for ovarian cancer patients. However, tumor cell heterogeneity
causes treatment resistance through multiple genetic alterations, leading many patients
to relapse or even die [17]. As a result, a novel therapeutic agent for ovarian cancer
is urgently needed. Numerous plant-derived medicines and their derivatives induce
apoptosis in ovarian carcinoma cell lines [18]. The genus Pueraria has shown cytotoxic and
anti-proliferative activity against various cancer cells [11]. In particular, the phytoestrogens
extracted from Puerariae rhizome exhibited anti-proliferative activity against ovarian cancer
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cells [14]. In our preliminary experiment, a methanol extract of Puerariae Flos exhibited a
significant cytotoxic effect against the human ovarian cancer cell line A2780. Therefore, the
purpose of this study is to find active compounds in Pueraria Flos against human ovarian
cancer cells.

Herein, repeated chromatography with the methanol extract of Puerariae Flos was
conducted to isolate compounds with cytotoxic activity against human ovarian cancer
cell line A2780. The structure of isolated compounds was determined by analyzing 1D-
and 2D-nuclear magnetic resonance (NMR) spectroscopic data and high-resolution mass
spectroscopy (HRMS). Then, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium
bromide (MTT) assay was used to assess the cytotoxicity of all isolated compounds (1−22)
against human epithelial ovarian cancer cell line A2780 and the immortalized ovarian
epithelial cell line IOSE80PC.

2. Results and Discussion
2.1. Sturcture Elucidation of Isolated Compounds

In the present study, one new tryptophan derivative (1), two new flavanones (4 and 5),
and 19 known compounds (2–3 and 6–22) were isolated from the methanol extract of
Pueariae Flos (Figure 1).

Figure 1. Structures of compounds 1–22 isolated from Puerariae Flos.



Plants 2022, 11, 1651 3 of 12

Compound 1 was isolated as a pale-yellow powder. The molecular formula of 1 was
established as C24H26N2O8 by its positive precursor ion in the high-resolution electro-
spray ionization orbitrap mass spectrum (HR-ESI-Orbitrap-MS; m/z = 471.1758 [M+H]+;
calculated for C24H27N2O8, 471.1762) (Figure S1). The infrared (IR) absorption spectrum
revealed the presence of conjugated carbonyl (1718 cm−1) and amide (1630 cm−1) groups
(Figure S22). The 1H-NMR spectrum of 1 revealed five olefinic signals (δH 6.92 (1H, ddd,
J = 8.0, 7.0, 1.0 Hz, H-5), 7.10 (1H, ddd, J = 8.0, 7.0, 1.0 Hz, H-6), 7.27 (1H, s, H-2) 7.47
(1H, d, J = 7.0 Hz, H-7), and 7.52 (1H, d, J = 8.0 Hz, H-4)), a methine signal (δH 4.78 (1H,
t, J = 5.0 Hz, H-11)), and signals for a methylene moiety (δH 3.34 (1H, overlapped, H-10a)
and 3.49 (1H, overlapped, H-10b)) (Table 1, Figure S2). In addition, by observing the
chemical shift and the vicinal coupling constant of an anomeric proton signal (δH 5.41
(1H, d, J = 9.0 Hz, H-Glc-1′)) and the signals of δH 3.49—3.92 ppm, we expected that 1
has a β-glucose moiety. It also revealed signals for a benzoyl residue at δH 7.38 (2H, dd,
J = 8.5, 7.5 Hz, H-3′′, 5′′), 7.46 (1H, tt, J = 7.5, 1.5 Hz, H-4′′), and 7.67 (2H, dd, J = 8.5, 1.5 Hz,
H-2′′, 6′′) in the 1H-NMR spectrum. Compared to previously reported data, the chemical
structure of 1 was very similar to that of tryptophan-N-glucoside, except for the presence
of a benzoyl aromatic ring [19]. Through the 13C-NMR spectrum of 1, 24 carbon signals
were observed including ten olefinic (δC 111.8, 120.0, 121.1, 123.2, 125.5, 128.6 x2, 129.7 x2,
and 132.9), four quaternary (δC 112.7, 130.4, 135.6, and 138.5), two carboxylic (δC 170.4
and 175.9), two methylene (δC 28.3 and 62.9), and six methine carbon signals including an
anomeric carbon (δC 55.6, 71.6, 73.8, 79.1, 80.7, and 86.8) (Table 1, Figure S3). By analysis of
the coherence spectroscopy (COSY) NMR spectrum, the connections from H-4 to H-7, H-2”
to H-6”, H-Glc-1′ to H-Glc-6′, and H-10 to H-11 were revealed (Figure 2 and Figure S5).
The positions of the β-glucopyranosyl and benzoyl groups were determined to be N-1 and
N-13, respectively, by analysis of the correlations in the 1H-13C heteronuclear multiple
bond correlation (HMBC) NMR spectrum from H-Glc-1′ (δH 5.41) to C-3 (δC 112.7)/C-9 (δC
138.5) and from H-11 (δH 4.78) to C-7′′ (δC 170.4) (Figure 2 and Figure S6). The absolute
configuration of tryptophan moiety was confirmed as L-tryptophan by an acid hydroly-
sis and measurement of optical rotation. Furthermore, the sugar of 1 was established as
β-D-glucopyranose by an acid hydrolysis and high-performance liquid chromatography
(HPLC) analysis (Figure S25). According to these data, the new compound 1 was elucidated
as 13-N-benzoyl-L-tryptophan-1-N-β-D-glucopyranoside.

Figure 2. Key 1H-1H COSY ( ) and 1H-13C HMBC ( ) correlations for the new compounds 1, 4, and 5.

Compound 4 was obtained as a brown powder. The molecular formula of 4 was
established as C16H14O6 by its positive precursor ion in the high-resolution quadrupole
time-of-flight mass spectrum (HR-Q-TOF-MS; m/z = 303.0879 [M+H]+; calculated for
C16H15O6, 303.0864) (Figure S8). The IR spectrum showed the presence of the conjugated
carbonyl (1676 cm−1) and benzene ring (1588, 1510 cm−1) (Figure S23). The 1H-NMR
spectrum of 4 exhibited two resonances of AA’BB’ spin systems of an aromatic ring (δH
7.05 (2H, d, J = 8.5 Hz, H-3′, 5′) and 7.57 (2H, d, J = 8.5 Hz, H-2′, 6′)], two meta coupled
proton signals (δH 6.12 (1H, d, J = 1.5 Hz, H-6) and 6.49 (1H, d, J = 1.5 Hz, )-8)), a methylene
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signal at δH 3.66 (2H, q, J = 14.0 Hz, H-3), and a methoxy signal at δH 3.56 (3H, s) (Table 2,
Figure S9), indicating that 4 is a flavanone with a methoxy group (Figure S9a) [20]. The 13C-
and DEPT NMR spectra showed 16 characteristic carbon signals for 2-hydroxyflavanone
with a methoxy group; two oxygenated aromatic carbon signals at δC 102.1 and 173.5, two
aromatic quaternary carbon signals at δC 160.6 and 174.2, two aromatic methine carbon
signals at δC 92.7 and 94.8 of the A ring, four aromatic methine carbon signals at δC 116.2× 2
and 132.9 × 2, an oxygenated aromatic carbon signal at δC 158.1, an aromatic quaternary
carbon signal at δC 126.1 of the B ring, a carbonyl carbon signal at δC 194.3, a hemiketal
carbon signal at δC 107.6, a methylene carbon signal at δC 42.4 of the C ring, and a methoxy
carbon signal at δC 55.7 (Table 2, Figure S10). The location of the methoxy group was
determined at C-5 by a correlation in the HMBC NMR spectrum from H-OCH3 (δH 3.56)
to C-5 (δC 160.6) (Figure 2 and Figure S13). The relative stereochemistry of the hydroxy
group at C-2 was not determined due to the inconsistent value of the optical rotation.
Accordingly, it was expected that the R and S configuration would coexist. Attempts were
made to separate the enantiomers but failed. Thus, the structure of 4 was elucidated as
2-hydroxy-5-methoxy-naringenin.

Table 1. 1H- and 13C-NMR spectroscopic data of compound 1 (δ in ppm, methanol-d4, 500 MHz, and
125 MHz).

Position a
1

δC δH
b

1
2 125.5 7.27 s
3 112.7
4 120.0 7.52 d (8.0)
5 121.1 6.92 ddd (8.0, 7.0, 1.0)
6 123.2 7.10 ddd (8.0, 7.0, 1.0)
7 111.8 7.47 d (7.0)
8 130.4
9 138.5

10 28.3 3.34 overlapped/3.49 overlapped
11 55.6 4.78 t (5.0)
12 175.9
13

Glc-1′ 86.8 5.41 d (9.0)
Glc-2′ 73.8 3.92 t (9.0)
Glc-3′ 79.1 3.60 t (9.0)
Glc-4′ 71.6 3.49 overlapped
Glc-5′ 80.7 3.55 ddd (10.0, 6.0, 2.5)
Glc-6′ 62.9 3.67 dd (12.0, 6.0)/3.86 dd (12.0, 2.0)

1′′ 135.6
2′′/6′′ 129.7 7.67 dd (8.5, 1.5)
3′′/5′′ 128.6 7.38 dd (8.5, 7.5)

4′′ 132.9 7.46 tt (7.5, 1.5)
7′′ 170.4

a All assignments were based on COSY, HSQC, and HMBC results. b δH Multi (J in Hz).

Compound 5 was obtained as a brown powder. The molecular formula of 5 was estab-
lished as C22H24O11 from the HR-ESI-Orbitrap-MS (m/z = 465.1391 [M+H]+, calculated for
C22H25O11, 465.1392) (Figure S15). The IR spectrum showed the presence of the conjugated
carbonyl (1687 cm−1) and benzene ring (1590 and 1502 cm−1) (Figure S24). The 1H-NMR
spectrum of 5 showed two sets of signals in the ratio of 1:0.75. Careful analysis of each
set revealed that 5 is a mixture of two glycosides of 4 (Table 2, Figure S16). The anomeric
proton signals (δH 5.68 (1H, d, J = 7.5 Hz, H-1′′)/5.62 (1H, d, J = 7.5 Hz, H-1′′)) and signals
at δH 4.10–4.52 indicated the existence of the β-glucopyranosyl group in 5. In the 13C- and
DEPT NMR spectra, some signals also appeared as dual peaks (Table 2, Figure S17). Each
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peak was confirmed by analysis of the heteronuclear single quantum coherence (HSQC)
and HMBC spectra (Figures S18 and S20). The HMBC spectrum of 5 showed the correlation
between the anomeric proton (δH 5.68/5.62) and C-7 (δC 101.42/101.56), confirming the
position of the β-glucopyranosyl group at C-7 (Figure 2 and Figure S20). On the basis of the
above results, it was proposed that 5 is a mixture of C2 epimers. We tried to separate the
epimers, but also failed. The absolute configuration of the sugar of 5 was determined as
D-form by an acid hydrolysis and an HPLC experiment (Figure S26). Therefore, the planar
structure of the new compound 5 was determined as 2-hydroxy-5-methoxy-naringenin
7-O-β-D-glucopyranoside.

Table 2. 1H- and 13C-NMR spectroscopic data of compounds 4 and 5 (δ in ppm, pyridine-d5, 500 MHz,
and 125 MHz).

Position a
4 5

δC δH
b δC δH

b

2 107.6 107.20
3 42.4 3.66 q (14.0) 41.72 3.64 overlapped
4 194.3 195.08
5 160.6 159.37/159.45
6 94.8 6.12 d (1.5) 93.84/82.78 6.14 d (2.0)/6.25 d (2.0)
7 173.5 101.42/101.56
8 92.7 6.49 d (1.5) 92.20/92.58 6.81 d (2.0)/6.76 d (2.0)
9 174.2 173.34/173.19

10 102.1 168.40/168.46
1′ 126.1 125.11

2′/6′ 132.9 7.57 d (8.5) 132.38 7.54 d (8.5)/7.51 d (8.5)
3′/5′ 116.2 7.05 d (8.5) 115.71/115.68 7.06 d (8.5)/7.04 d (8.5)

4′ 158.1 157.68
Glc-1′′ 104.48/104.53 5.68 d (7.5)/5.62 d (7.5)
Glc-2′′ 74.57 4.34 overlapped
Glc-3′′ 78.25 4.34 overlapped
Glc-4′′ 70.85/70.92 4.34 overlapped
Glc-5′′ 78.91/78.98 4.10 m
Glc-6′′ 61.96/62.01 4.34 overlapped/4.52 m
3′-OMe 55.7 3.56 s 55.48/55.54 3.55 s/3.60 s

a All assignments were based on COSY, HSQC, and HMBC results. b δH Multi (J in Hz).

Compounds 2–3 and 6–22 were identified as 13-N-malonyl-L-tryptophan (2) [21],
13-N-caproyl-L-tryptophan-1-N-β-D-glucopyranoside (3) [5], 2-hydroxy-naringenin-5-O-
β-D-glucopyranoside (6) [22], 2-hydroxy-eriodictyol-5-O-β-D-glucopyranoside (7) [23],
apigenin (8) [24], nicotiflorin (9) [25], genistein (10) [26], tectorigenin (11) [27], irilin D
(12) [28], tectoridin (13) [29], irisolidone-7-O-β-D-glucopyranoside (14) [30], tectorigenin-7-
O-β-D-xylopyranosyl-(1→6)-O-β-D-glucopyronoside (15) [31], glycitein (16) [32], afromosin
(17) [33], glycitin (18) [34], 7,4′-dihydroxy-6-methoxyisoflavone-7-O-β-D-xylopyranosyl-
(1→6)-O-β-D-glucopyronoside (19) [31], gehuain (20) [35], (-)-hydnocarpin (21) [36], and
hydrageifolin I (22) [37], by comparison with their NMR spectrum and previously pub-
lished data. In previous studies, numerous isoflavonoids and saponins were isolated from P.
lobata and puerarin; daidzein, tectoridin (13), and glycitin (18) were the most predominant
constituents [5]. To the best of our knowledge, compounds 2, 6, 7, 21, and 22 were isolated
from P. lobata for the first time in this work.

2.2. Cytotoxicity of Compounds Isolated from Puerariae Flos against Human Ovarian Cancer Cells

To identify anti-tumor constituents in Pueraria Flos, we examined the effects of the
25 isolates on the cell viability of the human ovarian cancer A2780 cell line using the
MTT assay. Among the isolated compounds, apigenin (8), genistein (10), tectorigenin
(11), irilin D (12), irisolidone 7-O-glucoside (14), glycitein (16), afromosin (17), and (-)-
hydnocarpin (21) showed cytotoxic activity (IC50 <100 µM) against A2780 cells (Figure 3,
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Table 3). Apigenin (8) and (-)-hydnocarpin (21) were the most active (IC50 values of 9.99 and
7.36 µM, respectively). In contrast, cisplatin, which is widely used as a first-line therapy in
ovarian epithelial cancer, and quercetin, which is a well-known flavonoid to have anticancer
activities, showed an IC50 value of 10.73 and 19. 45 µM, respectively. To further evaluate the
effect of the compounds on the cell viability of non-malignant ovarian epithelial cells, we
explored the cytotoxicity of the eight compounds (8, 10, 11, 12, 14, 16, 17, and 21) against
the immortalized human ovarian surface epithelial cell line IOSE80PC. (-)-Hydnocarpin
(21) showed a mild cytotoxicity with an IC50 value of 65.84 µM against IOSE80PC cells and
other seven compounds exhibited no activity (IC50 >100 µM) (Table 3). In contrast, cisplatin
showed a similar cytotoxicity to IOSE80PC cells (IC50 value of 12.78 µM) as to A2780 cells
(IC50 value of 10.73 µM).

Figure 3. The cell viability of active compounds in A2780 human ovarian cancer cell line. Cisplatin
was used as a positive control. The results are presented as mean standard ± SD and processed by
using a one-way ANOVA. * p < 0.05 in comparison to control (0 µM).
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Table 3. The cytotoxicity of compounds 1−22 isolated from Pueraria Flos against human ovarian cell
lines A2780 and IOSE80PC.

Compound
IC50 (µM) a

A2780 IOSE80PC

8 9.99 ± 0.98 >100
10 25.63 ± 1.80 >100
11 48.67 ± 0.31 >100
12 57.45 ± 3.08 >100
14 71.24 ± 11.29 >100
16 48.54 ± 1.97 >100
17 23.72 ± 2.54 >100
21 7.36 ± 0.58 65.84 ± 1.60

Cisplatin 10.73 ± 0.81 12.78 ± 0.55
Quercetin 19.45 ± 2.92 >100

a IC50 value is defined as the concentration that reduces cell number by 50% compared to control cultures.
Compounds 1–7, 9, 13, 15, 18–20, and 22 were not active (IC50 > 100 µM) in A2780 cells. The inactive compounds
were not tested on IOSE80PC.

Previous studies demonstrate that apigenin (8) inhibits the proliferation and migration
of ovarian cancer cell line A2780 by suppressing the expression of Id1 and focal adhesion
kinase [38,39]. Genistein (10) inhibits cell proliferation and downregulates VEGF expression
in the ovarian cancer cell line OVCAR3 [40]. Additionally, the anticancer activity of irilin
D (12) and afromosin (17) in the breast cancer cell line MCF-7 has been reported [41,42].
This is the first report for the cytotoxic effect of irilin D (12), irisolidone 7-O-glucoside (14),
afromosin (17), and (-)-hydnocarpin (21) on a human ovarian cancer cell line, to the best of
our knowledge. Interestingly, (-)-hydnocarpin (21), a flavonolignan, exhibited the greatest
effect on A2780 cells. (-)-Hydnocarpin (21) exhibited no cytotoxicity against multiple
cancer cell lines (Lu1, LNCaP, and MCF-7) [43], but showed considerable antiproliferative
activities against murine lymphocytic leukemia (P-388), kidney carcinoma (HEK293), and
colon adenocarcinoma (SW-480) cell lines [44,45].

3. Materials and Methods
3.1. Plant Material

The flowers of Pueraria lobata (Willd.) Ohwi (Leguminoseae) were purchased from CK
Pharm Co. (Seoul, Korea) in June 2019. The origin of the herbal material was identified by
prof. Dae Sik Jang and a voucher specimen (PULO5-2019) has been stored in the Lab. of
Natural Product Medicine, College of Pharmacy, Kyung Hee University, Seoul, Korea.

3.2. General Experimental Procedures

General experimental procedures are in the Supplementary Materials.

3.3. Extraction and Isolation

Dried flowers of P. lobata (1.6 kg) were extracted twice with methanol (16 L) at 80 ◦C
for 2 h and the solvent was removed by rotary evaporator at 45 ◦C. The methanol extract
(278.95 g) was fractionated by column chromatography (CC) using Diaion HP-20 with a
gradient system of acetone and H2O (0:100 to 100:0 v/v) to give 17 fractions (F1~F17).

F3 was separated by Sephadex LH-20 CC (5.6 × 59.0 cm) with 45% methanol to
afford twelve fractions (F3-1~F3-12). Compound 22 (33.0 mg) was purified from F3-4
using medium pressure liquid chromatography (MPLC; Redi Sep-silica cartridge 80 g,
CH2Cl2:methanol:H2O = 100:0:0 to 30:63:7, v/v/v). F3-7 was subjected to silica gel CC
(230-400 mesh; 4.0 × 28.0 cm, CH2Cl2:methanol:H2O = 90:9:1 to 70:27:3 v/v/v) to ob-
tain compounds 19 (342.8 mg) and 5 (44.7 mg). F3-10 was subjected to silica gel CC
(230–400 mesh; 3.8 × 26.0 cm, CH2Cl2:methanol:H2O = 90:9:1 to 70:27:3 v/v/v) to give
compounds 18 (24.4 mg), 6 (340.9 mg), and 7 (13.7 mg). F4 was fractionated further using
Sephadex LH-20 CC (4.7 × 57.6 cm) with 50% methanol and produced six fractions (F4-
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1~F4-6). F4-5 yielded compound 6 (125.2 mg) by flash CC with Redi Sep-C18 cartridge
(130 g, methanol:H2O, from 25:75 to 35:65 v/v). F5 was separated by Sephadex LH-20
CC (5.4 × 60.8 cm) with 50% methanol to produced nine fractions (F5-1~F5-9). F5-7 was
subjected to MPLC with methanol and H2O mixture (from 30:70 to 35:65 v/v) to afford
compound 6 (58.0 mg). F5-8 was subjected to silica gel CC (230–400 mesh; 3.8 × 26.2 cm,
CH2Cl2:methanol:H2O = 90:9:1 to 65:26.5:3.5 v/v/v) to isolate compounds 13 (5.7 mg) and
18 (4.2 mg). F6 was fractionated further using Sephadex LH-20 CC (4.7 × 60.0 cm, 55%
methanol) to give nine fractions (F6-1~F6-9). F6-5 was chromatographed over silica gel
(230–400 mesh; 4.0 × 28.0 cm, CH2Cl2:methanol:H2O = 90:9:1 to 70:27:3 v/v/v) to obtain
compounds 18 (2.8 mg) and 15 (205.1 mg). F6-7 yielded compound 2 (21.4 mg) by MPLC
(40 g, CH2Cl2:methanol:H2O = 40:36:4 to 0:90:10 v/v/v). Compounds 4 (38.3 mg) and
9 (10.6 mg) were isolated from F6 to F8 by flash CC (CH2Cl2:methanol:H2O = 100:0:0
to 50:45:5 v/v/v). Compound 13 (3.5373 g) was obtained by recrystallization from F7
in methanol. The mother liquor was fractionated further using Sephadex LH-20 CC
(4.7 × 66.5cm) to isolate compounds 4 (25.4 mg), 1 (20.1 mg), 20 (5.7 mg), and 18 (23.2 mg).
F8 was fractionated by Sephadex LH-20 CC (5.6 × 52.5 cm, acetone) to obtain com-
pound 3 (380.7 mg). F10 was subjected to Sephadex LH-20 CC (3.4 × 43.5 cm, 75%
methanol) to obtain ten fractions (F10-1~F10-10). Compounds 14 (42.0 mg) and 12 (10.7 mg)
were purified from F10-3 and F10-8, respectively, by MPLC. Compound 16 (16.6 mg)
was recrystallized in F10-10 with methanol. F12 was separated by Sephadex LH-20 CC
(5.4 × 68.0 cm, 75% methanol) to afford twelve fractions (F12-1~F12-12) and compounds
17 (16.6 mg) and 11 (1.54 g). F12-11 was chromatographed on silica gel (2.9 × 32.2 cm,
CH2Cl2:methanol:H2O = 100:0:0 to 80:18:2 v/v/v) to isolate compound 10 (122.2 mg). Com-
pounds 8 (13.8 mg), 16 (18.2 mg), and 21 (11.2 mg) were purified from F12-12 by silica gel
CC (5.1 × 33.0 cm, CH2Cl2:methanol:H2O = 85:13.5:1.5 to 75:22.5:2.5 v/v/v).

3.3.1. 13-N-Benzoyl-L-tryptophan-1-N-β-D-glucopyranoside (1)

Pale yellow powder; HR-ESI-Orbitrap-MS (positive mode) m/z = 471.1758 ([M+H]+;
calculated for C24H27N2O8, 471.1762); [α]20

D : 33.6 (c 0.1, methanol); UV (methanol) λmax nm
(log ε): 204 (4.41), 223 (4.50), 272 (3.86); IR (ATR) νmax 1718, 1630, 1522, 1460, 1322, 1222,
1071, 1015, and 712 cm−1; 1H- and 13C-NMR data, see Table 1.

3.3.2. 2-Hydroxy-5-methoxy-naringenin (4)

Brown powder; HR-Q-TOF-MS (positive mode) m/z = 303.0879 ([M+H]+; calculated
for C16H14O6, 303.0864); UV (methanol) λmax nm (log ε): 215 (3.80), 286 (3.71), 324 (3.47); IR
(ATR) νmax 1676, 1588, and 1510 cm−1; 1H- and 13C-NMR data, see Table 2.

3.3.3. 2-Hydroxy-5-methoxy-naringenin 7-O-β-D-glucopyranoside (5)

Brown powder; HR-ESI-Orbitrap-MS (positive mode) m/z = 465.1391 ([M+H]+; calcu-
lated for C22H25O11, 465.1392); UV (methanol) λmax nm (log ε): 211 (4.43), 2.86 (4.26); IR
(ATR) νmax 1687 and 1590 cm−1; 1H- and 13C-NMR data, see Table 2.

3.4. Acidic Hydrolysis of Compounds 1 and 5

Compounds 1 and 5 (each 1.0 mg) were hydrolyzed with 2N HCl at 80 ◦C for 4 h and
with 1N HCl at 100 ◦C for 3 h, respectively. Each reaction was stopped by the addition
of sodium thiosulfate. Additional hydrolysis was proceeded for identifying the absolute
configuration of tryptophan moiety of 1. Compound 1 (1.0 mg) was hydrolyzed with 6N
HCl at 85 ◦C for 24 h. Reaction was stopped by the addition of sodium thiosulfate.

3.5. Absolute Configuration Analysis of β-Glucoses in Compounds 1 and 5

To determine the absolute configuration of β-glucoses in 1 and 5, the modified analysis
method from a reference was conducted [46]. The hydrolysate was dissolved in pyridine
(500 µL) and L-cysteine methyl ester hydrochloride (1.2 mg) was added and heated at 60 ◦C
for 1 h. σ-Tolyl isothiocyanate (100 µL) was added and heated again at 60 ◦C for 1 h. The



Plants 2022, 11, 1651 9 of 12

reaction product was analyzed by HPLC under a gradient system (A: 0.1 % (v/v) formic
acid in water, B: 0.1 % (v/v) formic acid in acetonitrile, 10 to 50% B, 45 min). The glucoses
in the reaction mixture of 1 and 5 were detected at 28.3 and 28.4 min each. Authentic L- and
D-glucose were, respectively, detected at 27.6 and 28.2 min at the same HPLC conditions.
Therefore, the absolute configuration of β-glucose in compounds 1 and 5 was identified as
the D configuration.

3.6. Absolute Configuration Analysis of Tryptophan in Compound 1

The hydrolysate to determine the absolute configuration of tryptophan of 1 was
subjected to HPLC by under a gradient system (A: water, B: methanol, 10 to 35% B, 80 min).
Tryptophan (0.2 mg) was obtained from the hydrolysate. Analyzing the optical rotation
dispersion of the obtained tryptophan revealed that it has L-configuration ([α]22

D : −62.3, c
0.1, methanol) when compared to the optical rotation value of L-tryptophan ([α]22

D : −74.0, c
0.1, methanol) and D-tryptophan ([α]22

D : 103.8, c 0.1, methanol).

3.7. Cell Viability Assay

Human ovarian endometrioid adenocarcinoma cell line A2780 and immortalized
ovarian surface epithelial cell line IOSE80PC were provided by Dr. Ie-Ming Shih (Johns
Hopkins School of Medicine, Baltimore, MD, USA) and Dr. N. Auersperg (University
of British Columbia, Vancouver, British Columbia, Canada), respectively. The cells were
cultured in Roswell Park Memorial Institute (RPMI) 1640 supplemented with 5% fetal
bovine serum (FBS), penicillin (100 U/mL), and streptomycin sulfate (100 µg/mL) in a 5%
CO2 and 95% air humidified atmosphere at 37 ◦C. RPMI 1640, FBS, streptomycin sulfate,
and penicillin were procured from Life Technologies Inc. (Grand Island, NY, USA). The
cells were seeded at a density of 1.0 × 105 cells/mL in a 96-well plate containing 50 µL of
RPMI medium in each well and incubated for 24 h. Various concentrations of compounds
dissolved in dimethyl sulfoxide (DMSO) were mixed with RPMI 1640 medium and added
into cells in each well. The final concentration of DMSO in the medium did not exceed
0.1%. Following 48 h incubation, 50 µL of MTT (Molecular Probes Inc., Eugene, OR, USA)
solution was added into each well to achieve a final concentration of 0.5 mg/mL and then
incubated for an additional 4 h. The medium was discarded, and the formazan blue that
formed in the cells was dissolved in 50 µL of DMSO. The optical density was measured at
540 nm by microplate spectrophotometer (SpectraMax; Molecular Devices, Sunnyvale, CA,
USA). Three independent experiments with at least three replicates have been performed
for all the tested compounds except quercetin, which has been tested once. IC50 is defined
as the concentration that reduces cell number by 50% compared to control cultures. Results
shown in Table 3 and Figure 3 are the representative of the independent experiments.

4. Conclusions

An investigation on compounds with cytotoxic activity in Puerariae Flos led to the iso-
lation of 22 compounds (1–22), including one new tryptophan derivative, 13-N-benzoyl-L-
tryptophan-1-N-β-D-glucopyranoside (1), and two new flavanones, 2-hydroxy-5-methoxy-
naringenin (4) and 2-hydroxy-5-methoxy-naringenin 7-O-β-D-glucopyranoside (5). Api-
genin (8), genistein (10), tectorigenin (11), irilin D (12), irisolidone 7-O-glucoside (14),
glycitein (16), afromosin (17), and (-)-hydnocarpin (21) showed significant cytotoxicity
against human ovarian cancer cell line A2780 and exhibited little cytotoxicity against hu-
man ovarian surface epithelial cell line IOSE80PC. (-)-Hydnocarpin (21), a flavonolignan,
showed the most potent cytotoxic activity against A2780 cells.
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