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Abstract: Gene models are regions of the genome that can be transcribed into RNA and translated to
proteins, or belong to a class of non-coding RNA genes. The prediction of gene models is a complex
process that can be unreliable, leading to false positive annotations. To help support the calling of
confident conserved gene models and minimize false positives arising during gene model prediction
we have developed Truegene, a machine learning approach to classify potential low confidence gene
models using 14 gene and 41 protein-based characteristics. Amino acid and nucleotide sequence-
based features were calculated for conserved (high confidence) and non-conserved (low confidence)
annotated genes from the published Pisum sativum Cameor genome. These features were used to
train eXtreme Gradient Boost (XGBoost) classifier models to predict whether a gene model is likely to
be real. The optimized models demonstrated a prediction accuracy ranging from 87% to 90% and
an F-1 score of 0.91–0.94. We used SHapley Additive exPlanations (SHAP) and feature importance
plots to identify the features that contribute to the model predictions, and we show that protein and
gene-based features can be used to build accurate models for gene prediction that have applications
in supporting future gene annotation processes.

Keywords: gene models; pea; machine learning; XGBoost; SHAP

1. Introduction

The pace at which plant genomes are sequenced has increased significantly since the
genome assembly of Arabidopsis thaliana in 2000, with many hundreds of plant genomes
being sequenced, annotated, and published [1]. As more genomes are being sequenced,
we have access to multiple assemblies of the same species, highlighting significant gene
presence/absence variation and the need to construct pangenomes that reflect the gene
content of a species rather than a single individual [2].

To understand a genome, it needs to be annotated with genes and other potentially
functional units. Genome annotation is usually performed to identify coding genes and,
where possible, assign a function to them. In contrast to the classic definition of a gene,
a gene model can be defined as a region of the genome that can be transcribed into RNA
that translates into a protein, or belongs to a class of non-coding RNAs [3,4]. Gene model
prediction is a complex process in eukaryotes due to the presence of introns and splice
variants, and is especially challenging in plants due to highly repetitive sequences, gene
duplication, and transposable elements [5,6]. Two complementary approaches are usually
applied for gene model prediction, homology based and ab initio methods. Homology
based methods use sequence identity with known genes, or align expressed sequences
such as RNA-Seq data to the assembly to help predict gene models. In contrast, ab initio
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methods identify structural elements of genes such as open reading frames (ORF) using
statistical models, including Hidden Markov Models (HMM).

Although genome sequencing has become relatively straightforward, genome anno-
tation remains a challenge, and the accuracy of gene prediction varies considerably. The
statistical models used by ab initio annotation methods may require pre-existing, high-
quality gene models, and the lack of pre-existing models decreases the accuracy of ab
initio methods, therefore, genome annotation can be unreliable resulting in a significant
number of false gene predictions [7]. To support studies relying on an accurate reference
annotation and to avoid annotation errors propagating to other species, it is important to
minimise genome annotation errors, such as failure to predict the presence of a real gene
(false negative) or the prediction of a false positive gene call.

Genomes show conservation, structurally and functionally, between related species
traced back to a common ancestor, and protein coding genes share sequence identity with
homologous genes in other species. The presence of a large number of unique genes in
a species would suggest the birth of novel genes following speciation, followed by their
loss in subsequent speciation events. However, analysis of closely related species does not
show evidence of a large number of novel genes, with most of the gene content conserved
between closely related species [8–11]. This lack of evidence for the rapid birth of novel
genes in species suggests that many of the predicted unique genes in a species may be false
positive annotations and likely to be non-functional.

The application of machine learning in genome annotation can support more accurate
gene annotation. Machine learning is a subcategory of artificial intelligence that sits at the
crossover of computer science, statistics, and data science [12], and the ability of machine
learning to build mathematical models and identify patterns in large datasets has been
used for gene annotation. BALROG, a gene finding system for prokaryotes was developed
by training a machine learning model on high quality prokaryotic genomes [13]. The
functional elements in the human genome were identified using unsupervised machine
learning [14]. Splice site prediction, an essential step in gene finding, has been performed
using support vector machines [15]. A tree boosting scalable supervised machine learning
algorithm eXtreme Gradient Boosting (XGBoost), has proven to be efficient in differentiating
prophage genes from bacterial genes [16] and it was also used to predict gene loss in three
Brassica species using genomic features [17].

Here, we present Truegene, a boosted tree-based solution to evaluate plant gene
models based on protein and nucleotide attributes. Truegene is built to minimise false
positive annotations and act as a support tool to provide more accurate structural annotation
of genomes. We calculate both nucleotide and amino acid sequence features for each
predicted gene. Truegene uses features including gene length, GC content, and codon
adaptation index (CAI) to predict false positive gene models with an MCC score of 0.93
and an accuracy of 87%, making Truegene a valuable tool for the evaluation of gene models
in plants.

2. Results
2.1. Feature Table Construction

The nucleotide and translated amino acid sequence datasets were derived from the
annotated pea genome [18]. A total of 34,427 genes that shared sequence identity with
other species in the NCBI NR database were considered high confidence conserved genes,
while 10,793 genes that were not found in the NCBI NR database were considered low
confidence non-conserved genes. Two feature tables were constructed by calculating
41 features for the amino acid sequences and 14 features for the nucleotide sequences
(Supplementary Tables S1 and S2). We conducted Pearson correlation tests to investigate
which features are correlated (Tables 1 and 2).
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Table 1. Pearson correlation coefficient for protein features with p-value < 0.05.

Feature 1 Feature 2 Correlation Co-Efficient (R)

Length Flexibility 0.99

Length Molecular weight 0.99

Length Molar extinction coefficient reduced 0.81

Length Molar extinction coefficient oxidised 0.81

Aliphaticity Aliphatic index 0.93

Gravy Value Non-polar amino acids 0.86

Tiny amino acids Amino acid percentage G 0.57

Iso-electric point Acidic amino acids −0.58

Tiny amino acids Amino acid percentage A 0.48

Table 2. Pearson correlation test for nucleotide features with p-value < 0.05.

Feature 1 Feature 2 Correlation Co-Efficient (R)

Length Molecular weight 0.99

Length Entropy 0.83

Length Melting temperature 0.17

Length Zlib compression ratio −0.68

GC content Melting temperature 0.92

GC content GC at position 3 0.72

GC content GC at position 2 0.71

GC content GC at position 1 0.58

Molecular weight Entropy 0.83

2.2. Performance Evaluation

The amino acid and nucleotide models were fine-tuned, and the optimised models
were tested for prediction accuracy. The prediction performance of the model on the test
dataset was calculated by comparing the result with the expected values. The optimized
protein model classifier had a slightly better prediction accuracy than the nucleotide model
(89.92% compared to 86.72%). We evaluated the models using 10-fold cross validation,
Area Under Receiver Operator Curve (AUROC), Precision Recall (PR) curve, F-score (F1),
Mathew’s correlation coefficient (MCC), and confusion matrix. The high prediction ac-
curacy for the models is supported by the evaluation metrics (Table 3). Cross validation
showed the protein model to have a slightly higher testing accuracy, 88.66 ± 0.65% com-
pared to 85.38 ± 0.40%, however, the MCC score for both the models was 0.93 indicating
accurate predictions. The AUROC curve demonstrates that the model can distinguish the
classes (conserved or non-conserved) (Figure 1), while a high area under the PR curve
demonstrates a low false positive rate and low false negative rate (Figure 2). From the
confusion matrix it can be observed that the number of misclassified classes (false positive
and false negative) is minimal (Figure 3).
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Table 3. Evaluation metrics for XGBoost classifier models.

Evaluation Metric Protein Model Nucleotide Model

Prediction Accuracy 89.92% 86.72%

10-fold cross validation 88.66% (±0.65%) 85.38% (±0.40%)

F1_score 0.94 0.91

Average precision score 0.93 0.90

MCC 0.93 0.93

AUC value 0.94 0.92

Figure 1. AUROC curves for the (A) protein model and (B) nucleotide model. The true positive rate
is plotted against false positive rate at different classification thresholds.

Figure 2. PR curves for (A) protein model (B) nucleotide model. Precision is plotted against recall at
different probability thresholds.
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Figure 3. Confusion matrix for the (A) protein model (B) nucleotide model. The matrix is coloured
based on the number of sequences in each class.

2.3. Model Explanations

A key component of machine learning is explainable AI, which involves understanding
the features that are important for model prediction. A common way to look at model
explanations is feature attribution, where a score is assigned to each feature associated with
its contribution to the prediction. We assessed the feature importance for both models using
XGBoost feature importance plots and SHapley Additive exPlanations (SHAP) values. The
XGBoost feature importance plots are used to interpret the relative importance of each
feature to the model and the number of observations for each feature (Supplementary
Figures S1 and S2). The XGBoost gain plot shows how valuable each feature is for the
construction of the boosted trees within the model and the improvement it brings to the
accuracy of the model (Figures 4 and 5).

Figure 4. Feature importance Gain plot for XGBoost protein classifier model showing the top
20 features contributing to the model.

SHAP values can provide a clear assessment of the feature’s importance and their
interaction with the predictions. SHAP not only illustrates the important features but
also shows how the features influence the prediction (positive or negative) [19,20]. The
contribution of each feature to the output can be identified and therefore the relationship
between the biological significance and feature importance to the model can be established.
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The beeswarm summary plots show the relationship of the feature to the target variable
(Figures 6 and 7). Length and molecular weight were observed to have the strongest
relationship with the target variable in both models. In addition, the protein model exhibits
flexibility and the presence of a canonical start codon as the top features, with the melting
temperature and GC content being the top features for the nucleotide model.

Figure 5. Feature importance gain plot for nucleotide model showing the 14 features contributing the
model. CAI = Codon Adaptation Index, GC_Stdev: Standard deviation of GC skew value.

Figure 6. Beeswarm plot for top 20 features that contribute to protein model. Each dot indicates one
value, and they pile up in each row to show density. The red dots represent higher feature value
while the blue dots represent lower feature value. The positive side indicates high confidence genes
while the negative side indicates low confidence genes.
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Figure 7. Beeswarm plot for the 14 features that contribute to nucleotide model. Each dot indicates
one value, and they pile up in each row to show density. The red dots represent higher feature value
while the blue dots represent lower feature value. The positive side indicates high confidence genes
and while the negative side indicates low confidence genes.

3. Discussion

In this study, we successfully built and optimised gene classifier models with accuracy
scores ranging between 87–90%. The protein model had a slightly higher prediction
accuracy compared to the nucleotide model. However, MCC scores for both models were
similar indicating equivalent prediction quality. MCC has considered a reliable metric as
the MCC score is only high when the model’s prediction produced good results in all four
components of the confusion matrix [21].

In the protein model, the most distinguishing feature between classes is the protein
sequence length, which positively correlates with the related features of flexibility and
molecular weight. However, the higher F-score for flexibility suggests that flexibility
contributes directly to the model (Figure 4). Prior studies have shown that flexibility allows
the protein to interact with other molecules making it an important feature [22]. As longer
proteins were seen to be clustered on the positive side of the SHAP plot while shorter
proteins were distributed on both sides, the protein length has a bimodal distribution and
cannot be used as a single feature for confidence prediction (Figure 6).

The presence of a canonical start codon was also observed as a major feature (Figure 4).
The presence of a translation initiation codon has been used previously by gene finding
software [23]. Any protein coding gene is translated only when the ribosomes encounter
the start codon. Therefore, the model identifies the presence of methionine at the start of the
gene as an important feature. However, the model only reads methionine as a start codon,
and some real genes have no traditional start codon, with translation initiation using a
non-AUG start codon [24]. Non-AUG codons are not always transcribed to methionine,
with CUG, transcribed into leucine, also acting as start codon [25,26]. This is a potential
limitation of the model that may be addressed by using larger datasets and validated genes
that have non-AUG start codons.
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Gene length, molecular weight, entropy, and melting temperature were found to be
the most important features of the nucleotide model (Figure 7). This is consistent with a
study that uses gene features to distinguish between genomes [16]. As with the protein
model, length showed a high positive correlation with molecular weight (R = 0.99) and
Shannon entropy (R = 0.83), indicating that these values were related. Sequence length
has previously been shown to be a distinguishing character for gene prediction [16,27].
While studies show that false positive gene calls tend to be shorter [28], not all small
genes are associated with annotation errors as some small genes play important roles in
cellular function, signalling, and enzymatic activity [29]. Therefore, gene sequence length
is bimodal with shorter genes being ambiguous and so this cannot be used as a single
distinguishing feature.

We observed that GC content was one of the important features used by the model to
discriminate between confident and non-confident gene models, with genes having lower
GC content on the positive side of the SHAP plot, highlighting that these are more likely
to be predicted as real genes (Figure 7). GC content has been used as a feature by various
annotation programs [30,31]. GeneMark.hmm, a gene prediction program, uses GC content
as an important feature to estimate gene models [32]. The average GC content for the pea
genome was calculated to be 37.61% with the average GC content of the annotated genes at
42.39%.

Since the melting temperature is related to the stability of the DNA structure [33]
with GC rich sequences having a higher melting temperature than AT rich sequences, we
observed a positive correlation between GC content and melting temperature. Here, a
high melting temperature for a gene contributes towards a positive prediction, that it is
a confident gene (Figure 7). While this seems to conflict with the observation that genes
with a lower GC content are likely to be confident genes, the correlation of GC content
and melting temperature of high confidence genes is less than low confidence genes (0.97
compared to 0.89). A heatmap of GC content versus melting temperature shows that the
model classifies genes with a GC content of around 40% and melting temperature of around
80◦ as confident genes (Supplementary Figures S3 and S4). The average GC content for high
confidence genes was calculated to be 42.12% which is lower than low confidence genes
(43.25%), indicating the model recognises genes with lower GC as high confidence genes.
Previous studies have also shown that melting temperatures are higher at transcription
sites in mouse and human genes [34]. In Oryza sativa, there was a clear difference in the
melting temperature profile between gene introns and exons, and is consistent with our
model identifying melting temperature as an important feature in predicting confident
pea genes.

The Zlib compression ratio is a data compression method that is related to the number
of repeats in DNA sequence data and is calculated as the ratio of data size after compression
compared to before compression [35]. A ratio of 1 indicates no compression, denoting few
if any repeats, while a lower ratio indicates the presence of repetitive sequences. Genes
with higher Zlib ratios are present on the positive side of the SHAP plot suggesting that
genes with less repetitive sequences are more likely to be real genes (Figure 7). This reflects
the observation that repetitive sequences are often associated with non-coding regions of
the genome.

4. Materials and Methods
4.1. Dataset

The Pisum sativum Cameor annotated gene and protein dataset was obtained from
the Legume Information System (LIS) [36]. The annotated genes were compared with the
NCBI NR database, and the gene models that failed to show sequence identity (excluding
pea) with an e-value lower than 0.01 were considered low confidence non-conserved gene
models, resulting in 34,427 high confidence genes and 10,793 low confidence genes. Amino
acid and nucleotide features were selected based on Sirén et al. [16].
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4.2. Model Training

Tables representing 41 amino acid and 14 nucleotide acid features were generated
using Python (v3.8) and Biopython packages [37] (Supplementary Table S1). Pearson
correlation tests were performed using the Python SciPy stats package (v1.6.2) [38]. The
Pandas package (v1.2.5) [39] was used to examine and employ the feature table data and the
Scikit-learn package (v0.22.1) [38] was used to split the data into training and test datasets
using the train_test_split function. The dataset was split into 80% training data and 20%
testing data. An initial XGboost model was built with default parameters. An optimal pa-
rameter search was performed using Python package Scikit-Optimize (v.0.8.1) via Bayesian
Optimization (BayesSearchCV). The model hyperparameters were fine-tuned using the
following settings: learning_rate: 0.01–1.0, min_child_weight: 0–10, max_depth: 0–50,
max_delta_step: 0–20, subsample: 0.01–1.0, colsample_bytree: 0.01–1.0, colsample_bylevel:
0.01–1.0, reg_lambda: 1 × 10−9–1000, reg_alpha: 1 × 10−9–1.0, gamma: 1 × 10−9–0.5,
min_child_weight: 0–5, n_estimators: 50–200, scale_pos_weight: 1 × 10−6–500.

XGBoost (v.1.3.3) [40] was used to construct two XGBClassifier models using the
optimised parameters (Supplementary Table S2). The XGBClassifier was fitted using the
training dataset and the two XGBoostClassifier models were constructed with the goal to
predict whether a given gene or protein is likely to be a low confidence annotation. The
model’s performance was then validated by running it on the 20% testing data, and the
model prediction accuracy was calculated using the accuracy_score function. The model is
implemented in a Jupyter notebook hosted at GitHub: https://github.com/AppliedBioinf
ormatics/Truegene (accessed on 16 May 2022).

4.3. Model Evaluation

A series of evaluation metrics were calculated using the scikit-learn library,
Sklearn.metrics package (v0.22.1) [38] to test the accuracy of the model. 10-fold cross
validation, AUROC, PR curve, F1, MCC, and confusion matrix were used as the evaluation
metrics. The AUROC curve is obtained by plotting the true positive rate against the false
positive rate at different classification thresholds. F1 and MCC were calculated according
to the standard formula [21].

The in-built XGBoost feature importance functionality was used to determine and plot
feature importance. The plots were visualized using matplotlib (v.3.1.1) [41], and explained
using SHapley Additive exPlanations (SHAP). To understand the contribution of each
feature for training and testing, the Shapley explanation values were plotted as SHAP plots
(v.0.39.0) [20].

5. Conclusions

Our model can accurately differentiate between high and low confidence genes based
on a range of protein and nucleotide features. The most significant features of the model
are the length of the gene, presence of start codon, melting temperature of the gene, and
GC content. While this model is based on pea genes, it can be extended by including
other species and analysing additional, more complex features such as predicted protein
structures. Truegene supports automated gene model evaluation in plant genomes as it can
identify low confidence predictions with high accuracy. With the increasing number of plant
genomes being sequenced and the need for accurate gene annotation, approaches such as
Truegene can provide additional quality control. This computational method determines
with 87–90% accuracy whether a gene is conserved among species and therefore is likely
to be a true gene, and while it cannot determine with certainty whether a gene model is
correct, it can identify gene models that should be examined in more detail for further
validation. Our study resulted in a reusable classifier model that can act as a support tool
to validate the gene models and improve gene prediction.

https://github.com/AppliedBioinformatics/Truegene
https://github.com/AppliedBioinformatics/Truegene
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants11121619/s1. Table S1. List of protein features calculated
for the high confidence and low confidence amino acid sequences; Table S2. List of nucleotide
features calculated for the high confidence and low confidence nucleotide sequences. Figure S1.
XGBoost Cover plot for (A) Protein model shows tops 20 features (B) Nucleotide model. CAI = Codon
Adaptation Index, GC_Stdev: Standard deviation of GC skew value; Figure S2. XGBoost Weight plot
for (A) Protein model shows top 20 features (B) Nucleotide model. CAI = Codon Adaptation Index,
GC_Stdev: Standard deviation of GC skew value; Figure S3. Correlation between GC content and
Melting temperature. True positive refers to the high confidence conserved genes and False positive
refers to low confidence non-conserved genes; Figure S4. Heatmap of GC content plotted against
melting temperature.
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