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Abstract: Two cycles of pedigree selection for grain yield/plant (GY/P) and grain weight (GW)
(100-grain weight) were imposed under drought stress and normal irrigation to study the direct
and indirect selection of GY/P and GW in bread wheat. The selection started in the F6-generation
(Cycle0-C0) of bread wheat (Triticum aestivum L.) traced back to the cross (Giza 164/Sids 4) of two
Egyptian cultivars. The narrow sense heritability was higher under drought than under normal
irrigation and increased by selection. Under drought, the observed direct gain after two cycles of
selection for GW was 21.51% (p ≤ 0.01), and accompanied with an indirect gain in GY/P of 15.52%.
The observed direct gain for GY/P was 17.98% and the indirect gain in GW was 13.81%. Under
normal irrigation, the observed direct gain for GW was 12.86% and the indirect gain for GY/P was
16.04%. The direct gain in GY/P was 16.04% and the indirect gain in GW was 11.95%. The genotypic
correlations were different in both environments before and after selection. Single trait selection was
effective in improving the selection criterion, and selection greatly affected gene associations.

Keywords: pedigree selection; Triticum aestivum; drought stress; heritability; genotypic correlation;
observed gain

1. Introduction

Wheat is a crop of global significance grown in diverse environments. It plays an
important role in global food and nutritional security. The cultivation of wheat began
11,000–10,000 years ago [1,2]. Drought is a serious abiotic stress limitation of wheat pro-
duction in the Mediterranean region and all over the world [3]. It affects physiological and
biochemical processes in plants and limits crop production [4]. The Renaissances Ethiopian
dam and other dams in the Sudan and Uganda will affect Egypt in terms of water scarcity
for agriculture. Therefore, developing high yielding cultivars tolerant to drought stress is
one of the main goals of most wheat breeding programs [5]. Pedigree selection for grain
yield (GY) has been was practiced by many breeders [6–14]. Selection for GY was preferred
in late rather than early segregating generations [15] after the plants reached an acceptable
level of homozygosity, either under drought or normal irrigation. Two cycles of selection
for GY, starting from F3 [16], achieved genetic gains in GY of 14.64, 14.91, and 12.12%
from the bulk sample in favorable, stress, and other environments, respectively. However,
selection for yield was accompanied with lateness in days to heading and a decrease in
seed weight.

The low genetic variation under water stress complicates selection for tolerant lines.
Refs. [17,18] noted a greater reduction in heritability of most complex traits under drought
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than under irrigation conditions, which may be due to the decrease in genetic variation
and the influence of the genotype by drought interaction. Ref. [19] noted a gain after one
cycle of selection in the spike length of 13.43% under favorable conditions, and 8.66% in the
bulk sample under heat stress conditions. The realized heritability of the spike length was
higher under favorable conditions (0.25–0.56) than under stress (0.18–0.41). The correlated
response in GY/spike was 25.35% under favorable conditions and 13.65% in heat stress
environments. The observed direct gain in the number of grains/spikes was 14.65% under
heat stress when selection was practiced on the F3-generation. Several studies revealed
positive effects of larger seed size on wheat germination and establishment [20–22]. The use
of high-quality seed and a large seed size influences seed germination, emergence, seedling
growth, establishment, and grain yield [23]. Two cycles of selection for high 1000-grain
weight resulted in higher GY than direct selection for GY [13], and the genotypic correlation
of GY with the weight of spikes/plant was 0.81, that for the number of grains/spikes was
0.71, that for the weight of grains/spike was “0.91”, that for 1000-grain weight was 0.92,
and that for spikelet fertility was 0.70.

Many authors have studied the correlations among yield and its components. The
high correlations among yield and yield component traits suggest that selection for yield
components can effectively improve yield [24,25]. Grain yield was found to have significant
positive correlations with days to maturity, plant height, kernels spike−1, and thousand-
grain weight, at both genotypic and phenotypic levels [26–29]. The aim of this study was
to examine and compare the observed direct and indirect gains from selection in grain
weight and grain yield, and the effect of selection on genotypic correlations among traits in
late generations.

2. Results
2.1. Means and Variability in the F6-Generation (Base Population)

The analysis of variance in the F6-generation indicated significant differences (p ≤ 0.01)
among the families, either under drought stress or normal irrigation (Table 1). The genotypic
(GCV) and phenotypic coefficients of variation (PCV) were very close in both environments
because of the small error variance. The GCV% can be considered medium for days to
heading (DH) and plant height (PH), whereas it was high for the other traits.

Table 1. Parental mean, mean squares, and genotypic (GCV%) and phenotypic (PCV%) coefficients
of variability of traits in the base population (F6) under drought stress and normal irrigation.

Drought Stress

DH PH SL NS/P GY/P NG/S MSW GW

Reps 34.93 234.04 31.55 1.71 8.03 585.56 0.68 1.53

Families 87.10 ** 199.07 ** 12.01 ** 9.18 ** 22.82 ** 378.90 ** 0.56 ** 1.35 **

Error 1.80 17.01 0.48 0.14 2.31 78.91 0.13 0.01

GCV% 7.00 8.30 14.69 29.87 31.81 25.98 24.90 16.64

PCV% 7.08 8.68 15.00 30.11 33.55 29.20 28.45 16.67

Sids4 68.0 80.0 14.67 5.00 7.00 40.00 2.10 4.05

Giza164 86.0 90.0 10.0 6.33 8.67 35.00 1.52 3.36

Normal Irrigation

Reps 5.02 664.20 11.78 77.13 143.88 420.83 19.43 8.54

Families 103.43 ** 246.14 ** 14.23 ** 8.20 ** 19.09 ** 579.75 ** 1.42 ** 1.43 **
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Table 1. Cont.

Drought Stress

Error 1.69 16.27 0.91 0.19 2.69 1.07 0.02 0.01

GCV% 7.41 9.03 15.31 22.77 21.25 27.55 27.09 14.52

PCV% 7.47 9.35 15.83 23.03 22.93 27.57 27.24 14.56

Sids4 68.0 90.0 16.0 6.33 8.90 56.33 2.30 5.60

Giza164 83.0 100.0 11.33 8.00 11.67 41.33 1.60 4.60

** significant at 0.01 level of probability. DH = days heading, PH = plant height, SL = spike length, NS/P = number
of spikes/plant, GY/P = grain yield/plant, NG/S = number of grains/spikes, MSW = main spike weight,
GW = 100-grain weight.

2.2. Effect of Selection on Variability and Heritability of the Selection Criteria

The genotypic and phenotypic coefficients of variation (Table 2) of the selection criteria,
i.e., GW (100-grain weight) and GY/P (grain yield/plant) were slightly higher under
drought stress than at normal irrigation in F6-, F7- (C1), and F8-generations (C2), and
decreased in successive cycles. Under drought, the GCV for GW decreased from 16.64% in
F6 to 8.58% in the F8-generation (C2), and decreased for GY/P from 31.81% to 18.86% in the
respective generations.

Table 2. Genotypic (GCV%) and phenotypic (PCV%) coefficients of variation, and heritability in the
broad (H%) and narrow sense (h2%) for traits under selection pressure.

Selection Criterion Selection Cycle Item Drought Stress Normal Irrigation

grain
weight C0 (F6)

GCV% 16.64 14.52

PCV% 16.67 14.56

H% 88.57 99.37

h2% - -

GY/P C0 (F6)

GCV% 31.81 21.25

PCV% 33.55 22.93

H% 89.88 85.89

h2% - -

100-grain
weight

C1 C1 (F7)

GCV% 13.44 12.46

PCV% 13.47 12.47

H% 99.58 99.94

h2% 71.24 53.52

C2 C2 (F8)

GCV% 8.58 8.27

PCV% 9.05 8.8

H% 89.97 88.26

h2% 87.84 76.29

GY/P

C1 C1 (F7)

GCV% 29.94 10.05

PCV% 30.50 11.82

H% 96.37 72.35

h2% 29.60 28.92

C2 C2 (F8)

GCV% 18.86 18.61

PCV% 19.14 19.02

H% 94.57 98.29

h2% 76.29 72.19
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The narrow sense heritability was higher under drought than under normal irrigation
and increased for GW from 71.24 and 53.52% in F7 to 87.84 and 76.29% in the F8-generation
under drought and irrigation, respectively, and increased for GY/P from 29.60 and 28.92%
in F7 to 76.29 and 72.19% in the F8-generation under the respective environments. A
wide difference between broad and narrow sense heritability was observed for the two
selection criteria under both environments, indicating the presence of dominance and/or
epistatic effects.

2.3. Mean, Observed, and Correlated Genetic Gains in the Two Cycles of Selection

The performance of the selected families for different traits (Table 3) in the F7- and F8-
generations was lower under drought stress than under normal irrigation. Under drought
stress, a significant (p ≤ 0.01) direct gain from the mid-parent in the GW increased from
16.96% in C1 to 21.51% in C2. Significant (p ≤ 0.05 p ≤ 0.01) correlated gains from the
mid-parent in the other traits after the second cycle were 5.56% for SL, 12.05% for NS/P,
15.52% for GY/P,15.94% for NG/S and 18.06% for MSW. The observed direct gain from the
better parent after two cycles of selection for GW was 13.01% (p ≤ 0.01), accompanied with
an insignificant indirect gain in GY/P of 8.84%.

Table 3. Mean, direct, and correlated observed genetic gains from selection as a percentage of the
mid-parent (MP OG%) and the better parent (BP OG%) for GW and GY/P in cycle 1 (C1) and cycle 2
(C2) under drought stress and normal irrigation.

Selection Criterion Selection Cycle
Drought Stress

DH PH SL NS/P GY/P NG/S MSW GW

GW

Mean C1 77.53 71.42 12.60 6.73 7.80 44.00 1.49 4.74

MP OG% 0.69 −1.49 5.00 9.46 ** 14.71 * 14.29 ** 14.59 ** 16.96 **

BP OG% 10.76 ** −10.73 ** −10 ** −3.83 0.00 4.76 −0.69 7.66 **

Mean C2 83.67 87.17 12.67 6.28 8.00 40.00 1.48 5.65

MP OG% 1.41 −0.38 5.56 ** 12.05 ** 15.52 * 15.94 ** 18.06 ** 21.51 **

BP OG% 11.56 ** −3.15 −9.52 1.21 8.84 2.56 13.41 * 13.01 **

GY/P

Mean C1 80.30 76.17 10.70 7.02 7.84 42.78 1.44 4.57

MP OG% 4.29 ** 5.06 14.00 ** 14.09 ** 15.24 ** 11.11 ** 10.98 * 12.01 **

BP OG% 14.71 ** 4.79 4.00 * 0.24 0.47 1.84 −3.82 2.40

Mean C2 86.83 96.17 11.20 6.42 8.17 39.11 1.41 5.29

MP OG% 5.25 ** 9.91 ** −6.67 * 15.30 ** 17.98 ** 13.36 ** 12.40 * 13.81 **

BP OG% 15.78 ** 6.85 −20 ** 4.67 11.16 ** 0.28 8.00 5.85 **

Normal irrigation

GW

Mean C1 80.60 90.73 13.55 9.28 17.73 63.20 3.26 5.75

MP OG% 3.33 ** 0.81 4.19 ** 9.20 * 10.82 * 10.32 * 11.99 ** 12.79 **

BP OG% 11.94 ** −4.49 −9.70 ** −19.99 ** −1.44 15.82 * 8.61 ** 4.58 **

Mean C2 83.63 91.50 13.22 6.80 16.09 51.85 2.76 5.85

MP OG% 0.16 0.73 2.99 11.05 ** 11.07 * 12.20 ** 15.10 ** 12.86 **

BP OG% 4.54 * −3.68 −9.89 ** −9.91* −4.23 11.40 ** 7.76 ** 6.41

GY/P

Mean C1 84.43 93.90 12.37 9.92 18.24 45.20 2.30 5.66

MP OG% 8.25 ** 4.33 * −5.14 ** 12.06 ** 14.00 ** 12.14 * 10.83 * 10.91 **

BP OG% 17.27 ** −1.16 −17.79 ** −17.8 ** 1.33 −4.34 −11.39 2.84 **

Mean C2 85.00 98.22 11.96 6.93 16.71 51.92 2.68 5.82

MP OG% 1.80 8.13 ** −6.78 13.17 ** 16.04 ** 12.34 ** 12.05 ** 11.95 *

BP OG% 6.25 * 13.33 ** −18.43 ** −8.19 * −0.54 11.53 ** 4.88 5.84 *

*, ** significant at 0.05 and 0.01 level of probability, respectively. DH = days heading, PH = plant height, SL = spike
length, NS/P = number of spikes/plant, GY/P = grain yield/plant, NG/S = number of grains/spike, MSW = main
spike weight, GW = 100-grain weight.
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The direct gain in GY/P from the mid-parent under drought stress increased signif-
icantly (p ≤ 0.01) from 15.34% in C1 to 17.98% in C2. Two cycles of selection for GY/P
were accompanied with an unfavorable significantly correlated gain in MP (5.25%) and
SL (−6.67%), whereas favorable correlated gains from the mid-parent were observed in
PH (9.91%), NS/P (15.30%), NG/S (13.36%), MSW (12.40%), and GW (13.81%). Two cycles
of selection for GY/P increased GY/P by 11.16% and GW by 5.85% of the better parent
(p ≤ 0.01), followed by a decrease in SL (−20.0) and an unfavorable increase in DH (15.78%)

It should be mentioned that two cycles of selection under drought stress significantly
increased the selection criterion and correlated traits; otherwise, some traits declined.

Under normal irrigation, selection for the GW significantly (p≤ 0.05 p≤ 0.01) increased
GW, MSW, GY/P, and NS/P from the mid-parent from C1 to C2. However, after C2, the
observed gain from the better parent in GW was not significant (6.41%), and was significant
for MSW (7.76%) and NG/S (11.40%), followed by significant adverse effects on NS/P
(−9.91%), SL (−9.89%), and DH (4.54%).

Selection for GY/P under irrigation significantly increased GY/P, PH, NS/P, NG/S,
MSW, and GW from C1 to C2 in terms of the percentage of the mid-parent. Furthermore,
after C2, significant favorable observed gains from the better parent were found in PH
(13.33%), NG/S (11.51%), and GW (5.84%). Adverse significant correlated gains from the
better parent were observed for DH (6.25%), SL (−18.43%), and NS/P (−8.19%). The direct
gain in GY/P was negligible (−0.54%).

2.4. Effect of Selection on Genotypic Correlation

It should be noted that the population under study stemmed from the cross Giza164/Sids4.
Giza164 is taller, has greater tillering ability and grain yield, and lower GW, MSW, and
NG/S, and matures later than Sids4 (Table 1). In the F6-generation, under drought stress,
DH showed negative genotypic correlations with both SL (−0.4908) and GW (−0.2408),
and positive correlations with NS/P and GY/P (Table 4). Furthermore, GY/P yielded
positive correlations with NS/P, NG/S, and MSW, a negative correlation with SL, and a
weak correlation with GW. This indicates that the late mature families had high yields,
NS/P, and NG/S, and selection for GY/P may be more effective to maximize these traits.
By comparison, under normal irrigation, DH had negative correlations with GY/P, NG/S,
MSW, and GW, indicating that the late mature families were low in yield, NG/S, and MSW.
However, GY/P showed positive correlations with PH, NS/P, NG/P, and MSW. Therefore,
in both environments, with the exception of SL, selection for GY/P may improve yield
components, i.e., NS/P, NG/P, and MSW. It can be concluded that the gene associations
were different under both environments. However, selection may alter gene associations.

Table 4. Genotypic correlations among traits in the base population (F6) under drought stress (above
diagonal) and normal irrigation (below diagonal).

Trait DH PH SL NS/P GY/P NG/S MSW GW

DH 0.1922 −0.4908 0.3685 0.3126 0.1862 0.0463 −0.4908

PH 0.0971 −0.0880 0.1932 0.0336 −0.1627 −0.1295 0.0507

SL −0.5025 0.0761 −0.3598 −0.2955 −0.1531 0.0055 0.2762

NS/P 0.3215 0.1660 −0.3649 0.2540 −0.2762 −0.3519 −0.1374

GY/P −0.1446 0.4930 −0.2551 0.3081 0.3537 0.3707 −0.0447

NG/S −0.0863 0.0037 0.2972 −0.2729 0.1413 0.8368 −0.6142

MSW −0.0973 0.0712 0.2021 −0.1672 0.2107 0.0329 0.0785

GW −0.1316 0.0842 0.1202 −0.1627 0.0704 −0.4451 0.1367

DH = days heading, PH = plant height, SL = spike length, NS/P = number of spikes/plant, GY/P = grain
yield/plant, NG/S = number of grains/spikes, MSW = main spike weight, GW = 100 grain weight.



Plants 2022, 11, 1604 6 of 11

After two cycles of selection for GW under drought stress, the genotypic correlation
of GW with the other traits was weakened, with the exception of that with MSW, which
increased from 0.0785 in F6 to 0.2341 in the F8-generation, and that with NG/S, which
changed from −0.6142 to 0.1616 after selection (Table 5). Furthermore, the correlation of
GW with the other traits decreased, with the exception of that with MSW. The decrease
in genotypic correlations of GW with DH and SL indicated that selection favored the
recombinants between the two parents.

Under normal irrigation and selection for GW, the correlations between GW and the
other traits were greatly altered in the F8-generation. The correlation altered from −0.1316
to −0.7336 for DH, 0.0842 to −0.6864 for PH, 0.1202 to 0.6997 for SL, −0.1627 to −0.3318 for
NS/P, 0.0704 to 0.4976 for GY/P, −0.4451 to 0.3867 for NG/S, and 0.1367 to 0.4363 for MSW
in the F6- and F8-generations, respectively. Furthermore, the correlations of GY/P with DH,
PH, and NS/P decreased, and that with SL increased. These findings indicate that selection
for GW favored the early high yielding (recombinants) families of short PH and high GW.
It can be concluded that selection for GW altered the gene associations under both drought
stress and normal irrigation.

Table 5. Genotypic correlations among traits under drought stress (above diagonal) and under normal
irrigation (below diagonal) when selection was practiced for grain weight in the F8-generation.

Trait DH PH SL NS/P GY/P NG/S MSW GW

DH 0.2659 −0.2337 0.0923 0.2246 0.0071 0.0094 −0.2171

PH 0.9633 −0.3097 0.5834 −0.0047 0.0020 −0.0982 −0.1628

SL −0.5716 −0.5655 0.9078 −0.0087 0.0036 −0.1815 −0.3009

NS/P 0.8063 0.5747 −0.4302 0.3506 0.0688 0.0886 0.0063

GY/P −0.7627 −0.7171 0.4654 −0.2913 0.3057 0.6001 −0.0045

NG/S −0.2249 0.0132 0.4115 −0.5337 0.0894 0.4593 0.1616

MSW −0.2658 −0.4607 0.3828 −0.4032 0.0080 0.5817 0.2341

GW −0.7336 −0.6864 0.6997 −0.3318 0.4976 0.3867 0.4363

DH = days heading, PH = plant height, SL = spike length, NS/P = number of spikes/plant, GY/P = grain
yield/plant, NG/S = number of grains/spikes, MSW = main spike weight, GW = 100 grain weight.

After two cycles of selection for GY/P (Table 6) in both environments, the genotypic
correlations of GY/P with most traits increased or were altered from negative to positive.
It can be concluded that the gene associations were different in both environments before
and after selection for GW and GY/P, and selection greatly affected gene associations.

Table 6. Genotypic correlations among traits under drought stress (above diagonal) and under
normal irrigation (below diagonal) when selection was practiced for GY/P in the F8-generation.

Trait DH PH SL NS/P GY/P NG/S MSW GW

DH 0.3606 −0.2445 0.1601 0.4123 0.1131 0.3710 −0.2778

PH 0.2254 −0.2420 0.2515 0.9558 0.2465 0.5907 −0.4914

SL −0.1170 −0.3278 −0.4331 0.0121 0.1732 0.1357 0.1325

NS/P 0.2602 0.3795 0.0135 0.4751 −0.2180 −0.1054 0.2107

GY/P 0.8286 0.3617 −0.0367 0.8145 0.3617 0.8152 −0.3061

NG/S 0.8265 −0.0624 0.1903 0.2079 0.5618 0.8501 −0.3826

MSW 0.8392 −0.0403 −0.1259 −0.0202 0.4365 0.2639 −0.4565

GW 0.2431 0.2758 −0.0794 0.4510 0.5994 −0.2782 0.6793

DH = days heading, PH = plant height, SL = spike length, NS/P = number of spikes/plant, GY/P = grain
yield/plant, NG/S = number of grains/spikes, MSW = main spike weight, GW = 100 grain weight.
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3. Discussion

In the F6-generation (the base population), the GCV% was intermediate for DH and
PH, whereas it was high for the other traits, indicating sufficient variability and feasibility
of selection (Table 1). The GCV% of GY/P and GW was higher under stress than under
irrigation. This may be due to genotype–environment interaction, in which some families
can be more greatly affected by drought stress than others, resulting in high variance in
these traits. Ref. [30] indicated that the differences between genotypes will inevitably
be large under poor or adverse environments, and resistant genotypes can be detected.
Refs. [10,15] noted higher genetic variability under drought than under irrigation. In
addition, [16,18] reported that the variation decreased under drought stress because of the
influence of the genotype by drought interaction.

Selection for GW and GY/P decreased the GCV% from F6 to the F8-generation in
both environments. In late generations, selection from successive cycles for GW and GY/P
resulted in homogeneity of the families towards homozygosity, and the differences in the
selected families disappeared in successive cycles, consequently reducing PCV and GCV.
These results agree with those reported by many authors [8–10,12–15,31,32].

A wide difference between broad and narrow sense heritability indicates the presence
of dominance and epistatic effects in the F8-generation.

The increase in the similarity of the selected families of the traits under selection
pressure, and the consequent decrease in the selection differential, resulted in an increase
in narrow sense heritability from C1 to C2. Ref. [17] noted heritability for grain yield of
0.20 under irrigation and 0.94 under rain-fed conditions. These results agree with those
reported by [9,10,15,16,31].

With respect to the observed genetic gain, many authors have suggested indirect
selection for grain yield because of grains polygenic nature, low heritability, linkage, and
genotype–environment interaction [13,32–35], and selection for morphological and physio-
logical traits may improve wheat grain yield in diverse environmental conditions [36,37].
By comparison, the present study indicated that the observed gain from direct selection
for GY/P under drought stress was 17.98%, and 16.04% for the mid-parent under normal
irrigation, in the F8-generation. In addition, the indirect gain in GY/P via selection for GW
was 15.52% under drought and 11.07% under irrigation. Furthermore, the observed gain
was greater under drought stress than under irrigation. This may be due to the high GCV%,
PCV%, and heritability under stress than in an optimum environment. These results imply
that selection for GY/P and GW under drought stress (antagonistic selection = selection
and environment act in opposing directions) was more effective than under normal ir-
rigation (synergistic selection = selection and environment act in the same direction) in
improving GY/P and GW. This is consistent with the findings of [38], who demonstrated
that antagonistic selection is better than synergistic selection in changing the mean. Other
studies have reached the same conclusion [10,15,16].

With respect to genotypic correlations among traits in the F6-generation (Table 4),
the results indicated that the correlations differed more under drought stress than under
irrigation. Selection for GW increased NG/S, GY/P, and MSW, and decreased DH, in both
environments, whereas selection for GY/P increased DH, PH, NS/P, NG/S, and MSW.
It can be concluded that selection for GW and GY/P altered the gene associations under
both drought stress and normal irrigation. Refs. [24,25] indicated that the high correlations
among yield and yield component traits suggest that selection for yield components can
effectively improve yield. Grain yield had significant positive correlations with days to
maturity, plant height, kernels/spike, and thousand-seed weight, at both genotypic and
phenotypic levels [26–29].

It can be concluded that the genotypic coefficient of variability in these materials
was higher under drought than under irrigation, and decreased from the F6-generation
to the F8-generation. Narrow sense heritability was higher under drought than under
normal irrigation. The performance of the selected families for different traits in the F7-
and F8-generations was lower under drought stress than under normal irrigation. Single
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trait selection was effective in improving the selection criterion and accompanied with
adverse effects on some correlated traits. The genotypic correlations were different in both
environments before and after selection, and selection greatly affected gene associations.

4. Materials and Methods

Two cycles of pedigree selection were performed. The selection criteria were grain
yield/plant (GY/P) and 100-grain weight (GW). The plant genetic materials were families
in the F6-generation of bread wheat (Triticum aestivum L.) traced back to the cross (Giza
164/Sids 4) of two Egyptian cultivars. The pedigree of Giza 164 is “KVZ/Buha“S”//K
al/Bb”, and that of Sids 4 is “Maya“S” Man (S)//CMH74.AS92/3/Giza157-2”. These materials
comprised 100 families derived from a previous study of selection in early generations
(F2–F5) under drought stress, and another 100 families derived from selection under normal
irrigation [15]. Two experiments, one under drought stress and the other under normal
irrigation, were conducted in each season. The experiments in the three seasons (2017/2018,
2019/2020, and 2020/2021) were conducted at the Faculty of Agriculture Experimental farm,
Assiut University, Egypt (Longitude:31.125◦ Latitude: 27.25◦ E, Elevation: 45 m/148 Feet).
Planting dates were between 20 November and 25 November in the three seasons. A
randomized complete block design with three replications was used. Super phosphate
(P2O5, 15.5%) was added during land preparation at a rate of 357.14 kg/ha. Before the first
irrigation, nitrogen fertilization was added in one dose in the form of ammonium nitrate
(33.5% N) at a rate of 190.5 kg/ha. The experiments under drought stress received planting
irrigation and only one irrigation three weeks later, whereas the experiments under normal
irrigation received planting irrigation and four irrigations throughout the growing season.

In the season of 2017/2018, 100 families in the F6-generation, along with the parents,
were sown under drought stress in rows that were three meters long, 30 cm apart. Another
100 families in the F6-generation were sown under normal irrigation. The experimental
unit was one row. After full emergence, seedings were adjusted to ten plants per meter.
The collected data were days to heading (DH), plant height (PH, cm), spike length (SL,
cm), number of spikes/plant (NS/P), grain yield/plant (GY/P, g), number of grains/spike
(NG/S), main spike weight (MSW, g), and 100-grain weight (GW, g). The same procedure
was followed in the second and third seasons. At the end of the season, 20 plants from
each family were harvested. The best 20 families in GY/P and GW were identified in both
experiments, and the best plant from each was saved for the next season. In the second
season, of 2019/2020, the 20 families selected for GY/P and GW, along with the parents,
were sown under drought conditions, and the same procedure as that of the irrigation
experiment was followed. At the end of the season, the ten best families for each selection
criterion from both experiments were saved. In the third season, 2020/2021, (F8-generation)
the selected families were evaluated under their respective environments.

Biometrical Analysis

The analyses of variance, covariance, phenotypic variance (σ2p), and genotypic vari-
ance (σ2g), and significance tests, were performed as in [39] on a plot mean basis. The
mathematical model of the randomized complete block design is:

Yij = µ + ηi + ξj + eij

where i = 1,2,3, . . . , t and j = 1,2, . . . , b with t treatments and b blocks. µ is the overall mean
based on all observations, ηi is the effect of the ith treatment response, ξj is the effect of the
jth block, and eij is the corresponding error term, which is assumed to be independent and
normally distributed with mean zero and constant variance.

In the random model of the RCBD, genotypic variance (σ2g) = (MSg −MSe)/r, and
phenotypic variance (σ2p) = σ2g + MSe/r, where MSg = genotype mean square, MSe = error
mean square, r = number of replications.

The phenotypic (PCV) and genotypic (GCV) coefficients of variation and the genotypic
correlations among pairs of traits were estimated as outlined by [40] as follows:
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The covariance components were used to compute the genotypic correlation on a line
mean basis, between the various characters as follows:

rg = σg1.2/
√

((σ2
g1) (σ2

g2))

where σg1.2 is the genetic covariance between trait 1 and trait 2, and σ2g is the genetic variance.

GCV% = (σg/mean) × 100, PCV% = (σp/mean) × 100

where σg and σp = genotypic and phenotypic standard deviations, respectively.
Heritability in the broad sense (H) and the genetic advance were computed using the

formula adopted by [41] as follows:
Heritability in the broad sense (H%) = (σ2

g/σ2
p) × 100 and the expected genetic gain is:

F2 = k* σp* H

where the environmental variance σ2
E = (σ2

P1 + σ2
P2)/2, σ2

p = F2 variance, σ2
g = σ2

p − σ2
E,

σ2
P1 = variance of the first parent, σ2

P2 = phenotypic variance of the second parent, k is the
selection intensity from selecting 10% of the superior plants.

Heritability in the narrow sense (h2) was estimated by parent–offspring regression as
outlined by [42].

The observed genetic gain was calculated as a percentage from the mid- and better
parent. The significance of the direct and correlated observed genetic gains was calculated
using the least significant difference (LSD):

LSD for mid-parent observed gain = tα ((MSE/(r × f) + MSE/(r × 2))0.5,

LSD for better parent observed gain = tα ((MSE/(r × f) + MSE/r)0.5,

where tα = tabulated t at 0.05 or 0.01 level of probability, r = number of replications,
MSE = error mean squares, and f = number of families.

5. Conclusions

The GCV% of GY/P and 100-GW was higher under stress than under irrigation. This
may be due to genotype–environment interaction, in which some families can be more
significantly affected by drought stress than others, thus resulting in high variance. Alanis
and Hill (1966) noted that the differences between genotypes will inevitably be large in
poor or adverse environments, and resistant genotypes can be detected. The PCV and
GCV decreased by selection from successive cycles towards homozygosity because of the
increase in the similarity of the selected families of the traits under selection pressure. The
narrow sense heritability increased from C1 to C2 in late generations. Furthermore, the
observed gain was better under drought stress than under irrigation. The direct observed
genetic gain was better than the correlated gain in both environments. Single trait selection
was effective in improving the selection criterion, and was accompanied with adverse
effects on some correlated traits in both environments. Furthermore, the observed gain
was better under drought stress than under irrigation. The results imply that antagonistic
selection was better than synergistic selection in improving GY/P and 100-GW. Selection
for 100-GW increased NG/S, GY/P, and MSW, and decreased DH, in both environments,
whereas selection for GY/P increased DH, PH, NS/P, NG/S, and MSW. The genotypic
correlations among traits differed more under drought than under irrigation.
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