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Abstract: In the process of growth and development, cotton exhibits premature senescence under
various abiotic stresses, impairing yield and fiber quality. NAC (NAM, ATAF1,2, and CUC2) protein
widely distributed in land plants, play the critical role in responding to abiotic stress and regulating
leaf senescence. We have identified and functional analyzed a NAM domain gene GhNAC82 in
upland cotton, it was located on the A11 chromosome 4,921,702 to 4,922,748 bp, only containing
one exon. The spatio-temporal expression pattern analysis revealed that it was highly expressed in
root, torus, ovule and fiber development stage. The results of qRT-PCR validated that GhNAC82
negatively regulated by salt stress, drought stress, H2O2 stress, IAA treatment, and ethylene treatment,
positively regulated by the ABA and MeJA treatment. Moreover, heterologous overexpression of
GhNAC82 results in leaf premature senescence and delays root system development in Arabidopsis
thaliana. The phenotype of delayed-senescence was performed after silencing GhNAC82 by VIGS in
premature cotton. Taken together, GhNAC82 was involved in different abiotic stress pathways and
play important roles in negatively regulating leaf premature senescence.

Keywords: cotton; GhNAC82; leaf senescence; abiotic stress; phytohormone-treated

1. Introduction

Leaf senescence, an internal factor, is the adaptive mechanism across long evolutionary
distances and it is a prevalent phenomenon during plant development [1]. In addition, it
is usually taking place in the final stage of plant growth, accompanied by complex and
highly coordinated gene regulatory networks [2]. The phenomenon of plants emerges
advanced chlorophyll degradation, the photosynthesis rate decreases, the accumulation of
reactive oxygen species (ROS), and oxidative enzyme activity reduced in the appropriate
growing season, termed premature senescence [3]. The occurrence of premature aging
is the result of a combination of multiple factors. Extreme environmental conditions
adversely affect the growth of plants and accelerate leaf senescence, including drought,
salt, pathogenic bacteria, and osmotic stress, which seriously restricts crop yield and
quality [4–7]. Otherwise, genetic factors also play a crucial role, such as gene mutations
leading to the premature-aging. The regulation of leaf senescence involves the dynamic
changes of related gene expression and protein synthesis, and the transcription factors (TFs)
and the downstream gene promoters cis-elements are combined to regulate the senescence
process [8–10]. Transcriptional regulation plays a critical role in plant maturation and
senescence, and TFs mediate senescence regulatory networks by activating or inhibiting
target genes [11].
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NAC is a family of plant-specific transcription factors that regulate the normal growth
and development of plants under various abiotic stress response and aging process [12,13].
All of the N-terminals of their encoding proteins contain a conserved sequence of about 150
amino acid residues, which plays an important role in plant growth and development [14].
It could be degraded by protease or ubiquitin-proteasome under specific environmental
signals, and the homologous or heterodimer of the activated NAC protein combines
with the promoter of its target gene to control its expression during the nuclear signal
input [15,16]. Overexpression of OsNAC9 and OsNAC10 regulates root architecture to
enhance drought resistance and increase the grain yield of rice [17,18]. Similar results were
found in Arabidopsis, AtNAC1 and AtNAC2 are induced by auxin to promote lateral root
elongation, and both AtNTL8 and AtLOV1 overexpressed showed slow growth and delayed
flowering [19–22]. Involvement of ANAC003, ANAC010, ANAC042, and ANAC075 under
dark stress tolerance was corroborated by the phenotype of Arabidopsis tic55-II knock-out
(KO) mutants and found the promoter region of ANAC003 bound to MYB108 in yeast
one-hybrid (Y1H), taking into account the above indicate that the regulation network of
MYB-NAC is involved in the process of aging under dark stress [23]. ANAC072 positively
regulates natural and dark-induced leaf senescence through chlorophyll degradation and
activating the transcription of NYE1, which is induced by multiple stresses [24].

NAC as a regulatory factor of leaf senescence has been confirmed in the major crops
and the regulatory network can be mediated by changes in endogenous hormone lev-
els [25–27]. Phytohormones play a key role in response to biotic and abiotic stresses and
have been found to involved in the regulation of leaf senescence; specifically, indole-3-acetic
acid (IAA), cytokinins (CTK), and gibberellin (GA) are thought to delay leaf senescence,
whereas ethylene (ETH), abscisic acid (ABA), methyl jasmonate (MeJA), salicylic acid
(SA), brassinosteroids (BR) are thought to induce it. A previous study reported that the
content of IAA gradually increases in Arabidopsis leaves during later development stages,
indicating auxin is involved in the regulation mechanism of senescence [28]. The content
of endogenous cytokinins decreased promotes cell division synergistically with auxin to
delay leaf senescence, and cytokinin-mediated AtAHK3 controls aging by phosphorylating
AtARR2 [29,30]. The root system also affects leaf senescence in G. hirsutum directly or
indirectly via increased the biosynthesis and transport of abscisic acid [31]. Exogenous
treatment of methyl jasmonate reduces plant growth in rice by decreasing chlorophyll
contents and photosynthetic capacity and induces the expression of OsDOS genes [32].
Plant hormones respond to signaling responses to biotic and abiotic stresses by interacting
with or antagonizing NAC transcription factors and their upstream or downstream genes
to maintain the stability of the intracellular environment [33]. Likewise, exogenous treat-
ment of plant hormones inducible expression of NAC transcription factor, and the ATAF
subfamily positive function in hormones-dependent stress-response pathways, ANAC019
and ANAC055 are negative regulators of stress [18,34].

The completion of genome sequencing has laid the foundation for the research on the
regulation of leaf senescence by cotton NAC transcription factors at the genome level [35,36].
Several upland cotton NAC genes (such as GhNAC2, GhNAC4, and GhNAC6) have been
isolated in response to abiotic stresses: drought, salt, high and low temperatures by the ABA
signal transduction pathway [37,38]. Overexpression of GhNAC79 enhanced the expression
level in the cotyledon and fiber development stage significantly improved the resistance to
drought stress of upland cotton and A. thaliana [39]. It has been found that seven genes in
upland cotton (GhNAC7-GhNAC13) were highly expressed in roots indicating these genes
might be involved in responses to abiotic stress during root development [40]. In addition,
GhNAC63 and GhNAC78 have already been identified to involved in the regulation of leaf
senescence [41,42]. These results all indicated that NAC gene family members play an
essential role in the regulation of leaf senescence, stress resistance, and phytohormone-
responsive in cotton. Therefore, it is necessary to unravel the conduction mechanisms of
NAC genes in aspects of stress-responsive and leaf senescence, which further improves
crop yield and quality.
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In this study, we revealed the function and molecular mechanism of GhNAC82 in
upland cotton leaf senescence. The expression patterns of GhNAC82 in response to different
abiotic stresses and hormonal treatments were analyzed, and the results showed that it is
particularly sensitive to changes imposed by exogenous hormones. The overexpression of
GhNAC82 in A. thaliana and silence in differentially aging cotton shows that overexpress
led to premature aging, silence delayed leaf senescence. These results show the function of
GhNAC82 in vegetative growth, and it will provide the theoretical basis for the breeding of
new cotton varieties with early maturity but no premature senescence.

2. Materials and Methods
2.1. Plant Materials, Growth Conditions and Stress Treatments

One the premature senescence upland cotton (cv. CCRI 10) and normal senescence
upland cotton (cv. CCRI 50) were used in this study. Plump seeds were selected and
cultivated in seedlings pot and grew up in an artificial climate box (16 h light 28 ◦C/8 h
dark 25 ◦C cycle), normal water and fertilizer management was administrated until the
end of the experiment.

Select seedlings with consistent growth for the first sampling when cotyledons spread
out. Then the samples were taken every one week to observe the senescence change of
the cotyledons until the cotyledons turn completely aged after seven weeks. Selecting
the root, stem, leaf, torus, petals, stamen, and pistil form healthy plants, quickly stored in
liquid nitrogen. Samples of ovules and fibers were taken at 0, 5, 10, 15, 20, and 25 DPA
(days post anthesis), respectively. After the unfolding of the third leaf, seedlings were
irrigated with 20% PEG 6000 or 200 mM NaCl at 5-day intervals and sampling at 0, 5,
10, 15, 20, and 25 days after drought/salt treatment. For hormone treatment at the same
period, seedlings were sprayed with 20 µM auxin, 50 µM ABA, 200 µM MeJA, and 200 µM
ethephon, and controlled with water. The leaf samples were collected at 0, 4, 12, 24, and
48 h after treatment. All of the above samples contain at least 3 biological repetitions.

A. thaliana ecotype Col-0 (wild-type) was used as the heterologous transformation
recipient. After seeds are vernalized, planted in an incubator at 16 h light (25 ◦C)/8 h dark
(22 ◦C).

2.2. Gene Cloning and Sequence Analysis

cDNA sequence of GhNAC82 (1047 bp, GenBank accession number: KF669793) was
cloned from the leaf of CCRI 10. The basic information and physicochemical properties of
the GhNAC82 were predicted by the smart program via the ExPASy Proteomics Server [43].
The gene structure was scaled by Gene Structure Display Server (GSDS, http://gsds.cbi.
pku.edu.cn/, accessed on 10 May 2020). Nucleotide sequences of 2000 bp in upstream
regions of GhNAC82 were obtained from CottonFGD [44], while performing cis-acting
elements analysis by PlantCare [45]. Multi-sequence alignments and phylogenetic analyses
of Arabidopsis, G. arboreum, G. raimondii, G. hirsutum, G. barbadense, cocoa, soybean, grape,
and sorghum NAC proteins were carried out with the ClustalW [46], phylogenetic tree
based on the alignment using the method of Neighbor-Joining by MEGA 7.0 (bootstrap
replications set to 1000) [47]. Chromoal localization is illustrated using the MG2C v2.1
(http://mg2c.iask.in/mg2c_v2.0/, accessed on 11 May 2020) based on the specific location
of GhNAC82 on the genome. RNA-Seq data was downloaded from Cotton Omics Database
(http://cotton.zju.edu.cn/10.rnasearch, accessed on 10 June 2021) to analyze GhNAC82
under different tissues and abiotic stresses (salt, PEG, low and high temperature), the
TBtools to visualize it [36,48].

2.3. DNA, RNA Extraction, cDNA Synthesis, and Quantitative RT-PCR (qRT-PCR)

The DNA of Arabidopsis was extracted from the TIANGEN plant genome DNA extrac-
tion kit (centrifugal column type, DP305), and the DNA of upland cotton was extracted
using the plant DNA pickup kit (YK00A5). RNA extraction was following the manu-
facturer’s protocol for plants rich in polyphenols and amylase total RNA extraction kit

http://gsds.cbi.pku.edu.cn/
http://gsds.cbi.pku.edu.cn/
http://mg2c.iask.in/mg2c_v2.0/
http://cotton.zju.edu.cn/10.rnasearch
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(Vazyme, RC401, Nanjing, China), the quality of all samples was detected by 1% agarose
gel electrophoresis and A260/A280 values by NanoDrop 2000. cDNA synthesis according
to the Vazyme reverse transcription kit instructions (Vazyme HiScript II 1st Strand cDNA
Synthesis Kit, R212).

Quantitative RT-PCR used ChamQ universal SYBR qPCR Master Mix (Vazyme, Q711),
with GhUBQ7 as the reference gene. The running procedure was established as described
in the manual, the expansion curve and dissolution curve of real-time PCR were confirmed
after the reaction, and the results were analyzed using 2−∆∆Ct data [49]. The entire trials
were performed under low-light conditions, each data contains three technical repetitions
and three biological repetitions at least. All primer sequences are listed in Table S1.

2.4. Vector Construction and Genetic Transformation of A. thaliana

PCR amplification products of GhNAC82 were inserted into the EcoRI and XbaI sites
of the binary vector pBI121 to generate 35S::GhNAC82 plasmids, and the 35S::GhNAC82
recombinant plasmid was introduced into A. thaliana wild type (Col-0) by the Agrobac-
terium (GV3101). Positive plants were selected on 1/2 MS media containing kanamycin
(100 mg/L), and the green plants were transplanted in the seedling pot and further con-
firmed by PCR and qRT-PCR after 14 days.

2.5. Viruses Induced GhNAC82 Gene Silencing in Cotton

The PYL156, PYL192, PYL::GhPDS silencing systems induce GhNAC82 silencing in
cotton [50]. The fragments of GhNAC82 were inserted into the PYL156 vectors with EcoRI
and KpnI cutting sites using homologous recombination to construct PYL156::GhNAC82.
PYL156, PYL::GhPDS, PYL192, and inserted fragment vectors were transformed into
Agrobacterium tumefaciens (GV3101), then collected and resuspended in infiltration buffer
(10 mM MgCl2, 10 mM MES, and 200 µM acetosyringone). The concentration of the cell
suspension was set to 0.8–1.2 (OD600). PYL156, PYL156::GhPDS, and PYL156::GhNAC82
derivatives were mixed with PYL192 in equal proportions and kept from light for 4 h at
room temperature. Cotton seedlings were grown in an artificial climate box (16 h light
25 ◦C/8 h dark 23 ◦C cycle).

2.6. Determination of the Related Physiological Parameters

The malondialdehyde (MDA) contents were quantified from 100 mg cotton leaves
using an assay kit as the instructions described (Solarbio, BC0025, Beijing, China). The
chlorophyll content was determined according to the method as the previous study de-
scribed [51]. The soluble protein was determined according to the method described by
Enzyme Free Company Plant Soluble Protein (sprotein) ELISA kit and Coomassie brilliant
blue G250 method.

3. Results
3.1. Identification and Evolution Analysis of the GhNAC82

NAC transcription factor family exerted a vital regulatory effect on leaf senescence,
stress resistance, and phytohormone-responsive in cotton. GhNAC82 was selected for
further functional studies. GhNAC82 contained only one exon, the coding sequences (CDS)
with the same nucleotide composition as genomic DNA (gDNA) sequences, and it was
isolated from the cotton variety CCRI 10. The full-length cDNA includes a 1047 bp open
reading frame ORF encoding a 348 amino acid protein with a molecular weight (MW) is
38.727 kDa. It was found to be localized on chromosome A11: 4,921,702–4,922,748 bp.

According to the domain scrutiny and relationships analysis, 27 proteins were identi-
fied from upland cotton (Figure 1a). Of these, the closest relative to GhNAC82 (Gh_A11G0524)
was another copy on the D subgroup (Gh_D11G0608), followed by GhNAC17 (Gh_D02G0682,
Gh_A02G0634, Gh_A05G2095, Gh_D05G2348). Physicochemical properties and gene infor-
mation of these NAC proteins in G. hirsutum are presented in Table S2.
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Figure 1. Evolution of GhNAC82 in upland cotton (a) and other species (b). red * indicated the
GhNAC82 gene.

With MEGA 7.0 software construct a phylogenetic tree from the aligned sequences,
showing evolutionary relationships between GhNAC82 and other homologous genes from
upland cotton and representative plant species (including G. arboreum, G. raimondii, G. hir-
sutum, G. barbadense, A. thaliana, Theobroma cacao, Oryza sativa, Glycine max, Vitis vinifera, and
Sorghum bicolor, Figure 1b). The phylogenetic analysis characterized the closest evolution-
ary relationship to GhNAC82 (Gh_A11G0524) were GOBAR_AA17024 from G. barbadense A
subgenome and Ga11G347 from the diploid ancestor G. arboreum. Meanwhile, the closest
evolutionary relationship to Gh_D11G0608 (another homologous gene in D genome of up-
land cotton) was GOBAR_DD27691 from G. barbadense D subgenome and Gorai.007G065300
from the diploid ancestor G. raimondii. In the evolutionary between cotton and other repre-
sentative species, the closest phylogenetic relationship was T. cacao (TcNAC082), secondly is
A. thaliana (AT5G09330 and AT5G64060), followed by G. max (Gm_05G191300), S. bicolor
(SORBI_3007G047700), O. sativa (Os08g0157900), and V. vinifera (VIT_18s0089g01120). These
genes may have a similar biological function to GhNAC82, and might be the connection to
leaf senescence and stress tolerance.

3.2. Predicted of Cis-Elements in Promoter Region of GhNAC82

The cis-regulatory elements in the promoter usually regulate gene expression and
respond to environmental and growth factors [52]. Cis-acting regulatory elements were
analyzed in the GhNAC82 upstream 2000 bp promoter region by bioinformatics using
the PlantCARE database. As shown in Figure 2, the promoter sequence of GhNAC82
contains the basal cis-elements TATA-box and CAAT-box. The cis-elements involved
in plant growth and development, stress response, and hormone response were found.
Among these cis-elements, including the light responded elements: such as ACE, AE-box,
ATCT-motif, Box 4, MRE, and TCCC-motif. Furthermore, the binding site of AT-rich DNA
binding protein (ATBP-1, AT-rich element), endosperm expression elements (GCN4_motif),
and the anaerobic induction element (ARE) was found to be related to plant growth and
development. It was also found that the stress-related elements contained low-temperature
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responsiveness (LTR). Phytohormone correlated elements include MeJA (CGTCA-motif,
TGACG-motif), gibberellin (GA, TATC-box), and salicylic acid (SA, TCA-element). In
addition, MYC and MYB-binding sites involved in dehydration-responsive, the cis-elements
involved in wound-responsiveness, such as W-box, WRE3, and WUN-motif (Figure 2, Table
S3). These results suggest that the GhNAC82 may be involved in the stress responses of
plant growth and stress.
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3.3. Expression Patterns Analysis of GhNAC82 in Various Tissues

Spatiotemporal expression files of GhNAC82 were appraised in seven different tissues
(including root, stem, leaf, torus, petals, stamen, and pistil) and development period
(including 0-, 5-, 10-, 20-, and 25-DPA ovule; 10-, 20-, and 25-DPA fiber) using RNA-seq
data from G. hirsutum. It was found that GhNAC82 was highly expressed in root, petals,
10 DPA ovule and fiber, 20 DPA fiber, and 25 DPA fiber. Secondly, the lower expression
in torus, 5 DPA ovule, and 20 DPA ovule. The results of the gene expressed in ovule and
fiber suggested that it may play a key role in regulating expression during embryonic and
fiber development.

To detect the expression patterns of GhNAC82 in different tissues, the roots, stems, and
leaves in the seedling stage; torus, petals, stamen, and pistil in the flowering period were
collected. At the same time, ovules in 0 DPA, 5 DPA, 10 DPA, 20 DPA, 25 DPA, and fibers
in 10 DPA, 20 DPA, and 25 DPA were collected. The pattern of gene expression assessed
by qPCR was basically consistent with transcriptome profiling data, as shown in Figure 3.
However, it demonstrated different patterns, it was found that GhNAC82 was expressed
in stem, leaf, stamen, pistil, 0 DPA ovule, and 25 DPA ovule using real-time PCR. Overall,
these results indicated that GhNAC82 may play a critical regulatory role in root growth
and development.

3.4. Phenotypic Changes and Expression Patterns of GhNAC82 during Cotyledon Senescence

During the leaf grew and developed, chlorophyll contents and photosynthetic effi-
ciency were gradually decreased as mature leaves yellowing. As shown in Figure 4a, with
the growth and development, cotyledon color was progressively changed and CCRI 10
was significantly higher than CCRI 50 based on teh degree of yellowing. The cotyledon
of CCRI 10 was obviously yellowing on 49 days, completely yellow even withered on
56 days, while the CCRI 50 only a small section of the cotyledon was with brown spots
or shrinking. Figure 4b shows that GhNAC82 was highest expressed in the 21 days after
cotyledons unfolding of CCRI 10. Subsequently, the expression gradually decreased. From
the patterns of GhNAC82 during cotyledon senescence, we presumed that GhNAC82 likely
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has an important role in the early cotyledon development stage. Differing from the patterns
in CCRI 10, the expression of GhNAC82 was relatively gentle in CCRI 50, suggesting that
elevated GhNAC82 expression may be responsible for premature senescence.
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The content of chlorophyll, malonaldehyde (MDA), and soluble protein are the integral
part and indicators of the degree of leaf senescence [53]. Chlorophyll is the main pigment for
photosynthesis and is closely related to the aging process in plant growth and development.
Malondialdehyde (MDA) is the oxidation final product of free radicals acting on the lipid
with peroxidation reaction in the organism, which is cytotoxic and is closely related to the
stress-related response [54]. Soluble protein content increased in the stressed seedlings
stage, and it also was a key abiotic stress indicator in plants [55]. As Figure 4c shows,
the chlorophyll content has peaked on 14 and 35 days of cotyledon development, with
an overall, showed downward trend. In addition, the chlorophyll in CCRI 50 exhibited
higher content than CCRI 10 after 21 days. The MDA content in CCRI 10 and CCRI 50
showed a uniform upward trend, then the MDA content of CCRI 10 is peaked at 28 days,
and CCRI 50 is peaked at 35 days but the increasing trend was relatively flat in CCRI 50.
After reaching the peak, followed by a slow downward trend (Figure 4d). The content
of soluble protein in CCRI 10 always remained higher than CCRI 50 after 14 days, and it
showed two peaks at 21 days and 35 days (Figure 4e). It was coincided with the relative
expression of GhNAC82 and chlorophyll content among different cultivars and indicated
the content of soluble protein is strongly correlated with the degree of leaf senescence. Both
results suggest that probably exist a potential regulatory mechanism is via the expression
of GhNAC82 mediates the physiological indicators to regulate the leaf senescence.
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Figure 4. Expression profiles and physiological indexes in 7-, 14-, 21-, 28-, 35-, 42-, 49-, and 56-day-
old of the CCRI 10 and CCRI 50 cotton variety during cotyledon senescence. (a) Colors change of
cotyledon during developmental stages; (b) The expression pattern of GhNAC82 during cotyledon
development, and GhUBQ7 was used as reference gene; (c–e) The content of chlorophyll, MDA, and
soluble protein among different developmental stages, n ≥ 3.

3.5. Expression of the GhNAC82 in Leaves Was Significantly Induced by Abiotic Stresses

To investigate whether are responsive regulatory proteins under abiotic stresses in
different degrees of prematurity species, NaCl, PEG, and H2O2 treatment of the CCRI 10
and CCRI 50 cotton seedlings were performed. As shown in Figure 5a,e,i, the expression
levels of GhNAC82 significantly changed after salt, drought, and H2O2 treatment, and
the expression in CCRI 50 was higher than in CCRI 10 all the time (except for the early
H2O2-stress, 0 h and 2 h).

The two cotton species (phenotype of premature senescence and non-premature
senescence) showed a peak at the time 10 days after treatment and gradually decreased
subsequently. A similar trend was observed in the changes in chlorophyll contents with
expression pattern (Figure 5b). Malondialdehyde content was increased gradually after
the peak time of 10 days (Figure 5c). After drought stress, the expression of GhNAC82,
chlorophyll and MDA contents exhibited a continuously rising trend (Figure 5e–g). H2O2-
treated plants show expression peaked at 12 h, and decline followed (Figure 5i). Chlorophyll
content in leaves under H2O2 stress reached a maximum in 12 h too (Figure 5j). MDA
contents peaked relatively early under the H2O2 treatment condition, and it appeared to
maximum advanced one stage (at 8 h, Figure 5k). All the soluble protein content under
abiotic stress conditions exhibit decreased slowly with treatment time (Figure 5d,h,l). From
the above results, we can conclude that the GhNAC82 gene is involved in multiple abiotic
stress responses, and its’ expression may be negatively regulated by salt, drought, and
H2O2 treatment. In addition, chlorophyll and MDA content are tightly linked to the
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expression of GhNAC82, soluble protein content showed a dynamic decrease as the abiotic
stress progressed.
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Figure 5. Expression patterns and related physiological metrics changes of GhNAC82 after salt,
drought, and H2O2 stress. (a,e,i) Expression pattern of GhNAC82 under NaCl, PEG, and H2O2 treat-
ment; (b,f,j) Changes of chlorophyll content under treatments; (c,g,k) Changes of malondialdehyde
content under treatments; (d,h,l) Changes of soluble protein content under treatments.

3.6. The Expression Patterns of GhNAC82 under Different Hormones

Different hormone treatments were performed for cotton seedlings at CCRI 10 and
CCRI 50, respectively, and the expression of GhNAC82 was detected during different
treatment periods. The expression level of GhNAC82 changed significantly in response to
phytohormone treatments.

In the MeJA treatment initial periods (2 h after treatment), there was induction reach-
ing a significance difference, and the expression of GhNAC82 in CCRI 10 increased to
approximately 3 times. After that, the expression falls rapidly, 24 h a second peak was
reached (Figure 6a). However, only the expression peaked at 24 h, and the expression was
lower than CCRI 50 all the time. A trend of first rising and then falling was seen in soluble
protein content, but the content of chlorophyll and malondialdehyde did not show a clear
trend (Figure 6b–d).

The expression pattern of GhNAC82 in CCRI 10 demonstrated similar trends under
ABA treatment compared with MeJA treatment, and it was peaked at 8 h after treatment
(Figure 6e). The content of chlorophyll and malondialdehyde also reached a peak at 8h
after treatment (Figure 6f,g). Although the soluble content was on the rise and peaked at
24 h, there is no obvious trend (Figure 6h).
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Figure 6. Expression patterns and physiological indicators of GhNAC82 in response to phytohormone
treatments. (a,e,i,m) Expression pattern of GhNAC82 under treatment with auxin, abscisic acid, ethy-
lene and methyl jasmonate; (b,f,j,n) Changes of chlorophyll content under phytohormone treatments;
(c,g,k,o) Changes of malondialdehyde content under phytohormone treatments; (d,h,l,p) Changes of
soluble protein content under phytohormone treatments.

In contrast to the expression trend in MeJA and ABA response, the expression levels
under IAA and ethylene treatment of GhNAC82 in CCRI 50 exhibited higher than in CCRI
10. This pattern of expression is similar to that described in abiotic stresses (Figure 5). Mean-
while, a peak expression under IAA and ethylene at 12 h and 8 h, respectively (Figure 6i,m).
The content of chlorophyll and MDA also showed a trend of the first decline and then
rise, timing to reach peak emergence broadly matched with the expression peak appeared
(Figure 6j,k,n,o). The trend of changes in soluble protein is basically to decline (Figure 6l,p).
These results all indicated that the induction expression of GhNAC82 in phytohormone-
treated, and was positively induced by MeJA and ABA treatment, negatively induced by
IAA and ethylene treatment. Furthermore, the changes in chlorophyll and MDA content
coincided with the expression patterns of GhNAC82. Additionally, the changes in soluble
protein content basically displayed a decreasing trend under various hormone treatments.

3.7. Overexpression of GhNAC82 in Transgenic Arabidopsis Promotes Leaf Senescence

According to the agarose gel electrophoresis (Figure 7a), showed a high band bright-
ness, and the length of the cloned GhNAC82 gene CDS was 1047 bp, consistent with the
sequencing gene CDS fragment size. Under normal growth conditions, the expression lev-
els of senescence-related marker genes involved in wild type and overexpressed GhNAC82
transgenic A. thaliana were detected, respectively. The internal reference primers (AtActin2)
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and other primers were presented in Table S1. As shown in Figure 7b, the overexpression-
GhNAC82 transgenic plants were exhibited a shorter root length. According to the leaf
senescence phenotype characterized by the wild type and transgenic type Arabidopsis,
GhNAC82-overexpressing plants showed an earlier senescence phenotype than the wild-
type ones (Figure 7c). The expression level of the GhNAC82 gene in the overexpressed
transgenic plants was significantly higher than that in the wild type. In addition, the
expression of AtUBQ7 and AtCAT2 (senescence-related gene) was higher than that in the
wild type too, but the expression of AtSAG12 was lower than wild type (Figure 7d). The
data above indicate that the transgenic type plants’ root system grew slowly and promoted
early leaf senescence compared with the wild type.
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Figure 7. Overexpression of GhNAC82 leads to premature senescence of Arabidopsis plants.
(a) Agarose gel electrophoresis detection; (b) Comparison of root systems between wild-type and
overexpression plants; (c) Comparison of leaf senescence degree between wild-type and overexpres-
sion plants; (d) Expression levels of GhNAC82, AtCAT2, AtUBQ7, and AtSAG12 in wild-type and
overexpression plants.

3.8. Virus-Induced Gene Silencing of GhNAC82 Exhibited Stronger Vegetative Growth

The GhNAC82 gene was silenced in CCRI 10 and CCRI 50 using virus-induced gene
silencing (VIGS). In addition, the expression level of GhNAC82 was detected by qRT-PCR af-
ter the albino phenotype appeared on the leaves of positive control material PYL156::GhPDS.
As shown in Figure 8, after the virus infected cotton seedlings, the expression level of the
GhNAC82 gene in both CCRI 10 and CCRI 50 decreased to 1/20-1/10 times of negative
control. It was indicating that VIGS effectively inhibited the expression of GhNAC82. The
expression levels of other senescence related marker genes in CCRI 50 were higher than that
in CCRI 10, and the expression levels of GhNAC82 in negative control plants were higher
than in GhNAC82-silenced plants. The expression levels of other senescence-related genes
in negative control plants were lower than those in silenced plants, which may be the result
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of other senescence genes playing more roles after silencing GhNAC82. Compared with
negative control plants, GhNAC82-silenced expression increased plant height in CCRI 10,
but there were no noticeable changes in CCRI 50.
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Figure 8. Phenotype and related gene expression of GhNAC82-silenced. (a) Agarose gel electrophore-
sis detection; (b,c). Comparison of plant height among positive control, negative control and silenced
plants in CCRI 10 and CCRI 50; (d–i) Expression of GhNAC82, GhCAT2, GhSAG12, GhWRKY27,
GhWRKY42 and GhWRKY91 in negative control and silent plants. *: Significance at p < 0.05; **: Signif-
icance at p < 0.01.

4. Discussion

Abiotic stress affects the productivity of major agricultural crops worldwide. NAC
transcription factor is the largest family of plant-specific transcription factors that play
crucial roles in plant growth and developmental processes, withstand abiotic stress, and
delayed senescence [56]. It is distribution widespread in bryophytes to dicots genome,
received much attention as an important regulator in gene function and regulation of
expression [57,58]. In our study, we identified the orthologous genes in GhNAC82 upland
cotton and other species, which found the closest phylogenetic relationship genes was
from T. cacao, second, is A. thaliana, followed by G. max, S. bicolor, O. sativa, and V. vinifera
(Figure 1). The relatedness among the paralogous gene pairs was similar to the phylogenetic
relatedness between species. This illustrates that these genes may play similar roles to leaf
senescence and abiotic stress response. Meanwhile, the GhNAC82 promoter regions have
multiple growth and development elements, abiotic stress-responsive elements, light- and
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phytohormone-responsive elements (Figure 2). The cis-elements of the upstream promoter
at the gene transcription start site regulate the expression of GhNAC82 in response to
various abiotic stresses and hormone treatment.

We found that the expression of GhNAC82 was significantly induced for abiotic stresses
and hormone treatment, which were negatively regulated by salt stress, drought stress,
H2O2 stress, MeJA, and ABA treatment, positively regulated by IAA and ethylene treatment
(Figures 5 and 6). This finding was in agreement with the previous study on other plants.
Overexpression of SiNAC1 in Arabidopsis regulated the abscisic acid (ABA) accumulation to
promote natural leaf senescence [59]. Ectopic expression of OsNAC2 accelerated leaf senes-
cence by up-regulated the expression levels of the abscisic acid (ABA) biosynthesis genes
(OsNCED3 and OsZEP1) and abscisic acid catabolism gene OsABA8ox1 [60]. Similarly,
VviNAC33 has been noted to promote leaf senescence by inhibiting the relative expression
of auxin transport-related gene PIN1 [61]. Apart from the above, the contradictory results
among stress treatments and some phytohormone treatments (i.e., salt and ethylene treat-
ment). Plants respond and adapt to stress by upregulating ethylene signal as the negative
feedback regulators, this is consistent with our findings under ethylene treatment.

Previously reported that the NAC transcription factors regulate the formation of lateral
roots, AtNAC2 promotes lateral root development and inhibited the primary root growth to
mitigate damage in A. thaliana [62]. In our study, transcriptome data and qRT-PCR results
showed that GhNAC82 was highest expressed in root, suggesting that GhNAC82 might be
related to root system development to regulated abiotic stress response (Figure 3). In paral-
lel, we have generated the transgenic Arabidopsis overexpressing GhNAC82, and transgenic
plants demonstrated a shorter primary root compared to wild-type (Figure 7). This result is
basically consistent with the results of the previous study in Arabidopsis, Solanum tuberosum,
and Zea mays [59,63]. In addition, AtORS1-overexpression (AtORS1: NAC transcription
factor) has been shown to promote premature senescence, and it was up-regulated the
expression of multiple genes related to salt and H2O2 stress [64]. Combined the results of
GhNAC82-silenced expression increased plant height and delayed senescence indicating
GhNAC82 is a negative regulator of leaf senescence. The combination of these results
and our study illustrating NAC transcription factor family member GhNAC82 plays an
important role in the regulation of leaf senescence, hormone, and abiotic stresses responses.

Similar to in other plants, premature senescence in cotton is a complex polygenic trait,
and it is linked to multiple signal transduction pathways. Based on available studies of pre-
mature senescence, regulating expression levels of NAC genes to achieve elite germplasm
resources that are tolerant to multiple abiotic stresses using gene engineering method and
genome wide association studies (GWAS) [65]. In parallel, investigating the molecular
mechanisms of senescence to develop and grow normally. In summary, elucidation of the
functions of GhNAC82 has important implications to develop crop precision breeding.

5. Conclusions

In this study, we performed the protein sequences and evolutionary relationships anal-
ysis of GhNAC82 and orthologous genes from upland cotton and other species by taking
advantage of the published genome data to date. The expression patterns of GhNAC82 un-
der various tissues and development stages, different abiotic stresses, and phytohormone-
treated were carried out using qRT-PCR. It was found that GhNAC82 was higher expressed
in root, torus, 10 DPA ovules, and fibers in 10 DPA, 20 DPA, and 25 DPA. In addition, these
results indicate that GhNAC82 is negatively regulated by salt stress, drought stress, H2O2
stress, IAA treatment, and ethylene treatment. Meanwhile, it is positively regulated by
the ABA and MeJA treatment. Expression patterns change of GhNAC82 in response to
phytohormone treatments and abiotic stress, the relevant physiological indices are highly
correlated mutually. The phenotype of shorter root length and premature senescence
was exhibited in the 35S::GhNAC82 overexpressing Arabidopsis compared with wild-type.
Lines of GhNAC82-VIGS (virus-induced gene silencing) were showed stronger vegetative
growth compared to the negative control in premature senescence cotton. Based on the
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above results, we reasoned that the GhNAC82 is a negative regulator in plant growth and
developmental processes, transgenic plants overexpressing showed early senescence, and
gene silencing led to delayed senescence.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11111491/s1. Table S1: List of the primers used; Table
S2: Gene information of GhNAC82 and family members in upland cotton; Table S3: The cis -acting
regulatory elements of the GhNAC82 promoter region.
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