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Abstract: Researchers have used quantitative genetics to map cotton fiber quality and agronomic per-
formance loci, but many alleles may be population or environment-specific, limiting their usefulness
in a pedigree selection, inbreeding-based system. Here, we utilized genotypic and phenotypic data
on a panel of 80 important historical Upland cotton (Gossypium hirsutum L.) lines to investigate the
potential for genomics-based selection within a cotton breeding program’s relatively closed gene
pool. We performed a genome-wide association study (GWAS) to identify alleles correlated to 20 fiber
quality, seed composition, and yield traits and looked for a consistent detection of GWAS hits across
14 individual field trials. We also explored the potential for genomic prediction to capture genotypic
variation for these quantitative traits and tested the incorporation of GWAS hits into the prediction
model. Overall, we found that genomic selection programs for fiber quality can begin immediately,
and the prediction ability for most other traits is lower but commensurate with heritability. Stably
detected GWAS hits can improve prediction accuracy, although a significance threshold must be
carefully chosen to include a marker as a fixed effect. We place these results in the context of modern
public cotton line-breeding and highlight the need for a community-based approach to amass the
data and expertise necessary to launch US public-sector cotton breeders into the genomics-based
selection era.

Keywords: cotton breeding; GWAS; genomic prediction; fiber quality; cotton yield

1. Introduction

Plant breeders play a crucial role in the development of new cultivars by selecting
characteristics of contrasting traits in order to ultimately obtain rare individuals that are
recombinant for otherwise opposing phenotypes. For example, in cotton (Gossypium spp.)
breeding there is a strong negative association between total fiber yield and major fiber
quality traits, especially fiber length and strength [1]. This negative association is usually
attributed to pleiotropy, linkage, or both [2]. To overcome these negative associations,
breeders screen large population sizes for the “needle in the haystack”—a plant or line (de-
pending on the stage in the breeding process) that has sufficient fiber quality characteristics
with an overall acceptable yield [3].
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Two allotetraploid (2n = 4x = 52) species comprise the vast majority of the cotton
fiber and cottonseed production worldwide. The two predominant species are Gossypium
hirsutum (Upland cotton, 97% of acreage) and G. barbadense (Pima, Sea Island, Egyptian,
or Extra-Long Staple cotton—3% of acreage) [4]. Although the two species can hybridize
relatively easily, much of the Upland cotton breeding is confined to the domesticated,
elite gene pool due to poor plant performance following hybridization and inbreeding
(“hybrid breakdown,” see Dai et al. [5]). The key difference between the two species is that
G. barbadense has a higher quality (longer, stronger, finer) fiber, whereas G. hirsutum has a
shorter growing season, average fiber quality, and substantially elevated yield [6].

Currently, public-sector cotton breeders in the US screen phenotypic characteristics on
tens of thousands of early generation progeny (F3 and F4) for fiber quality, yield, and yield
components, as well as smaller numbers (10’s or ~100’s of entries) of advanced progeny
(F5 and forward). This annual screening process is expensive, laborious, and requires
the collection of a large volume of hand-picked and/or machine-harvested seed cotton
samples. Following harvest, this large volume of samples must be individually ginned on
a laboratory gin to separate seeds and fibers to obtain information on the gin turnout (ratio
of fiber to combined weight of seed and fiber) and physical fiber properties (e.g., length,
strength, fineness, etc.), measured using standardized equipment such as the High Volume
Instrument (HVI) and/or the Advanced Fiber Information System (AFIS). Little is known
about the trait architecture of many complex traits in cotton due to the low co-occurrence of
identified significant loci shared between studies [7]. Since most cotton breeding programs
operate in a largely closed, inbreeding-based manner, further knowledge is needed at the
breeding-program scale to dissect complex traits and devise genomic approaches to make
cotton breeding easier, faster, and more efficient.

The Pee Dee (PD) Germplasm Enhancement Program has been a long-term cotton
improvement project with USDA-ARS in Florence, SC, USA, since 1935. Over time, breeders
have maintained genetic diversity while combining fiber quality traits, especially fiber
strength and length, with insect/disease resistance and acceptable levels of fiber yield and
yield components [8]. It has been noted that a majority of the commercial cultivars in the US
have a PD line somewhere in the pedigree [9], with similar trends observed in commercial
cultivars developed in China [9], usually attributed to PD lines’ exceptional fiber strength.
Due to the long-term emphasis on enhancing diversity, Campbell et al. (2013) [9] also found
that the PD breeding program will continue to be a useful source of genetic diversity in
the future, although how to efficiently utilize this diversity in a breeding program is an
open question.

Selection for fiber quality and yield is complicated by the contribution of
genotype × environment (G × E) interactions on these traits [1,10]. Generally speaking,
breeders select for trait stability across their candidate environments, although yearly
fluctuations in weather, precipitation, disease pressure, and random field variation can
confound a breeder’s ability to make direct selections on observed phenotype means and
relative ranks [11,12]. Understanding how the genetic underpinnings of key traits in cotton
vary with respect to the loci of variable effect sizes (small to high) or quantitative trait loci
(QTL), and the cumulative effect of many loci (the polygenic effect) in multiple years and
locations is crucial for designing more efficient selection schemes [13]. The stability of these
effects across time is also essential to utilizing genomics-based prediction and downstream
selection programs, where phenotypes are predicted using genotypic information [14].

Research assessing genomic selection across multiple environments in cotton is limited.
A group in Australia studied the utility of genomic selection for cotton fiber length and
strength on historical data and found a similarly favorable performance using a range of
statistical models with a wide variance in prediction accuracy in different environments [15].
Little research has been conducted to explore the potential for genomic selection within the
public-sector US Upland cotton gene pool, except a single study in a structured population
looking at six fiber quality traits with trials in one location [16]. There is substantial oppor-
tunity to build on this work, especially with regard to seed composition traits and yield.
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The goal of this study was to evaluate the genetic underpinnings of critical quantitative
traits, including seed composition, yield, and fiber quality measured with both HVI and
AFIS, across multiple environments in a set of historical cotton breeding materials (the Pee
Dee breeding program), with the longer-term goal of conducting a preliminary analysis
for implementing a genomics-based selection in public cotton breeding programs. We
aimed to explore loci with estimable effects using association mapping and the polygenic
background based on realized genomic relationships.

2. Results and Discussion
2.1. Genomic Relationships between Lines

A total of 15,177 SNPs remained after filtering to retain only polymorphic SNPs
from the CottonSNP63K array. Based on historical pedigree records, this set of 80 lines is
related mostly within four or so cycles of breeding, with dozens of rounds of successive
recombination resulting in admixture between groups [17]. Based on the investigation of
relationships from the SNP data, it does appear that recombination has broken relationships,
with the most significant exceptions occurring within two big genotype blocks, where most
individuals in each of the blocks of the heatmap are (approximately) related at the full- or
half-sib level (Figure 1). Other smaller blocks (2–5 lines) along the diagonal correspond to
parent–child relationships. Previous analysis [17], together with the GRM here, show that
this panel is fairly weakly structured overall, indicating the suitability of this dataset for a
genome-wide association study, as long as the existing population structure is accounted
for when estimating allele effects and p-values.
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Figure 1. Genomic relationship matrix among the 80 lines in this study. The deeper red colors indicate
a higher pairwise relationship between lines at the whole-genome level. The two large blocks in the
top left consist of (1, red arrow) half- and full-sib relatives with PD695 or PD875 parents; and (2, black
arrow) lines selected out of the initial gene pool from the Pee Dee breeding program in the first two
breeding cycles. Breeding cycles are outlined in Campbell et al. (2011) [8].

2.2. Trait Heritabilities

In line with prior estimates [18], the fiber quality traits generally have higher broad-
sense heritabilities than yield and its components (Table 1). For seed traits, seed oil % was
more heritable (comparable to most fiber quality) than seed protein % (closer to most yield
components), supporting a previous genetic analysis on the Pee Dee breeding program
germplasm [19]. Immature fiber content has markedly lower heritability than all other
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fiber quality traits examined here (H2 = 0.22, compared with H2 ≥ 0.75 for all others). Gin
turnout (the ratio of lint to seed and lint) and seed index (seed weight) were the more
heritable yield components, whereas bolls per square meter and boll weight were the least
heritable yield components. Lint yield, the multiplication product of seed cotton yield and
gin turnout, was highly heritable (H2 = 0.96).

Table 1. Broad-sense heritabilities and their standard errors for 20 cotton traits. Overall is calculated
using data from all 14 year–locations, and Environment is the mean of heritabilities and standard
errors calculated for all environments separately.

Overall
(Mean from up to 14 Tests
in Separate Environments)

Environment
Difference in
H2 (Overall-

Environment)
Trait Type Trait

Broad-Sense
Heritability

(H2)

Standard
Error

Broad-Sense
Heritability

(H2)

Standard
Error

Fineness 0.84 0.03 0.37 0.11 0.47
Length Top 25% Mean by
Wt 0.96 0.01 0.79 0.05 0.17

Length Mean by Number 0.92 0.01 0.47 0.11 0.45
Immature Fiber Content 0.22 0.13 0.28 0.11 −0.06
Maturity Ratio 0.75 0.04 0.32 0.12 0.43

Advanced Fiber
Information

System
(AFIS)

Short Fiber Content by Wt 0.86 0.03 0.41 0.09 0.45
Elongation 0.93 0.01 0.40 0.11 0.53
Upper Half Mean Length 0.96 0.01 0.64 0.08 0.32
Strength 0.96 0.01 0.69 0.07 0.27
Micronaire 0.88 0.02 0.68 0.07 0.20
Short Fiber Content 0.80 0.03 0.47 0.10 0.33

High
Volume

Instrument
(HVI)

Uniformity Index 0.88 0.02 0.40 0.11 0.48
Seed Oil % 0.88 0.02 0.50 0.09 0.38Seed

Composition Seed Protein % 0.27 0.14 0.12 0.14 0.15
Bolls/m−2, from Seed
Cotton

0.65 0.06 0.35 0.15 0.30

Boll Wt, from Seed Cotton 0.71 0.05 0.27 0.13 0.44
Gin Turnout 0.75 0.01 0.69 0.07 0.27
Lint Yield 0.75 0.04 0.52 0.12 0.23
Seed Cotton Yield 0.55 0.08 0.48 0.12 0.07

Yield

Seed Index 0.93 0.01 0.60 0.08 0.33
Average 0.78 0.04 0.47 0.10 0.31

AFIS traits are highlighted in teal, HVI traits in yellow, seed traits in purple, and yield traits in red. Wt = weight.

The average single year–location environment broad-sense heritabilities were con-
sistently lower than the overall heritabilities, often having high standard errors (Table 1,
Supplemental Table S1). This suggests that, in general, averaging over more observations
provides more benefit than the penalty accumulated from the added genotype × envi-
ronment variance. The overall heritabilities are essentially the ratio of genotype variance
divided by the sum of genotype variance and proportions of genotype × environment
and residual variance components that contribute to standard errors of genotype mean
comparisons. Lower heritability in certain traits could be associated with (a) a lower genetic
contribution to the trait; (b) differential genotype response by environment (G × E); or
(c) increased residual variance due to measurement or experimental error (difficulty in
measuring the phenotype accurately). Lower heritability translates to a decreased abil-
ity to detect genetic loci affecting the trait, as well as complicates the implementation of
phenotypic or genotypic selection due to high standard errors for the genotype effects.

2.3. Genome-Wide Association Study

We performed an association analysis between each of the 14 replicated field trials (by
environment) and the filtered genome-wide SNP data on the panel of 80 historical cotton
lines from the Pee Dee breeding program (results shown in Supplemental Table S2). The
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genomic inflation factor and QQ-plots showed PCA adequately reflected the population
structure (Supplemental Data S1). The genome-wide association study revealed hundreds
of trait-associated SNPs. Significant SNP-trait associations were identified for all 20 traits
examined (Table 2, Supplemental Table S2). A combination of four individual field trials
(Hartsville 2004, Tifton 2006, Blackville 2004, and Rocky Mount 2006) accounted for 45% of
the SNP-trait associations discovered.

Table 2. Number of significant marker–trait associations discovered by genome-wide association
study. “-” indicates no hits from GWAS or GWAS was not run due to near-zero heritability.

Trait Type Trait Overall
Means

Blackville Florence Hartsville Rocky
Mount Stoneville Tifton Average

per Trait2004 2005 2006 2004 2005 2006 2004 2005 2005 2006 2005 2006 2005 2006
Fineness 657 292 8 30 34 238 96 - 2 240 1 35 18 - 36 112
Length Top 25%
Mean by Wt 212 762 41 - 407 57 59 280 197 419 2 64 123 9 242 192

Length Mean by
Number - 74 - 5 24 9 - - 53 174 1 - - 9 141 33

Immature Fiber
Content - 88 - 39 17 187 199 164 10 52 58 78 9 184 112 80

Maturity Ratio 3 4 58 18 - 300 32 41 - 110 9 65 13 - 150 54

Advanced
Fiber

Information
System
(AFIS)

Short Fiber
Content by Wt 1 1 5 72 21 19 112 168 44 125 - - 9 9 37 42

Elongation - 18 - 201 434 8 - - 3 19 - - 15 - 55 50
Upper Half Mean
Length 471 163 10 76 585 54 - 451 193 12 278 203 108 18 281 194

Strength 284 41 15 30 112 15 570 35 41 47 - 364 535 31 80 147
Micronaire 769 280 10 152 18 - 66 - 353 743 591 48 192 681 228 275
Short Fiber
Content 58 40 10 4 123 307 269 231 - - 3 167 29 426 - 111

High
Volume

Instrument
(HVI)

Uniformity Index 17 30 3 - 26 726 - - 3 - - 1 26 112 - 63
Seed Oil % 180 89 - 155 161 33 151 - 89 129 156 - 230 96 - 98Seed

Composition Seed Protein % 104 21 - 16 - 299 119 - 13 - 454 - 3 24 - 70
Bolls/m2, from
Seed Cotton

91 38 - 2 150 - - 9 - 6 - 6 381 47 440 78

Boll Wt, from Seed
Cotton 9 105 - 10 29 - 3 33 7 22 34 30 - 4 460 50

Gin Turnout 301 276 2 - 133 3 53 628 27 349 897 100 9 - 603 225
Lint Yield 1007 9 38 201 192 - - 1372 - - - 29 628 28 334 256
Seed Cotton Yield 116 75 22 161 92 - - 785 - 3 - 5 469 38 67 122

Yield

Seed Index 605 831 11 15 1 - 278 - 168 - 732 237 8 1 815 247
Average per Environment 244 162 12 59 128 113 100 210 60 123 161 72 140 86 204

Location abbreviations—BL: Blackville, SC; FL: Florence, SC; HV: Hartsville, SC; RM: Rocky Mount, NC; ST:
Stoneville, MS; TFT: Tifton, Georgia. AFIS traits are highlighted in teal, HVI traits in yellow, seed traits in purple,
and yield traits in red. Wt = weight.

Two key findings arose from the GWAS of the 14 field trials. First, some traits (AFIS
length mean by number, HVI elongation and uniformity index, seed protein %, boll
weight and bolls per square meter, and lint yield) yielded little to no marker–trait as-
sociations in 5+ environments, indicated as “-” in Table 3. Second, when marker–trait
associations were detected, the same marker–trait associations were usually detected in
two or fewer environments (Figure 2, Supplemental Figure S1), with the exception of a
handful of marker–trait associations for fiber strength, length, oil, gin turnout, and seed
index Supplemental Table S3.

Traits with below-median heritability (H2 < 0.85) were slightly less likely to have at
least one significant GWAS hit in at least three environments (Fisher’s exact test one-sided
p-value = 0.070; also see Supplementary Figure S2 for a visualization). An increase in the
number of lines present in a field trial would make it easier to detect loci that contribute to
these difficult to dissect traits in a wider range of environments by increasing statistical
power. Considering previous findings, that genotype × environment interactions exhibit
substantial control over many of these traits [13,20], variable effects of the same allele
in different environments could have contributed to the inability to detect many stable
marker–trait associations for most traits.
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Table 3. Comparison of prediction ability building the model using the overall means and predicting
individual environment means.

Prediction Ability Compared to
within Year and Location

(% of within Prediction Ability)

Within Location,
Different Year

Within Year,
Different Location

Different Year
and Location Interpretation

Fineness 95% 84% 94% Within location is easier
Length Mean by
Number 100% 88% 96% Within location is easier

Length Top 25% Mean
by Wt 100% 90% 98% Within location is easier

Immature Fiber Content 95% 63% 92% Within location is easier
Maturity Ratio 93% 67% 91% Within location is easier

Advanced
Fiber

Information
System
(AFIS)

Short Fiber Content by
Wt 84% 72% 82% Within location is easier

Elongation 95% 92% 94% Within location is easier
Upper Half Mean
Length 100% 90% 98% Within location is easier

Strength 100% 95% 97% Within location is easier
Micronaire 67% 65% 62% Within location is easier
Short Fiber Content 36% 71% 47% Within year is easier

High
Volume

Instrument
(HVI)

Uniformity Index 96% 88% 93% Within location is easier
Seed Oil % 100% 76% 100% Within location is easierSeed

Composition Seed Protein % 56% 30% 5% Within location is easier
Bolls/m2, from Seed
Cotton

1% 48% 29% Within year is easier

Boll Wt, from Seed
Cotton 18% 100% 81% Within year is easier

Gin Turnout 98% 96% 95% Within location is easier
Lint Yield 49% 68% 59% Within year is easier
Seed Cotton Yield 13% 44% 34% Within year is easier

Yield

Seed Index 96% 99% 99% Within year is easier
“Within Location, Different Year”—training and testing the model in different field trials, restricted to only those
comparisons that took place at the same location but in different years; “Within Year, Different Location”—training
and testing the model in different field trials, restricted to only those comparisons that occurred in the same year
but in different locations; and “Different Year and Location”—training and testing the model in different field
trials, restricted to only those comparisons that took place in both different years and locations. AFIS traits are
highlighted in teal, HVI traits in yellow, seed traits in purple, and yield traits in red. Wt = weight.
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Figure 2. The number of year–location environments each SNP-trait association was discovered in.
Results are shown for markers identified with at least 5 of 100 resamples of the association test with
FDR-corrected p-value < 20%. The y-axis is plotted with a log 10 transformation. AFIS traits are
highlighted in teal, HVI traits in yellow, seed traits in purple, and yield traits in red.
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The results for cotton fiber quality (length/strength) are more promising, with hun-
dreds of marker–trait associations discovered in multiple environments. The markers
discovered here (especially markers detected in 3+ field trials, Supplemental Table S3) will
be immediately useful to breeders, particularly while high-throughput tools for genome-
wide marker profiling in cotton are not feasible on a program-wide scale (due to cost
or other factors). A potential application of these markers is using Pee Dee lines as the
non-recurrent parent in a high yielding elite × high fiber quality backcross scheme for
marker-assisted selection. Screening the fiber quality is notoriously difficult due to the
high time and monetary cost involved with sampling fibers from individual plants, the
preparation of samples, and testing with the HVI or AFIS. There was ~50% overlap in
markers between the fiber length measurements from AFIS and HVI, although many of
them were still only specific to fiber length parameters from one of these systems. Others
have noted the biological and practical differences between AFIS and HVI and the difficulty
in choosing a single parameter (or a small number of parameters) to predict which fibers
will ultimately have the best spinning quality [21]. Breeders select on fiber quality through
indirect measures of spinning quality, such as fiber bundle strength/length (HVI), or indi-
vidual fiber measurements (AFIS), so a careful evaluation of a breeder’s specific goals is
needed before applying any of these markers into a marker-assisted selection program.

2.4. Genomic Prediction Evaluation through Cross Validation

Although marker-assisted selection, based on markers originating from GWAS or QTL
mapping, has demonstrated success in cotton breeding for nematode resistance [22], it is
generally accepted in quantitative genetics and plant breeding that a genomic selection
scheme is an efficient alternative for complex, highly polygenic traits [23] such as yield and
fiber quality. To be most effective, a genomic selection scheme should be built with a model
that can be used to predict performance across environments. For example, prediction
model training data would be collected from one or more year–location environments
and used to predict performance in one or more different year–location environments. In
some cases, a breeder has data collected from one or more year–location environments
and would be interested in using all of that collected data for prediction model training
to predict the performance of breeding lines not phenotyped in the same year–location
environments in an effort to decrease phenotyping costs. In this study, we compared the
ability to predict the performance between environments and as a baseline compared it to
the ability to predict performance within the same year–location environment(s).

Various genetic models exist to connect genotyping information with phenotypic
observations [24]. One such model is the infinitesimal model, which states that variation in
complex traits is due to the cumulative effect of many small effect loci [25]. In conjunction
with the typical desire of a line development breeder, an additional restriction can be
enacted to exclusively model additive genetic effects. To assess the application of the
infinitesimal model in an additive framework, we used the filtered set of 15,177 SNPs to
estimate realized genomic relationships between all pairs of 80 lines, using the correlation
matrix method. We then fit a GBLUP model using a linear kernel with RKHS [26] to test
the agreement between genomic relationships and the observed phenotype means for
different within- and between-environment scenarios. Correlations between the predicted
phenotype value and observed phenotype mean for the testing set were used to estimate
the prediction ability. Lastly, we evaluated the potential for adding stable GWAS hits as
fixed effects, to see if incorporating additional information from loci with estimable effects
could improve the prediction ability.

2.4.1. Cross-Validation within Overall and Environment Means

For the models trained and tested on the overall means, prediction abilities for fifteen
of the twenty traits were in the moderate to high range (r ≥ 0.5), with the exception of AFIS
immature fiber content, HVI micronaire, seed protein/oil, and boll weight from seed cotton
(Figure 3, Supplemental Figure S3, grey bars). The differences in prediction ability among
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traits could partially be attributed to differences in heritability, which makes sense since
the square root of the heritability is the theoretical maximum genomic prediction ability
(Figure 3, Supplemental Figure S3, red diamond).
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Figure 3. Prediction ability for the genomic best linear unbiased predictor (GBLUP) models trained
and tested on the overall means. Error bars are standard errors. The red diamond corresponds to the
theoretical maximum prediction ability, estimated as the square root of the trait heritability. AFIS:
Advanced Fiber Information System; HVI: High Volume Instrument. AFIS traits are highlighted in
teal, HVI traits in yellow, seed traits in purple, and yield traits in red.

To compare the consistency of prediction ability estimates across the 100 cross-validation
runs, the standard deviation for the 100-point estimates of the prediction ability for each
trait were calculated (Supplemental Table S4). The traits with a low prediction ability
(r < 0.4), immature fiber content, seed oil, seed protein, and boll weight prediction abilities
also had the highest standard deviations, indicating large variability in the prediction
ability, depending on how the data were randomly partitioned during cross-validation
(Figure 4, Supplemental Figure S4, black box and whiskers). The HVI micronaire prediction
ability had a comparable standard deviation to other more easily predicted traits, indicat-
ing micronaire would likely be difficult to predict regardless of the training population
composition. Together, these results indicate the importance in the careful selection of a
training population to drive improved predictions in practice for most traits with a low
prediction ability. In comparison, among the traits studied here, HVI elongation and lint
yield prediction abilities had the two lowest standard deviations, suggesting that the exact
composition of the training population relative to the target population appears less impor-
tant in this panel. Experiments with larger numbers of individuals are needed to further
parse out these differences in training population design and optimization in reference to
genomic selection in cotton breeding.

Disaggregated environment-specific means were extracted for each line to determine
if the prediction ability differed based on whether the overall or the environment means
were used to train and evaluate the model. We hypothesized that the prediction ability
would differ for a trait depending on whether the trait means were modeled from all of
the data compared to a single year’s worth of data due to either an additional replication
across environments (i.e., more precise estimates of line means in the overall means) or
differences in the phenotype distribution (i.e., some outliers in certain environments that
are always difficult to fit accurately in an additive genetic model).
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is r = 0.5, and the green dashed/dotted line is r = 0.7. AFIS traits are highlighted in teal, HVI traits in
yellow, seed traits in purple, and yield traits in red. Wt = weight.

Some traits varied substantially depending on the year–location of the trait means
analyzed in the environment dataset. For example, lint yield prediction ability ranged
from close to zero for both the Rocky Mount 2005 and 2006 means all the way up to
0.64 in Florence 2006, and topping out at 0.66 for the overall means. Especially for yield,
these results indicate the importance of replicated, multi-location, multi-year trials to build
models for employing genomic selection in highly complex traits, such as yield in cotton.
For other traits, model implementation based on one year (or a small number of year–
locations) of data seems more plausible. The prediction ability for fiber strength and length
was more uniform across different subsets of the data, with prediction ability >0.29 in all of
the single environment models (single environment mean prediction ability of 0.44 for fiber
strength, 0.34 for fiber length).

The two seed composition traits, however, proved to be more challenging in genomic
prediction. Seed protein, which had the second lowest heritability of the traits evalu-
ated here (H2 = 0.27), had a uniformly poor prediction ability (0.10 for overall means,
0.03 for single environment). The seed protein % had a strong environmental effect and
a small genetic component [19], meaning that inherent variability in field trials can make
it very difficult to predict a line’s performance on the basis on genomic relationships.
Seed oil, on the other hand, had high heritability (H2 = 0.88), but a long tail in the
phenotype distribution, with some lines having very high and very low seed oil con-
tent (Supplemental Figure S5). For non-continuously distributed traits, an additive genetic
model (such as GBLUP) is unable to capture effects associated with extreme phenotypes
when those extreme values are not genetically distinct from the other lines in the model. To
predict seed oil and protein, further careful selection of germplasm specifically for that pur-
pose and experimental design would be necessary to drive an improved prediction ability.

Our findings show that even with a modest number of genetic markers and small
training population size, encouraging levels of prediction ability can be achieved for many
traits within a breeding program. Almost uniformly, the best cross-validation prediction
ability was achieved when using the least squares’ means for each line from the overall
dataset compared to single year–locations in the environment dataset, likely due to the
ability to more accurately capture a line’s breeding value with more replication (Figure 4,
Supplemental Figure S4). Further research is needed to determine if this trend holds up
with a larger, more diverse panel in an applied cotton breeding program, aiding breeders
in deciding how to allocate limited field resources and time.
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2.4.2. Cross-Validation between Environments

We also examined the possibility of training a model in one environment and then
predicting the unobserved lines’ performance in other environments, i.e., between environ-
ments. This analysis solely utilized the environment dataset, where we trained the model
for each of the 14 field trials, and for each we tested the model with data from each of the
14 field trials (196 combinations for each trait, including 14 self-comparisons equivalent
to Figure 4). Seed cotton yield, fiber yield, boll weight by seed cotton yield, and bolls per
square meter were much more difficult to predict across environments, suffering a ~30–60%
decrease in prediction ability, with larger decreases when predicting between years than
between locations (Table 3, Supplemental Table S5; data from the same year was easier
to predict between). Since these were all dryland trials, and overall weather across the
experimental locations was likely similar between years, these results could be due to the
confounding effects of weather on crop productivity and the resulting genotype × year in-
teractions. These results also highlight the need for highly replicated trials with a variety of
weather conditions to estimate the genetic effects associated with yield and its substituent
components, if the goal is to predict for dryland locations.

For most other traits, however, there was a small penalty associated with training the
model in one environment and then trying to predict the phenotype means of unobserved
individuals in a different location or year. Encouragingly, the HVI length and strength
prediction models transferred to other environments with a minimal penalty (roughly ~10%
decrease in the prediction ability for across location/same year predictions, no penalty for
predicting across years at the same location). For fiber length and strength, in contrast to
yield, it may be better to perform trials at multiple locations regardless of the year, since
this is the situation that seems to be most challenging to the model examined here. These
results further support the immediate application of genomic selection to these high-value
fiber quality traits.

2.4.3. Inclusion of GWAS Hits as Fixed Effects

The GBLUP model is designed to capture the additive genetic component for a trait
by connecting overall genetic relatedness to the lines’ breeding value. The model oper-
ates under the assumption of the infinitesimal model, which states that an individual’s
phenotype is due to the additive effects of many loci across the genome, each with a very
small effect. GBLUP can have a poor prediction ability in the presence of violations to this
assumption—for example, if dominance, epistasis, or a small number of high-effect loci
exert substantial effects on the phenotypes. Since GBLUP is only capturing the additive
component of genetic variance for a trait, it is important to investigate how alternative
genetic models (kernels) can be used to improve the prediction ability (and eventual
prediction accuracy).

We investigated the possibility of integrating individual GWAS hits into the GBLUP
model by comparing models that include and do not include one significant SNP. This
procedure was repeated for each of the SNPs that were stable (detected in ≥3 environments).
For each GWAS hit, we calculated the change in prediction ability observed from including
that GWAS hit as a fixed effect in the model (only in the environments the SNP was detected
in). At the threshold established and used in the preceding portion of this study (BH FDR
< 20%, RMIP ≥ 5), most (%) GWAS hits improved the model prediction ability (Figure 5).
With stricter significance level filtering, a higher proportion of GWAS hits improved the
model prediction ability, although many GWAS hits which provided small prediction
improvements were lost. This analysis highlights the need to carefully select a threshold for
incorporating markers as fixed effects, as there is a fine line between overly- and underly-
conservative. Future experiments with large population sizes will enable more separation
as to which variants should or should not be directly incorporated into the prediction
model, and/or used independently for marker-assisted selection.
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2.5. Outlook for Genomic Prediction in Public Cotton Breeding

Genomic prediction has demonstrated success in many economically important crop
species. The vast majority of cultivated varieties of cotton in the United States are bred
by private companies, carrying patented transgenes for insect resistance and herbicide
tolerance. Although the role of public-sector cotton breeders is constantly evolving, public
breeders have always played key roles in pre-breeding for germplasm improvement, basic
and applied genetic studies, and the introgression of alleles from uncultivated lines or
specific genotypes into elite backgrounds. Genomic selection presents an opportunity for
cotton breeders to accelerate genetic gain in the cotton gene pool by increasing the efficiency
and accuracy of selection.

As a first step, we used GWAS to identify SNPs associated with the 20 traits in this
study. Many loci significant in one environment were not significant in other environments,
a frequent problem in GWAS that can be due to a number of practical or statistical matters,
potentially including a lack of power to detect small-effect loci in this small panel, normal
difficulties in obtaining accurate trait measurements in field trials, and genotype × envi-
ronment interactions. The GWAS results, especially those stable associations discovered
in 3+ environments, can be utilized by breeders to develop genetic screens for marker
assisted selection.

In this study, we evaluated the prediction ability of a standard genomic prediction
model in 20 traits that cotton breeders frequently evaluate in their breeding materials. The
analysis of AFIS and HVI fiber quality traits, seed oil/protein, and yield and its substituent
components revealed heterogeneity in the prediction ability between traits and scenarios.
Generally, heritability was a decent predictor for prediction ability, as revealed by cross-
validation, although seed oil % stood alone in having a high heritability but low prediction
ability. A poor genomic prediction performance can occur when the genetic model differs
from that of the underlying genetic architecture. Seed oil is an oligogenic trait with a
small number of major genes in some crop species such as Brassica spp. and soybean [27],
suggesting further research is needed to identify the underlying allelic variation controlling
cotton seed oil accumulation. These results serve as a reminder that a one-size-fits-all
approach is not possible for genomic selection in cotton breeding, and breeders need
to carefully develop training populations and GS algorithms to accurately model the
underlying genetics and phenotype distribution for their target traits.
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More field trials with a larger training population and high replication are needed
before the genomic prediction for yield or yield components can be feasible in practice.
Public-sector cotton breeders usually limit replicated field trials to <100 entries at the
F5 stage and forward due to challenges in management and logistics for larger sizes of
field trials, as well as increased residual error due to field heterogeneity. However, with
a well-designed training set, perhaps using historical data and lines from within the
breeding program, genomic prediction could be implemented for fiber length and strength
immediately. However, the current genotyping platforms available to cotton breeders are
cost-prohibitive to use at any early stage in the breeding cycle because of the amount of
plants that need to be screened (thousands to tens of thousands), so a low-density, high-
throughput system for assessing genomic relationships is crucial to make genomic selection
a reality for cotton breeders.

For fiber length, one group used direct measures of expression and single nucleotide
variants in 400 known fiber length genes to predict fiber length (measured using up-
per half mean length from HVI) in a biparental population [28]. With a training set of
~100 individuals and testing set of ~350 individuals, they were able to achieve prediction
accuracy >0.80 within the family examined, demonstrating that the use of many genetic
variants distributed across the genome was able to capture the heritable component of
fiber quality. Our results correlate well with these findings using a distributed marker
set, indicating that genomic prediction within environments, even with a relatively small
number of markers and small training set, seems feasible. Given the high linkage disequi-
librium in cotton and long haplotype blocks often spanning many millions of bases [29],
a carefully chosen set of variants should be able to roughly approximate the tested and
proven gene-by-gene approach.

Others have modeled fiber quality using a marker × location interaction term to
predict cotton fiber quality, finding that adding this information to the model significantly
improves the prediction accuracy when trying to predict performance across environ-
ments [15]. They were able to model marker × location interactions since they had 8+ years
of data from each site, so the separation of a line’s performance between environments was
more clear. Directly accounting for G × E is promising for genomic predictions in cotton,
although the biggest challenge is accumulating the amount of data necessary to accurately
capture these high-level interactions (thousands of markers by many environments, plus
the shared effect of a marker across environments). Rogers and Holland (2022) [30] found
that such high-complexity models improve the prediction accuracy only when environ-
ments overlap between the training and testing set, further demonstrating our inability to
capture genotype × environments based on the measurable environmental variables.

3. Materials and Methods

Eighty historical cotton lines from the PD breeding program were genotyped with
the CottonSNP63K array [31], as reported in Billings et al. (2021) [17]. Field trial data
corresponding to these eighty cotton lines was collected between 2004–2006 at six locations
across the mid-south and southeast US cotton belt [32]. In brief, eighty released cotton lines
were planted in an alpha-lattice, randomized incomplete block design, in two-row plots
with two to four replicates depending on the field space availability. Data collected in these
trials included yield, yield components, fiber quality (HVI and AFIS), and seed protein and
oil (Table 4).

Statistical analysis was performed using the method of Campbell et al. (2009) [32] with
PROC MIXED in SAS v9.4 (SAS Institute, Cary NC). The line means for all 20 traits were
estimated for the dataset overall (genotype fixed effects across all environments) and for
each environment individually (calculated from the genotype × environment interactions).
Means were calculated with LSMEANS by fitting the appropriate model with genotype,
location–year, and genotype × location–year interaction as fixed effects, and replicate
nested in location–year and incomplete block nested in replicate as random effects. (Data
were collected and analyzed on eight additional traits which for simplicity will not be
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discussed in the remainder of the paper, but will be provided in supplemental materials,
including AFIS 2.5 percentile length by number, 5 percentile Fiber length by number, Fiber
length by weight; HVI yellowness and reflectance; plant height; and boll density and boll
weight calculated from lint.).

Table 4. Overview of data available for each year–location.

Location Year Comments

Blackville, SC
2004 4

2005 No seed oil % or seed protein %
2006 4

Florence, SC
2004 4

2005 4

2006 No bolls m−2, boll weight, lint, or seed cotton yield

Hartsville, SC
2004 No seed oil % or seed protein %
2005 No bolls m−2, boll weight, lint, or seed cotton yield

Rocky Mount, NC 2005 No high-volume instrument short fiber content
2006 4

Stoneville, MS
2005 No seed oil % or seed protein %
2006 4

Tifton, GA
2005 4

2006 4

“4” observations available for all traits.

Family-mean broad-sense heritability (H2) and the associated standard errors were
calculated for the overall and per environment datasets using a random-effects model fitted
with PROC MIXED in SAS v9.4 [33]. Briefly, a random-effects model is fitted and the pro-
portion of phenotypic variance, excluding errors associated with environments, replicates,
or incomplete blocks, explained by the lines, was calculated. Traits having a very low heri-
tability (H2 < 0.01), indicative of a very low genotypic effect relative to the error component
in the model, were excluded from the corresponding single environment analysis.

Genome-wide association study (GWAS) was performed in PLINK v1.9 [34,35] for the
overall and environment means, with SNPs having a minor allele frequency (MAF) > 0.05
using the linear command. The genomic inflation factor and QQ-plots were used to select
the first five principal components to correct for population structure. Results were filtered
using the 20% Benjamini–Hochberg discovery rate threshold. Due to this population’s
small sample size and known family structure of this population, the resample model
inclusion probability was used as suggested in Bian and Holland (2017) [36]. It allows for
cross-validation and filtering of identified significant SNPs. One hundred random subsets
of the data were generated, each consisting of 80% (64 of 80 lines) of the data. Filtering on
each of the random subsets of SNP data was performed using the maf command in PLINK
to maintain MAF > 0.05 for each marker in the subsetted data. GWAS was run on each
data subset, and the number of GWAS runs detecting each marker–trait association was
recorded. Using the thresholds suggested by Bian and Holland (2017), hits from GWAS
were only retained if they were significant in at least 5 of 100 runs; hits significant in at least
25 of 100 runs were also noted, as well as those SNP-trait associations that exceeded the
more stringent 5% and 1% false discovery rate (FDR) thresholds, and their combinations
with resample model inclusion probability (RMIP) of 5% and 25%—6 total thresholds.
GWAS hits were classified as stable if they were discovered in at least three environments
on the basis of the 5% RMIP and 20% FDR threshold level.

The cross-validation accuracy of the genomic best linear unbiased predictor (GBLUP)
was estimated using the Reproducing Kernel Hilbert Spaces (RKHS) model for the overall
and environment datasets in an 80% train, 20% test arrangement over 100 iterations in
BGLR statistical package [37]. The realized, additive genomic relationship matrix (GRM)
was the correlation matrix with the tcrossprod(G)/ncol(G) commands in R v4.0.5, with the
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centered, scaled genotype matrix produced using recode A in PLINK. Only markers with
MAF > 0.05 in the training set were retained for construction of the GRM. For the overall
and environment means, phenotypes were centered to mean 0 and scaled to variance 1
using the scale function in R. Prediction ability was calculated using the Pearson correlation
coefficient between the predicted phenotype value from GBLUP and the observed pheno-
type value from the rescaled phenotypic means. For each stable GWAS hit, an additional
model was fit that included the same GBLUP component as above, with one GWAS hit
added as a fixed effect. The change in prediction ability was calculated by subtracting the
model’s prediction ability of the model without the GWAS hit from the model’s prediction
ability of the model that included the GWAS hit.

4. Conclusions

In total, our results support the development of further genomic resources to enable
breeders to tailor genetic marker development and utilization within their own breeding
program’s gene pool and outline the need for more field trial data with larger numbers.
Multiple years or locations of data should be used to ensure the chosen model can account
for genotype × environment interactions, either directly or indirectly. Genomic selection
on fiber quality should be possible to implement in the near term, as long as a suitable
genotyping platform for estimating genomic relationships can be identified. Although the
utilization of these resources will come down to the scope and scale of each individual
breeding program, uniform phenotyping and genotyping will allow breeders to share some
information to better estimate marker effects and empower more accurate predictions,
hopefully reducing the number of early generation progeny needed to screen for these
complex traits. More data for fiber and seed cotton yield, as well as seed protein and oil
content, will help determine whether or not a genomic prediction for these traits is possible
in cotton. Other important traits in cotton, such as abiotic and biotic stress, theoretically
have the potential for genomic prediction, although the selection efficiency will be limited
by trait heritability and other practical limitations of large-scale field experiments with
controlled stress conditions. To enable genomic prediction in cotton breeding at scale, the
community needs a low-cost genotyping system that can be used to accurately estimate
relatedness between selection candidates. Shared phenotyping methods and data tracking
systems will also enable data exchange and integration, bringing genomic prediction to
fruition in public cotton breeding programs sooner.
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https://www.mdpi.com/article/10.3390/plants11111446/s1, Table S1: Table of single environment
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for the point estimates of prediction ability over 100 runs of cross validation, for the extended trait
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