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Abstract: A garden plant grafting technique enhanced by cold plasma (CAP) and plasma-treated
solutions (PTS) is described for the first time. It has been shown that CAP created by a dielectric
barrier discharge (DBD) and PTS makes it possible to increase the growth of Pyrus communis L. by
35–44%, and the diameter of the root collar by 10–28%. In this case, the electrical resistivity of the
graft decreased by 20–48%, which indicated the formation of a more developed vascular system at
the rootstock–scion interface. The characteristics of DBD CAP and PTS are described in detail.

Keywords: pear; plasma-activated water; Pyrus communis L.; reactive nitrogen species; reactive
oxygen species

1. Introduction

The main task in nursery is to obtain high-quality planting material in a minimum
period of time. To do this, it is necessary to optimize the process of graft assemblage
between the rootstock and scion. The following factors can be the reasons for poor assembly:
differences in structure, different growth rates of the graft components, different cambium
activity, changes caused by viruses, etc. The search and application of physical methods
that improve the quality of survival of rootstock–scion combinations remain relevant [1]. To
solve this problem, the use of low-temperature plasma seems promising; it is widely used
in areas of natural sciences such as chemistry, physics, biology, medicine, and agriculture.
Since the 1980s, when low-temperature plasma was used to inactivate bacteria, a large
number of original articles have appeared in the literature describing new applications
of low-temperature plasma in the life sciences. Most of these works are summarized in
specialized review articles [2–6]. In addition to phenomenology, numerous articles have
been devoted to the mechanisms of interaction of plasma with the organism, including
practical applications in medicine, veterinary medicine, and plant growing [7–17]. In such
applications, a non-equilibrium low-temperature plasma of atmospheric pressure is used,
in which the temperature of the gaseous medium (rotational temperature of ions) adjacent
to the biological object does not exceed 40 ◦C. This plasma is called cold atmospheric
plasma (CAP). Studies have shown that the biological effects of CAP are mainly due to the
action of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The nature
of plasma-chemical reactions under the influence of CAP is rather complex. The main
reagents are superoxide radical, hydroxyl radical, hydroperoxyl radical, singlet oxygen,
nitric oxide, and peroxynitrite [18,19]. The lifetime of most of these compounds is short, for
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example, the lifetime of the hydroxyl radical is of the order of 1 ns, and the lifetime of the
superoxide radical is of the order of 10 µs. These compounds can be registered only at the
moment of interaction of the plasma with the substance. Typically, the interaction model
of plasma with biological tissues is interaction with aqueous solutions. This is due to two
reasons; firstly, biological objects consist mainly of such solutions, and secondly, most of
the chemical reactions initiated by CAP occur in the liquid and at the air–liquid interface.
As a result of exposure, there is a change in physicochemical characteristics such as pH,
redox potential, and electrical conductivity. Long-lived compounds are formed in liquids:
hydrogen peroxide, ozone, and nitrogen oxides (NOxs) [20,21]. Treatment of biological
objects with plasma-treated solutions (PTSs) is also a promising approach that allows to
achieve a similar result compared to the direct action of CAP [22–26]. Currently, there are
many methods for CAP and PTS generation: based on a dielectric barrier discharge or other
types of discharges, using noble gases, or operating in atmospheric air [27–32]. Despite
the widespread use of CAP in the woodworking industry [32], there is no information in
the literature on the use of CAP in plant grafting. In this work, we are the first to study
the effect of CAP created by dielectric barrier discharge (DBD) and PTS, generated using
glow discharge plasma [33], on the pear grafting quality. We also identified the optimal
processing parameters: the duration of DBD CAP exposure and the PTS dilution rate.

2. Results
2.1. Design of the Field Experiment

The essence of our proposed method is the treatment of graft and rootstock cuts with
DBD CAP or PTS before grafting. Figure 1 shows the sequence of manipulations.
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Figure 1. Experimental protocol.

After that, the rootstock–scion combinations were sent for preservation in a refrigerator.
After 2 months, planting was carried out in a greenhouse, and further growth of the samples
was monitored. The target indicators in determining the quality of the grafting were the root
collar diameter, the scion growth, and the resistivity of the grafting zone, which indirectly
indicates how well the vascular system was formed in the area of contact between the
rootstock and scion. The number of samples in experimental groups and number of
surviving samples (1 month after planting in a greenhouse) are presented in Table 1.
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Table 1. Number of samples in experimental groups and number of surviving samples 1 month after
planting in a greenhouse.

Control Direct Treatment Indirect Treatment

Processing duration, seconds 0 15 30 45 2 2 2

Proportion of PTS diluted in
deionized water − − − − 1:5 1:10 1:20

Number of samples 10 10 10 10 10 10 10

Number of surviving samples
(1 month after planting in a

greenhouse)
8 9 10 9 10 10 9

2.2. Physicochemical Properties of DBD CAP

The CAPKO-1 mobile device developed at the GPI RAS (Moscow, Russia) [34] was
used as a CAP source for the graft treatment. By changing the output device (Figure 2), this
generator can create three types of CAP: plasma jet (with noble gas flow), direct discharge
plasma, and dielectric barrier discharge plasma. The principle of the device operation
was described in detail previously [31,35,36]. For direct treatment of biological surface,
the use of DBD CAP looks promising, since with this type of CAP, it is possible to affect
relatively large areas of a temperature-sensitive sample, and at the same time, there are no
costs associated with the use of noble gases (for example, helium). Input voltage of the
generator is 220–230 V, and power consumption is up to 40 W. The contact surface at the
output device is a replaceable cap made of food-grade silicone with a thickness of ~1 mm.
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Figure 2. Photo of the “CAPKO-1” device for a CAP generation: 1—an output device with a silicone
cap, on the surface of which a DBD CAP is created; 2—power supply unit and control of DBD
CAP generation modes. The power consumption of the device is up to 40 W, and input voltage is
220–230 V.

The key inducers of the biological activity of CAP are reactive oxygen (ROS) and
nitrogen (RNS) species, for example, H2O2 and NOx

−, respectively, which appear in the
liquid phase (intercellular fluid). The used DBD CAP generator allows one to change the
concentration of these compounds in two ways. The first of them is to increase the electric
potential at the electrode of the output device or the pulse duration, which leads to an
increase in the vibrational and rotational temperatures of gas ions interacting with the
intercellular fluid of a biological object. The second way is to increase the time of interaction
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of the plasma with the target. To identify the optimal treatment of the graft in our work,
we used the second approach.

The output device of the DBD CAP source was in close contact with the surface of
the samples (scion and rootstock). Due to the cylindrical shape of the shoots, an area of
no more than 5 × 5 mm was exposed in each moment of time. To process the entire cut
and nearby areas, the output device moves across the surface in a multi-pass approach
(Figure 3). The multi-pass processing duration was 15, 30, and 45 s, with each surface point
being treated for no more than 10 s in total. For 10 s of continuous treatment, the surface
heated up by an average of (14.6 ± 2.0) ◦C (Figure 4); however, with the multi-pass method
of surface activation, the maximum temperature was lower, because the surface had time
to cool down before re-passing the DBD CAP source. We chose the duration of treatment
based on the routine grafting protocol, which requires the fastest connection of scion and
rootstock after cutting. We limited the treatment duration to 45 s, as longer exposure can
lead to dehydration of the cut.
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Figure 4. Changing the surface temperature of a pear branch cut during treatment using DBD CAP.
During 10 s of exposure, surface temperature rose by (14.6 ± 2.0) ◦C. Number of repetitions was 5.

Figure 5 shows the emission spectrum of a DBD CAP with a silicone cap taken with
an AvaSpec-2048 spectrometer. In the range 200–700 nm, the spectrum consisted of the
radiation of the nitrogen N2 second positive system (C3Πu → B3Πg) and NO γ system
(A2Σ+ → X2Π). These emission bands are found in most air discharges.
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To assess the production of H2O2 and NO2
− ions on the surface of rootstock and

scion cuts during processing, we used liquid media as a model object: Milli-Q water and
1% aqueous sucrose solution. According to the degree of RONS generation in deionized
water (Milli-Q), different CAP sources can be compared with each other. Sucrose aqueous
solution was chosen as the simplest model for xylem sap. This model characterizes RONS
generation at the cut surface more closely than the deionized water model.

The pH when processing Milli-Q water decreased from 6.3 to 4.7, and when processing
sucrose solution, from 5.8 to 4.3 (Figure 6). There was a significant difference in the
production of H2O2 and NO2

− for these two models. After treatment of the sucrose solution
for 45 s, an order of magnitude lower concentration of nitrite ion was registered. This is
explained by the oxidation of the nitrite ion NO2

− to nitrate ion NO3
− when interacting

with the ·OH radical: NO2 + ·OH→ HNO3 [21,23]. Significantly higher production of ·OH
in the sucrose solution was evidenced by the concentration of hydrogen peroxide H2O2.
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− when DBD CAP was exposed to Milli-Q

water and aqueous sucrose solution (1%) for 15, 30, and 45 s. Number of independent experiments was
5. * indicates a significant difference at 5% level in comparison with Milli-Q group with 1%-sucrose
solution group at same treatment time (p < 0.05, Mann–Whitney U test). ** indicates a significant
difference at 5% level in comparison with the control (treatment time 0 s) (p < 0.05, ANOVA). Data
are presented as mean values and standard errors of the mean.
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2.3. Physicochemical Properties of PTS

The second approach of graft processing that we used in this work is the so-called
indirect method. In this case, the biological object is affected by the plasma-treated solution
(PTS). To generate the PTS, we used a source of low-temperature plasma, which is formed
by high-frequency glow discharge in water vapor. The structure and features of the source
operation were described previously [33]. The initial liquid was an aqueous solution of
NaCl (0.1 M). The solution was treated with glow discharge for 40 min. The physicochemical
properties of the PTS are shown in the Table 2.

Table 2. Physicochemical properties of PTS after treatment with high-frequency glow discharge of an
aqueous solution of NaCl 0.1M.

Exposure
Time, min

Electrical
Conductivity,

mS/cm
O2, µM pH Redox, mV NO3

−, mM H2O2, mM

0 7.3 ± 0.5 273 ± 5 6.7 ± 0.1 303 ± 7 <0.01 <0.01

40 24.9 ± 1.2 * 261 ± 8 8.3 ± 0.2 * 598 ± 26 * 22.05 ± 0.98 * 7.12 ± 0.68 *
* Statistical differences relative to control (p < 0.05, Student’s t-test).

Previous experiments [37,38] on planting material processing with this type of PTS
have shown that the result can vary over a wide range, up to the death of an object. It is
important to find the concentration of PTS that is most effective for a particular biological
object and the duration of its exposure. We settled on three options for PTS diluting in
deionized water (DW): 1:5, 1:10, and 1:20. When PTS is diluted with deionized water, the
concentration of RONS is reduced by the same proportion, and therefore, it allows one to
change the degree of exposure of the PTS to the sample. Duration of rootstock and scion
cuts immersion in PTS was 2 s. After immersion, the excess liquid was removed by shaking.

2.4. Study of the Effectiveness of the Action of DBD CAP and PTS on the Graft

“Lada” cultivar of Pyrus communis L. was selected as test sample; it was grafted onto
a wild Pyrus communis L. The processing of rootstock and scion cuts was carried out in
March 2021. For this, DBD CAP (so-called direct treatment) and PTS (so-called indirect
treatment) were used. The change in the intensity of treatment, that is, the change in the
concentration of the ROS and RNS generated in the surface layer of the object, was carried
out during direct treatment by changing the duration of DBD CAP exposure (15, 30, and
45 s), and indirect treatment by PTS diluting in DW in three proportions—1:5 (PTS:DW),
1:10, and 1:20.

The state of the samples in each experimental group was monitored for 6 months (until
September 2021). For the first 2 months (until May), the shoots were stored in a refrigerator
at a temperature of (3 ± 1) ◦C and a relative air humidity of 80%, and for the next 4 months,
the shoots grew in a greenhouse at a temperature of (35 ± 1) ◦C and an air humidity of 85%.
The dynamics of the shoots’ development is shown in Figure 7. The analyzed parameters
during the observation were the scion growth and the root collar diameter.
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Figure 7. Development of pear shoots within 4 months after planting in a greenhouse at an air
temperature of (35 ± 1) ◦C. The results of the root collar diameter (a,b) and the scion growth (c,d)
measurements are presented for 7 experimental groups: control, direct treatment with various DBD
CAP exposure durations (15 s, 30 s, and 45 s), and indirect treatment with PTS diluted in DW in
three proportions (1:5, 1:10, and 1:20). Number of samples in each experimental group is presented in
Table 1, and number of measurement repetitions was 5. * indicates a significant difference at 5% level
in comparison with the control (p < 0.05, ANOVA). Data are presented as mean values and standard
errors of the mean.

The change in the root collar diameter and the scion growth during 4 months of pear
growth in the greenhouse (6 months after the treatment) was well-approximated by a
linear function. The values of these parameters after the entire observation period differed
significantly in the studied groups.

When treated with DBD CAP for 15 s, the mean root collar diameter was 4% higher
than the mean root collar diameter of the controls; for 30 s, it was 20% higher, and for 45 s,
it was 10% higher. The scion growth when treating with DBD CAP for 15 s exceeded the
scion growth in the control group by 22%; when treated for 30 s, it exceeded control by
44%; and when treated for 45 s—by 35%.

PTS processing showed similar patterns. When diluted 1:20, the average root collar
diameter exceeded the average root collar diameter of the control samples by 3%, and
the average growth was 6% higher. When diluted 1:10, the average root collar diameter
exceeded the average root collar diameter of the control samples by 11%, and the average
growth was 23% higher. When diluted 1:5, the average root collar diameter exceeded the
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average root collar diameter of the control samples by 28%, and the average growth was
37% higher.

One of the methods for assessing the vascular system differentiation in the rootstock–
scion interface is to measure the electrical conductivity of the graft (less is better) [39].
Comparative results are shown in Figure 8. The lowest value of resistivity compared to
the control when processing samples with DBD CAP was at a duration of exposure of 30 s.
When processed with PTS, the lowest resistivity values were at 1:5 and 1:10 dilutions.
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5% level in comparison with the control (p < 0.05, ANOVA). Data are presented as mean values and
standard errors of the mean.

3. Discussion

Recent studies have shown that low-temperature plasma treatment is unique and
environmentally friendly. As well as low- and high-voltage electrical discharge [40,41],
pulsed magnetic field [42], and UV-A rays [43], CAP technology has shown many advan-
tages in the agriculture sector [44,45]. Deferent plasma generation methods and setups
have been presented and have also shown that plasma-treated solutions can be used along
with CAP sources for “indirect” treatment [46,47]. The influence of plasma treatment on
DNA damage, gene expression, enzymatic activity, morphological and chemical changes,
germination, and resistance to stress is under research [48–50]. Many papers have reported
promising results in this wide variety of applications [51,52].

For example, dielectric barrier discharge cold atmospheric plasma could significantly
improve basil (Ocimum basilicum L. cv. Genovese Gigante) plants’ physiological and bio-
chemical traits, including ion leakage, water relative content, proline and protein accumu-
lation, chlorophyll and carotenoid contents, and antioxidant activity [53]. High-voltage
electrical discharge plasma technology showed the potential to improve drought and salt
tolerance in wheat [40]. Short-time pre-sowing treatment of stevia seeds with CAP and
electro-magnetic field could enhance of biosynthesis of steviol glycosides responsible for
the sweetness [54]. A positive effect of CAP on soybean germination could be achieved,
and the percentage of germination increased by almost 20% compared to the untreated
control [55]. Additionally, CAP treatment may be applicable in postharvest and food
production as it reduces the frequency and diversity of fungal strains [56].

Despite numerous studies in the field of plasma agriculture, the use of CAP for plants
grafting is not covered in the studies. For optimal plant growth after grafting, the formation
of a water and nutrient transport system and the quality of the rootstock–scion assemblage
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is of fundamental importance. As we showed in this paper, the use of DBD CAP and PTS
allows one to modify existing grafting techniques to improve a number of key performance
indicators and seems promising to boost productivity.

Both parts of the rootstock–scion combination were treated with either DBD CAP or
PTS. DBD CAP treatment was carried out using a scanning multi-pass approach for 15, 30,
or 45 s. Moreover, each local area of the cut was not exposed to DBD CAP for more than 10 s
in total, in order to minimize heating of the samples. The discharge was activated between
a covered dielectric driven electrode and a specimen surface applied with a floating (free)
potential. The generation of RONS in liquids upon exposure to DBD CAP is shown in the
Figure 6. In the xylem sap model, a significant amount of hydrogen peroxide was produced,
which plays an important role in a number of processes for plants [57].

The concentration of RONS in the generated PTS is shown in Table 2. The reduction in
concentration was achieved by diluting PTS in DW (Milli-Q); in this case, the concentration
of RONS was changed in the same proportion. This approach made it possible to choose
the optimal PTS composition without changing the power characteristics of the plasma
generator and the treatment duration. PTS was diluted in DW in three proportions: 1:5,
1:10, 1:20. The scion and rootstock were immersed in the PTS solution for 2 s.

After treatment, grafting was carried out immediately using the «whip and tongue»
technique. The combined effect of DBD CAP and PTS has not been evaluated, and therefore,
this is a prospect for future research.

From the cumulative results of the measurements, the most effective treatment modes
with the DBD CAP were 30 and 45 s of exposure. At the same time, treatment for 45 s
showed a slight decrease in the quality of the graft. We associated this with cuts drying
due to a longer exposure to the air during all grafting stages. Submerging the cuts in the
PTS also resulted in a significant improvement in the key performance indicators of the
graft. The most suitable dilutions were in the ratio of 1:5 and 1:10; however, during this
series of experiments, we did not reveal the maximum allowable concentration of PTS,
the achievement of which leads to growth inhibition. Additional attention will be paid to
solving this problem in future experiments.

The results can be explained by the action of several factors.

1. When CAP is applied to wood surfaces, a significant reduction in surface roughness
can be achieved [58]. This helps to reduce the total volume of air gaps between
the grafted parts, and consequently, to reduce the square of the insulating layer,
which is formed from the contents of damaged cells and slows down the graft union
formation [59].

2. Surface activation occurs. The activation process is a multi-stage modification of
the uppermost layer and near-surface region up to 300 µm in depth [32] by plasma
components: electric field, ultraviolet light, electrons, and reactive nitrogen and
oxygen species. In particular, metastable nitrogen and ultraviolet photons from the
NO-γ system, which are generated in the DBD CAP (Figure 5), interact with ambient
oxygen to form ozone and atomic oxygen. This contributes to the lignification of the
contact zone [60], which is necessary for the formation of a new vascular system [39].

3. Surface activation leads to an increase in the O/C ratio on the surface [61], that is, an
increase in polar oxygen-containing functional groups: CO, OC=O, −OH, etc. [62,63].
This contributes to a significant improvement in surface wettability.

Taken together, these effects significantly improve the adhesive properties of the
rootstock and scion surfaces and the resistance of the grafted plant to subsequent physi-
cal stresses.

PTS processing from the entire set of operating factors is limited by the action of
long-lived ROS and RNS. Nevertheless, as shown during the experiment, the selection of
the optimal concentration of PTS could achieve the same efficacy as with the treatment
with DBD CAP.

The physiological responses of plants to the plasma treatment may be variety-dependent
due to different genetic profiles and other abiotic factors [64], and the complex mechanisms
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of CAP interactions with biological objects are not fully understood. Thus, there are great
prospects in the study of the use of CAP and PTS for plant grafting.

4. Materials and Methods
4.1. CAP Generation Method

For the processing of the stock and scion cuts, a cold plasma source “CAPKO-1”
developed by our team was used [34]. The operating principle and characteristics are
described in detail in [31], and the appearance is shown in Figure 2. The generator was set
to create a DBD CAP. The output device of the generator (Figure 9) is a dielectric tube (4)
fixed in a hard case (5), forming an ionization chamber (3), inside which a piezotransformer
(PT) (1) is installed, so as not to impede the mechanical vibrations that occur during the PT
operation. A low-voltage alternating current of a resonant frequency (60 V, 21.5 kHz) from
a generator (6) is supplied to the input part of the PT. A high-voltage of ~6 kV appears
at the discharge electrode (2), which is used to create a plasma. This design of the CAP
generator contains a cap (9) made of food-grade silicone 1 mm thick (10), tightly fitting the
PT’s output, which allows it to operate in a dielectric barrier discharge mode at ~1 mm
from the cap surface.
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Figure 9. Scheme of the CAP generator output device: 1—piezotransformer, 2—discharge electrode,
3—ionization chamber, 4—dielectric tube, 5—hard case, 6—voltage generator, 7—output end of the
dielectric tube, 8—device for changing the shape of the output end of the tube, 9—dielectric cap, and
10—dielectric layer.

The emission spectra of DBD CAP presented in Figure 5 were recorded using an
AvaSpec-2048 spectrometer (Avantes, Apeldoorn, The Netherlands). The change in object
temperature during processing (Figure 4) was determined using an Optris PI 640 infrared
camera (Optris, GmbH, Berlin, Germany) and Optris PIX Connect software (Optris, GmbH,
Berlin, Germany).

4.2. PTS Generation Method

The PTS was created using a glow discharge plasma [33]. The device consists of a high-
frequency current generator, a plasma-chemical reactor, and a rotor (Figure 10). A weak
aqueous solution of a strong electrolyte is poured into container 1. Active (7) and neutral (4)
electrodes are immersed in an aqueous solution (13). High-frequency current is supplied
to the electrodes through brushes (2) and (8) located on the rotor axis (3). Simultaneously
with the high-frequency current, the rotor unit B is turned on. The electrodes are rotated by
an electric motor (10), which is powered from a controlled source (11).



Plants 2022, 11, 1373 11 of 17Plants 2022, 11, x FOR PEER REVIEW 11 of 16 
 

 

  

(a) (b) 

Figure 10. The photo (a) and the structure (b) of the PTS generator: 1—tank with activated solution; 
2—neutral electrode (NE) brush; 3—rotor axis; 4—replaceable parts of the neutral electrode; 5—
reactor lid; 6—dielectric loading; 7—replaceable active electrodes; 8—active electrode (AE) brush; 
9—kinematic axis; 10—electric motor; 11—controlled power source; 12—platform; and 13—aque-
ous solution. 

A current with a frequency of 440 kHz and a shape close to sinusoidal is supplied to 
the electrodes. The maximum output power of the power supply is 450 W. The initial 
liquid was an aqueous solution of NaCl (0.1 M). The solution was treated with a glow 
discharge plasma for 40 min. 

4.3. Physicochemical Properties of Aqueous Solutions 
The content of nitrite and nitrate anions in the samples was determined using the 

Griss reagent according to the method described previously [37,65] using a Multiscan FC 
plate reader (TermoScintific, Vaanta, Finland), and the optical density of the medium was 
measured at a wavelength of 546 nm. Sodium nitrite and sodium nitrate solutions of 
known concentration were used for calibration. Number of repetitions was 5. 

Redox potential, pH, and electrical conductivity were measured on an S470 Seven-
Excellence high-precision measuring station (Mettler Toledo, Columbus, OH, USA). The 
sensor electrodes InLab Expert Pro-ISM and InLab731-ISM (Mettler Toledo) were used. 
During measurements, aqueous solutions were mixed in a laminar mode using a magnetic 
stirrer (rotation frequency 3 Hz). All measurements were carried out at a solution temper-
ature of 20 ± 1 °C. Number of repetitions was 5. The experimental measurement details 
were described previously [66]. 

The concentration of molecular oxygen dissolved in water solutions was measured 
using an AKPM-1-02 polarograph (Bioanalytical systems and sensors, Moscow, Russia) 
[67]. The measurements took into account the atmospheric pressure, measured with a 
PRX-7001t (Casio, Tokyo, Japan), and the temperature of the samples, measured with a 
thermocompensating electrode. All measurements were carried out at a solution temper-
ature of 20 ± 1 °C. Number of repetitions was 5. The experimental measurement details 
were described previously [68]. 

For the quantitative determination of hydrogen peroxide in aqueous solutions, a 
highly sensitive method of enhanced chemiluminescence in the luminol-p-iodophenol-
horseradish peroxidase system was used [69–71]. The luminescence intensity was deter-
mined using a Biotox-7A chemiluminometer (ANO ICE, Moscow, Russia). The initial con-
centration of hydrogen peroxide used for calibration was determined spectrophotometri-
cally at a wavelength of 240 nm with a molar absorption coefficient of 43.6 (M−1 × cm−1). 
The “counting solution” contained: 1 cM Tris-HCl buffer pH 8.5, 50 μM p-iodophenol, 50 
μM luminol, and 10 nM horseradish peroxidase. Number of repetitions was 5. 

Figure 10. The photo (a) and the structure (b) of the PTS generator: 1—tank with activated solution;
2—neutral electrode (NE) brush; 3—rotor axis; 4—replaceable parts of the neutral electrode; 5—
reactor lid; 6—dielectric loading; 7—replaceable active electrodes; 8—active electrode (AE) brush;
9—kinematic axis; 10—electric motor; 11—controlled power source; 12—platform; and 13—aqueous
solution.

A current with a frequency of 440 kHz and a shape close to sinusoidal is supplied to
the electrodes. The maximum output power of the power supply is 450 W. The initial liquid
was an aqueous solution of NaCl (0.1 M). The solution was treated with a glow discharge
plasma for 40 min.

4.3. Physicochemical Properties of Aqueous Solutions

The content of nitrite and nitrate anions in the samples was determined using the
Griss reagent according to the method described previously [37,65] using a Multiscan FC
plate reader (TermoScintific, Vaanta, Finland), and the optical density of the medium was
measured at a wavelength of 546 nm. Sodium nitrite and sodium nitrate solutions of known
concentration were used for calibration. Number of repetitions was 5.

Redox potential, pH, and electrical conductivity were measured on an S470 SevenExcel-
lence high-precision measuring station (Mettler Toledo, Columbus, OH, USA). The sensor
electrodes InLab Expert Pro-ISM and InLab731-ISM (Mettler Toledo) were used. During
measurements, aqueous solutions were mixed in a laminar mode using a magnetic stirrer
(rotation frequency 3 Hz). All measurements were carried out at a solution temperature
of 20 ± 1 ◦C. Number of repetitions was 5. The experimental measurement details were
described previously [66].

The concentration of molecular oxygen dissolved in water solutions was measured
using an AKPM-1-02 polarograph (Bioanalytical systems and sensors, Moscow, Russia) [67].
The measurements took into account the atmospheric pressure, measured with a PRX-7001t
(Casio, Tokyo, Japan), and the temperature of the samples, measured with a thermocom-
pensating electrode. All measurements were carried out at a solution temperature of
20 ± 1 ◦C. Number of repetitions was 5. The experimental measurement details were
described previously [68].

For the quantitative determination of hydrogen peroxide in aqueous solutions, a highly
sensitive method of enhanced chemiluminescence in the luminol-p-iodophenol-horseradish
peroxidase system was used [69–71]. The luminescence intensity was determined using
a Biotox-7A chemiluminometer (ANO ICE, Moscow, Russia). The initial concentration
of hydrogen peroxide used for calibration was determined spectrophotometrically at a
wavelength of 240 nm with a molar absorption coefficient of 43.6 (M−1 × cm−1). The
“counting solution” contained: 1 cM Tris-HCl buffer pH 8.5, 50 µM p-iodophenol, 50 µM
luminol, and 10 nM horseradish peroxidase. Number of repetitions was 5.
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4.4. Plants Samples and Field Experiment

The treatment of samples and their planting were carried out in March 2021 in the nurs-
ery of Institute for Engineering and Environmental Problems in Agricultural Production
—branch of “Federal Scientific Agroengineering Center VIM” (Saint Petersburg, Russia).
The selection of samples for the rootstock and scion was carried out in accordance with
the requirements for the quality of fruit crops GOST R 53135-2008. “A wild pear Pyrus
communis L. was used as a rootstock because it is weather resistant, and “Lada” cultivar
(#8007810 in the registry of FSBI «Gossortcommission») of Pyrus communis L. was used as a
scion because this cultivar is the most demanded and significant for the Russian region. In
each experimental group, including the control (without any treatment), 10 samples were
prepared. After treatment, the grafted shoots were sent for preservation in a refrigerator
with an air temperature of (3± 1) ◦C, relative air humidity of 80%, and humidity in the root
zone of 90%. After 2 months, the samples were removed from the refrigerator and randomly
planted in a greenhouse with an air temperature of (35 ± 1) ◦C and an air humidity of 85%
(Figure 11). The scion growth and the diameter of the root collar were measured monthly.
Observations were carried out within 4 months after planting.
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Figure 11. Treated and grafted pear samples of the “Lada” cultivar: (a) before being sent for preservation
(2 months) in a refrigerator (3 ± 1) ◦C; (b) 1 month after planting in a greenhouse (35 ± 1) ◦C.

4.5. Graft Conductivity Measurements

To assess the quality of rootstock–scion formation, measurements of the electrical
resistance (impedance) of the cambium layer in the graft were carried out. After 4 months
of growth of seedlings in the greenhouse (after 6 months from the moment of processing),
they were delivered to the laboratory. The root system of the seedlings was washed in
running water and placed in stock solution: KNO3 (5 mM), Ca(NO3)2·4H2O (2.5 mM),
MgSO4·7H2O (2 mM), and NH4NO3 (1 mM). The resistance was measured using an E6-13A
teraohmmeter (Radio Factory RET, Tallinn, Estonia) and needle-type electrodes with a
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diameter of 0.7 mm, made of a silver wire coated with silver chloride. One probe was
immersed in the stock solution, and the second was introduced into the cambian layer
of the bark (Figure 12). The resistance of the graft was determined by calculating the
difference in resistance between two points: located above the graft and located below it.
The distance between these points was 80 ± 5 mm. To minimize the error, measurements
were repeated five times. An AKIP-4122/1 digital oscilloscope (Prist, Moscow, Russia) was
connected to the teraohmmeter. This oscilloscope was connected to a personal computer
with the PicoDiagnostics software (Pico Technology, Cambridgeshire, UK) installed.
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Figure 12. Measurement of the electrical resistance of the graft in a pear seedling 6 months after
treatment. The seedling was immersed in the stock solution, and the measuring electrodes were
made of silver and coated with a layer of silver chloride. 1—electrode immersed in stock solution;
2—electrode inserted into the cambian layer of the bark. The resistance of the graft was determined
by calculating the difference in resistance between two points: when (2) located above the graft and
located below it. Number of samples in each group was 5, and number of measurement repetitions
was 5.

4.6. Statistics

Data are presented as means ± SEM. The normality of distributions was established
by the Kolmogorov-Smirnov criterion. When the distribution was normal, Student’s t-test
was used to compare independent groups. When the distribution differed from normal,
the Mann–Whitney U test was used to compare two independent groups. ANOVA was
used for multiple comparisons.

5. Conclusions

For the first time, an approach using DBD CAP and PTS was proposed and described,
which allows one to improve existing methods of garden plants grafting and significantly
increase the rate of plant entry into the market. The test sample was a Pyrus communis L. of
the “Lada” cultivar.

The modes of DBD CAP generation, treatment duration, and PTS concentration are
described, which makes it possible to achieve significantly more attractive key indicators
of the graft quality compared to control samples.

1. The treatment of the cuts surface using the plasma source “CAPKO-1” for 30–45 s
increased the scion growth by 35–44% and the root collar diameter by 10–20%. In this
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case, the electrical resistance of the graft union, which characterizes the differentiation
of the functional vascular system (the less, the better), decreased by 20–40%.

2. Cut surface treatment with the PTS described in this article (aqueous solution of NaCl
treated for 40 min with a glow discharge) may require preliminary dilution in DW.
The result obtained for a 1:5 ratio demonstrated an increase in the scion growth by
37% compared to the control and an increase in the root collar diameter by 28%. The
electrical resistance of the graft was reduced by 48%.

The results demonstrated that use of CAP and PTS in plant grafting seems promising
to boost productivity. However, the optimum duration of exposure to DBD CAP and
the optimum dilution of PTS must be specified for each rootstock–scion combination.
Furthermore, complex physical and chemical processes during CAP interaction and after it
can be investigated in detail.
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