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Abstract: Soil bacterial communities are involved in multiple ecosystem services, key in determin-

ing plant productivity. Crop domestication and intensive agricultural practices often disrupt spe-

cies interactions with unknown consequences for rhizosphere microbiomes. This study evaluates 

whether variation in plant traits along a domestication gradient determines the composition of root-

associated bacterial communities; and whether these changes are related to targeted plant traits 

(e.g., fruit traits) or are side effects of less-often-targeted traits (e.g., resistance) during crop breed-

ing. For this purpose, 18 tomato varieties (wild and modern species) differing in fruit and resistance 

traits were grown in a field experiment, and their root-associated bacterial communities were char-

acterised. Root-associated bacterial community composition was influenced by plant resistance 

traits and genotype relatedness. When only considering domesticated tomatoes, the effect of re-

sistance on bacterial OTU composition increases, while the effect due to phylogenetic relatedness 

decreases. Furthermore, bacterial diversity positively correlated with plant resistance traits. These 

results suggest that resistance traits not selected during domestication are related to the capacity of 

tomato varieties to associate with different bacterial groups. Taken together, these results evidence 

the relationship between plant traits and bacterial communities, pointing out the potential of breed-

ing to affect plant microbiomes. 

Keywords: breeding; microbiomes; rhizosphere bacterial communities; tomato domestications; 

traits 

 

1. Introduction 

Over time, agricultural techniques have changed to meet the growing demand for 

food and agricultural products of the world population. Agricultural productivity has in-

creased over the last century through, amongst others, improved varieties and increased 

use of agrochemicals, leading to environmental issues, weakened cropping systems and 

increased demands for sustainable agriculture [1]. 
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The plant rhizosphere contains a large diversity of microorganisms that are involved 

in multiple ecosystem services, including an increase in plant nutrition and disease sup-

pression [2]. The composition of the plant-associated microbiome is determined by the 

interplay of the host plant characteristics and the surrounding soil conditions [2–4]. Plants 

structure their microbiome through the release of a specific blend of exudates, the compo-

sition of which depends on the plant species or variety, being phylogenetically conserved, 

even at the genotype level [5,6]. Conversely, soil microorganisms affect a variety of host 

plant traits, including nutritional content and morphology, as well as activating defence 

pathways and the emission of plant volatile organic compounds [2,5,6], thereby altering 

the interactions with insect herbivores or plague enemies aboveground [7]. 

Through domestication, modern plant varieties have been developed with different 

fruit shapes, colours and sizes adapted to consumer preferences [8,9]. Indeed, in many 

crops, breeding has focused on phenotype, such as fruit size and yield [9,10], and other 

traits favouring resistance and defence have been left aside, yielding crops more suscep-

tible to pests and diseases [11–13]. As an example, between the studied traits that could 

impact plant resistance, glandular trichomes of tomato cultivars have been seen to provide 

refuges for pests that hamper host finding by parasitoids [14]. Moreover, reduced volatile 

emissions due to domestication have been shown in maize, cranberry and lupin [15–17], 

with potential effects on pest repulsion/attraction. In a previous field study evaluating the 

response of 23 tomato accessions to important agricultural pests, higher tolerance levels 

were evidenced in wild and early domesticated accessions than in modern ones, although 

the differences could not be linked to the phylogenetic distance between accessions [11]. 

The effects of domestication on plant traits are, thus, complex, and a diversity of genes 

and gene sets have been associated with domestication (reviewed in [18]). The reduced 

genetic and associated trait diversity in domesticated varieties could indirectly impact 

ecosystem services, such as pest control by natural enemies [14,19,20]. Indeed, genetically 

diverse fields harbour diverse insect populations, including natural enemies, thereby im-

proving biological pest control [19,20]. 

Despite this knowledge on domestication effects, the potential role of plant-associ-

ated microbiomes in plant resistance or tolerance to diseases has been overlooked. It is 

known that in many crops such as tomato, domestication and breeding together with in-

creased use of pesticides and fertilisers have resulted in varieties with reduced investment 

in costly beneficial plant‒microbe interactions below and aboveground [1,6,7,9,14,21]. Ge-

netic variation between varieties affects morphological traits such as root growth, archi-

tecture and exudate composition, which may impact microbiome assembly [22]. It is then 

assumed that, despite the lack of studies on plant-associated microbiomes along the do-

mestication process, humans have potentially altered microbiome compositions by, e.g., 

altering plant metabolic activity [12,23,24]. 

There are potential links between plant fruit traits (selected during breeding) and the 

degree of domestication with associated soil microbiomes. Studies in pear and pepper 

have shown that varieties with large fruits or high fruit sets divert more photosynthates 

to growth than smaller fruited varieties [25,26], potentially altering the release of exudates 

through roots. Modern cultivars also differ in root architecture compared to their wild 

relatives, and the consequent changes in root exudation profiles may also impact rhizo-

sphere community composition [6]. In general, modern cultivars have shallower roots due 

to readily available macronutrients and water in agricultural fields and higher exudation 

of simple sugars [27]. A study comparing wild and modern bean varieties showed that 

differences in root length partly explains the divergence in rhizobacterial communities 

[28]. Since resistance traits are not very specific and often involve changes in metabolite 

profiles at the root or systemic level, we expect that soil-associated bacterial communities 

are affected to a wider extent by these traits than those related to fruit. Furthermore, re-

sistant plants are expected to recruit microbes to alleviate stress [22]. 
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Previously, we explored how domestication impacted a selection of 27 tomato acces-

sions from plant ancestors to modern cultivars in terms of function, revealing mainte-

nance of all functional characteristics, with some specific pathways being modified [29]. 

In this study, we extend on these results using the data of 18 of these tomato varieties to 

(i) reveal trends in tomato traits during domestication by differentiating between fruit and 

resistance traits, and (ii) explore to what extent these traits are associated with root-asso-

ciated bacterial community composition. We expect that crop domestication caused dif-

ferences in resistance and fruit traits across tomato varieties, with resistance traits having 

a higher impact on bacterial community composition. Knowledge on the extent to which 

root-associated bacterial microbiomes covary with targeted (fruit) and untargeted (re-

sistance) domestication traits will provide insights into the potential consequences of 

breeding for plant microbiome composition. 

2. Results 

2.1. Plant Traits Affected by Domestication 

The PCA ordination using plant traits from both experiments showed a clear trend 

from modern to wild tomato varieties from left-up to right-down positions of the ordina-

tion (Figure 1); wild tomato varieties produced more and smaller tomatoes than early do-

mesticated and modern varieties, whereas modern varieties produced the highest plant 

biomass (both with and without pests) (see Table S1 for details on traits). 

 

Figure 1. Principal components analysis (PCA) of plant traits (fruit in red and resistance in blue) of 

18 varieties of tomato (Solanum lycopersicum Mill., S. habrochaites and S. pimpinellifolium). Tomato 

varieties were classified into wild (purple), early domesticated (light blue) and modern (green): TY-

LCV, tomato yellow leaf curl virus frequency of infection; S. littoralis, Spodoptera littoralis; State, plant 

state according to symptom severity scale. A detail of shorter axes is provided (dashed square) to 

improve readability. For clarification, very short axes, i.e., those of minor importance, were not 

shown in the ordination. 
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2.2. Plant Domestication Influence Soil Bacterial Communities 

Some effect of domestication was observed on the bacterial community diversity, 

which was described in a previous paper [29]. Shortly, minority phyla such as Acidobac-

teria and Gemmatimonades were less present in wild tomato species, as in modern to-

mato. At the family level, wild tomato species had a lower abundance of Gemmatimona-

daceae, Microbacteriaceae and Streptomycetaceae and a higher abundance of Sphingo-

monadaceae compared with modern tomato. Minor changes were observed at the OTU 

level, with reduced evenness in wild tomato. 

2.3. Plant Traits and Soil Characteristics Influence Soil Bacterial Communities 

Bacterial OTU richness and Simpson and Shannon diversity indices significantly in-

creased with S. littoralis survival and occurrence of tomato yellow leaf curl virus (TYLCV), 

mainly due to resistance traits showed by the variety Periana, and decreased with soil Si 

and Sr (Table S2). A set of plant traits and soil characteristics was found to drive the OTU 

composition of bacterial communities; in other words, they represented the minimum 

number of variables that explained a major proportion of OTU variation across samples 

[30]. For resistance, TYLCV was the most significant factor explaining the variation in soil 

bacterial OTU communities (Table S3). CN ratio, Si and Ni in soil were similarly selected. 

No significant effects were identified for fruit traits. These traits, together with the tomato 

phylogeny (four PCOA axes), were used to partition the variation of OTU bacterial com-

munity composition (Figure 2a,b). Total explained variation reached 25% (Table S4). Soil 

(9.4%) explained most variation (alone or combined with tomato phylogeny), whereas to-

mato phylogeny (5.4%) and resistance (4.3%) explained a smaller part of the variation. 

The variation partitioning was repeated, excluding wild varieties, as a way to avoid 

bias caused by the fact that cultivated tomato belonged to the same tomato species (S. 

lycopersicum). Conversely, wild tomatoes belonged to different plant species. In this anal-

ysis, TYLCV was again selected together with soil CN ratio, C and As. In this case, the 

total explained variation reached 23% (Figure 2c,d), with resistance explaining most vari-

ation (9.7%), followed by soil (7.4%) and phylogeny (1%). 
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Figure 2. Redundancy analysis of bacterial OTU composition of tomato driven by plant (resistance 

and fruit morphology), soil (nutrients) and tomato phylogeny: (a) redundancy analysis; (b) varpart, 

including all three groups of tomato varieties; (c) redundancy analysis; (d) varpart, excluding wild 

varieties. 

3. Discussion 

In this study, the effect of tomato domestication on root-associated bacterial commu-

nity composition was observed from a trait perspective, building upon results described 

in our previous study on functional diversity [29]. This second approach allows for a 

mechanistic interpretation of the identified patterns. Fruit traits (i.e., tomato number and 
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weight) varied according to tomato domestication. However, resistance traits, non-related 

to tomato domestication, drove most of the explained variation in bacterial OTU compo-

sition. 

The spectra of studied tomato varieties showed that modern varieties contained 

heavier and fewer fruits than wild or early domesticated varieties, consistent with modern 

tomatoes being large and diverse in shape, whereas wild tomatoes are generally small and 

round [31]. Even though tomatoes have not been selected for their root-associated micro-

biome, their structure might be altered through changes in root exudates, usually tied to 

root morphological characteristics, which feed and filter root microbiota [6,22,32,33]. 

Since domestication has often been accompanied by creating crops with shallow 

roots, shifts in traits such as leaf size and root architecture, resulting in increased litter 

quality and a lower C:N ratio, could influence microbial community composition [34]. 

Furthermore, Leff et al. found that faster-growing sunflower varieties had lower bacterial 

diversity in the rhizosphere [24]. Moreover, some authors linked bacterial-associated di-

versities to increased plant growth [35]. However, we did not find an effect of above-

ground plant morphology on root-associated bacterial community structure. This could 

be due to the lack of links between the morphological traits used in this study and the 

more impacting belowground traits on root-associated microbiomes. For example, Legay 

et al. showed that belowground (root-associated) traits, such as root C:N ratio and root 

diameter, explained more variation in microbial properties than aboveground (leaf) traits 

[36]. Furthermore, the main driver of bacterial communities close to the roots is recruit-

ment from the bulk soil. However, even though some authors found differences in micro-

bial communities between bulk and rhizosphere soil [37], others found a difference in both 

compartments with the phyllosphere [38]. In addition, diversity indices were found to be 

lower or higher in the rhizosphere compared with bulk soil [39,40]. The effect of soil nu-

trients suggests that environmental variables such as soil type impact microbial commu-

nities [2,33]. For example, Peiffer et al. showed in different maize varieties that plant gen-

otype affects OTU richness within a field, and this genotypic effect varies between field 

environments [41]. Thus, it was suggested that environmental factors such as pH and ge-

ographic patterns interact to shape maize rhizosphere microbiota. Furthermore, microbes 

themselves influence community structure by producing secondary metabolites such as 

antibiotics and toxins to compete with other microbes and successfully establish in the 

rhizosphere [2,5]. 

Despite this evidence, explaining the change in bacterial microbiomes through do-

mestication seems difficult due to the contradictory results often found. For example, Leff 

et al. observed little effect of the domestication of sunflower on overall rhizosphere bacte-

rial communities [24]. By contrast, Shenton et al. found that rhizosphere bacterial commu-

nities of wild rice differ in species richness and composition compared with cultivated 

rice, which was not correlated to the genetic distance of the plants [42]. However, in our 

study, resistance traits that were not aligned with the domestication degree (see [11]) were 

responsible for an important fraction of the variation on root-associated bacterial commu-

nities, especially between domesticated varieties, aligning with the evidence that plants 

shape microbial communities as an additional layer of defence. For example, plants under 

attack may recruit microorganisms that alleviate biotic stress or actively repress pathogen 

proliferation [22,43]. As far as we know, only one study has observed a difference between 

microbial communities associated with wild and domesticated plants, in this case, rice, in 

their response to a biotic challenge [44]. Plant resistance may also impact the functional 

profile of associated bacterial communities. For example, common bean genotypes re-

sistant to Fusarium oxysporum contained bacterial communities enriched in genes encod-

ing antifungal compounds [45]. Plant genetic factors related to immunity were shown to 

play a role in structuring the microbial community [46]. For example, Lebeis et al. showed 

how plant defence hormones, especially salicylic acid, shape root bacterial communities 

[47]. We also found a positive correlation between bacterial diversity and reduced plant 
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resistance traits (S. littoralis survival and TYLCV infection). In this sense, it has been pro-

posed that higher bacterial diversities should be associated with increased plant resistance 

due to the observed recruitment of beneficial microbes [9,48,49]. However, our results 

clearly aligned with Doornbos et al., who postulated that more susceptible plants harbour 

more diverse bacterial communities than resistant plants [43], but this is not always the 

case [23,24]. 

The limitations of sequencing technology were described in a recent review [50]. 

Most studies focus on bacteria, while other organisms such as fungi, viruses and archaea 

may be important as well [24,38,39]. Furthermore, often studies are conducted on a small 

scale, which limits detection of low-abundance taxa that could have a leading role in mi-

crobial community structure and function. DNA-based sequencing does not allow to de-

termine whether the bacterial OTUS are functional. However, it is possible to study po-

tential functions, which we found to be affected by domestication [29]. Furthermore, the 

diversity profile found could depend on the primer set used [41]. The V3–V4 region, as 

used in this study, was found to detect the highest phylum diversity compared with other 

16S primers. 

4. Materials and Methods 

4.1. Field Experiment 

We used 27 tomato accessions from a field experiment described previously [29]. 

Briefly, the field experiment was performed as follows. Seeds of 27 Solanum lycopersicum 

Mill., S. habrochaites and S. pimpinellifolium accessions were obtained from the Instituto de 

Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC) 

germplasm bank, based on their degree of domestication (Table S1A). On 19 April 2018, 

10 one-month-old seedlings per variety, 270 in total, were randomly distributed in an ex-

perimental field in the IHSM La Mayora (Málaga, Spain, 36.77° N, 4.04° W). The field soil 

is classified as a eutric regosol soil [51]. Plants were exposed to the natural community of 

insects and became naturally infected by two common viral diseases transmitted by 

whiteflies: tomato yellow leaf curl virus (TYLCV) and tomato chlorosis virus (ToCV). 

Plants were grown until 16 July 2018, when they were in the fruiting stage. 

At harvest, the soil attached to the main and secondary roots was taken by shaking. 

The root-associated soil from each plant was placed in separate plastic bags and kept at 4 

°C until laboratory analyses (60 days). Then, samples from each variety were pooled and 

ground together using a mortar and pestle and sieved twice (2-mm mesh) and immedi-

ately stored at −20 °C until molecular analyses were performed. The aboveground biomass 

was weighted, the number of tomatoes produced counted and the total tomato fruit 

weight measured (Table S1B). Freezing is often considered the best option to store soil 

samples for microbiome analysis. However, research shows that storage at 4 °C for up to 

30 days has a minimal effect on microbiome composition [52–54]. We used data from 18 

tomato accessions that were selected because there were greenhouse data on resistance 

traits available (see section 4.2). 

On 28 June 2018, plant state was scored according to the symptom severity scale de-

scribed by Kone et al. [55], which runs from 0 = no disease symptoms to 10 = severe leaf 

distortion/necrosis/narrowed or shoes-string leaf (Table S1B). 

The frequency of virus infection per tomato variety was performed using tissue blot 

hybridisation methodologies described by Navas-Castillo et al. and Fortes et al. [56,57] for 

TYLCV and ToCV, respectively. Virus frequency and plant state were used as resistance 

traits of each tomato variety (Table S1B). Table S1 shows the average values for each to-

mato variety. 

4.2. Resistance to Pests Data 

In a previous glasshouse experiment performed by Ferrero et al. (see details in [11]) 

in steam-sterilised sand–peat mixture, the response of the same 18 tomato varieties to 
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root-knot nematodes, aphids and Spodoptera littoralis were determined after 6 weeks of 

growth. Plant biomass (dry weight) was measured under control (no pest) and pest treat-

ment conditions. 

For aphids, the total number of individuals were counted; for nematodes, the number 

of root knots/mg root (nematode number); and the mean increase in S. littoralis larvae 

weight per day (survival) was determined. These were included in the list of plant re-

sistance traits (Table S1D). The averages across the tomato variety replicates were used as 

the trait values characteristic of each variety. 

The plant phylogenetic tree developed by Ferrero et al. [11] was used to extract a 

phylogenetic distance matrix between tomato varieties. The variation in this matrix was 

decomposed by principal coordinates analysis, and the four generated axes were fed into 

subsequent analyses (capscale function in R package Vegan). 

Tomato varieties were grouped depending on their degree of domestication into wild 

(Solanum habrochaites and S. pimpinellifolium) and early domesticated and modern (includ-

ing S. lycopersicum var. cerasiforme and S. lycopersicum lycopersicum) (Table S1A). This clas-

sification was established by Ferrero et al. [11] and here verified using a k-means cluster-

ing analysis based on the measured traits [58]. 

4.3. Soil Chemical Characterisation 

For each variety, two replicates of air-dried field soil samples were used to determine 

chemical properties at the Scientific Instrumentation Service, EEZ-CSIC, Granada, Spain 

(Table S1C). Total N and soil organic C were determined with the aid of the Leco-TruSpec 

CN elemental analyser (LECO Corp., St Joseph, MI, USA). Total mineral content was de-

termined by the digestion method with HNO3 65%:HCl 35% (1:3; v-v) followed by anal-

ysis using inductively coupled plasma optical emission spectrometry (ICP-OES) (ICP 720-

ES, Agilent, Santa Clara, CA, USA). 

4.4. Molecular Analyses of Soil Bacteria 

DNA was extracted separately from eight 1 g soil subsamples using the bead-beating 

method with the PowerSoil® DNA Isolation Kit (MoBio Laboratories, Solana Beach, CA, 

USA) according to the manufacturer’s instructions. Extracts of four subsamples were 

pooled and further concentrated at 35 °C to a final volume of 20 μL using a Savant 

Speedvac® concentrator, resulting in two replicates per variety. Bacterial communities 

were analysed using Illumina MiSeq, and to determine the bacterial communities, we am-

plified the V3-V4 hypervariable regions of the 16S rRNA gene using the ProV3V4 primers 

with the following sequences: 5′ CCTACGGGNBGCASCAG 3′ and 5′ GACTACNVGGG-

TATCTAATCC 3′ [59,60]. The amplified region was approximately 464 bp. The products 

were sequenced on the Illumina MiSeq platform using a 2 × 250 nucleotide paired-end 

protocol (genomic facilities of the López-Neyra Institute of Parasitology and Biomedicine, 

IPBLN-CSIC, Granada, Spain). To minimise amplification of mitochondria and chloro-

plasts, blockers were used [60]. Between the two PCR steps, amplicons were purified and 

after the second PCR step, amplicons were pooled in an equimolar manner. 

SEED2 was used for the initial steps of processing the resulting sequences [61]. First, 

we merged forward and reversed sequences. Then, sequences containing ambiguous ba-

ses (N) and with a quality score below 30 were removed. Primer sequences were removed 

and sequences trimmed to 400 bp. Afterwards, the sequences were clustered into opera-

tional taxonomic units (OTUs) using the UPARSE method by setting the OTU radius to 

3%, so selecting sequences at 97% similarity. OTUs with just one read were removed to-

gether with chimeric sequences. Finally, a consensus sample x OTU matrix was prepared 

and the most abundant sequence per OTU was selected as representative. Taxonomy was 

assigned to each OTU using the classify.seqs algorithm in mothur software together with 

the SILVA database version 132 [62,63]. At this stage, no archaea were detected in the 

samples. The rarefaction curves were visualised in Microbiome Analyst to confirm that all 
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samples reached the plateau [64,65] (Figure S1). The two replicates per variety were 

summed for the statistical analysis. 

All Illumina sequence raw data were deposited in the Sequence Read Archive (SRA) 

service of the European Bioinformatics Institute (EBI) database (BioProject ID: 

PRJNA693664). 

4.5. Statistical Analyses 

Before the statistical analyses, plant traits were averaged per variety and log trans-

formed. The OTU abundance table was Hellinger transformed. The relationship between 

fruit and resistance traits and the domestication degree of the tomato varieties was visu-

alised via principal components analysis. 

Bacterial OTU richness and Simpson and Shannon diversity indices were calculated 

using the abundance OTU x sample matrix after the Hellinger transformation of data. 

Their relationship with plant traits and soil variables were tested via Spearman correla-

tion. 

The relative influence of tomato fruit traits, resistance traits, phylogeny of tomato 

and soil chemical composition on bacterial OTU composition was tested by variation par-

titioning approach based on redundancy analysis (RDA, 29). The minimum number of 

variables inside each of these explaining factor classes explaining a major part of OTU 

variation was selected via forward selection using ordistep. 

These analyses were carried out in R software using the R packages Vegan [66], pi-

cante [67], FD [68], dplyr [69] and lme4 [70]. The R script is available as supplementary 

material. 

5. Conclusions 

In our study, we found that fruit traits (tomato number and weight) varied according 

to tomato domestication, while resistance traits drove most of the explained variation in 

bacterial OTU composition. These mechanisms highlight a direct effect of plant defence 

mechanisms on root-associated bacterial community composition and are consistent with 

the found dependence of bacterial communities on resistance traits. In summary, this 

study reveals how non-targeted traits during domestication shape the bacterial commu-

nity of tomato, but further research is required to confirm the mechanisms behind the 

relationship between bacterial communities and plant resistance. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/plants11010043/s1, Figure S1: Rarefaction curves of 18 varieties of tomato (Solanum lyco-

persicum Mill. S. habrochaites and S. pimpinellifolium). Tomato varieties were classified into wild (pur-

ple). Early domesticated (light blue) and modern (red). Table S1: Experimental variables included 

in the multivariate analysis: (A) domestication degree per tomato variety; (B) data from the field 

experiment: plant traits; (C) data from field experiment: soil characterisation; (D) data from Ferrero 

et al. 2019: plant traits. Table S2: Pearson correlation test of bacterial diversity indexes and plant 

traits and soil variables. R coefficients are shown. Asterisks indicate significance: * p < 0.05; ** p < 

0.01. For details on plant traits, see Table S1. Table S3: Stepwise model selection of redundancy anal-

yses for plant traits (fruit and resistance) and soil nutrient variables. Asterisks indicate significance: 

p < 0.1; * p < 0.05; ** p < 0.01. For details on plant traits, see Table S1. Table S4: Variation partitioning 

of bacterial OTU community composition in plant traits (fruit and resistance), tomato phylogeny 

and soil variables, either considering the whole dataset or only domesticated tomato varieties. As-

terisk indicates significant p values: p < 0.1; * p < 0.05. For details on plant traits, see Table S1. R script 

and OTU Table are also available as supplementary files. Raw data on plant traits are available upon 

request. 
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