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����������
�������

Citation: Vozárová, R.; Macková, E.;
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Abstract: The genus Trifolium L. is characterized by basic chromosome numbers 8, 7, 6, and 5. We
conducted a genus-wide study of ribosomal DNA (rDNA) structure variability in diploids and
polyploids to gain insight into evolutionary history. We used fluorescent in situ hybridization to
newly investigate rDNA variation by number and position in 30 Trifolium species. Evolutionary
history among species was examined using 85 available sequences of internal transcribed spacer 1
(ITS1) of 35S rDNA. In diploid species with ancestral basic chromosome number (x = 8), one pair of 5S
and 26S rDNA in separate or adjacent positions on a pair of chromosomes was prevalent. Genomes of
species with reduced basic chromosome numbers were characterized by increased number of signals
determined on one pair of chromosomes or all chromosomes. Increased number of signals was
observed also in diploids Trifolium alpestre and Trifolium microcephalum and in polyploids. Sequence
alignment revealed ITS1 sequences with mostly single nucleotide polymorphisms, and ITS1 diversity
was greater in diploids with reduced basic chromosome numbers compared to diploids with ancestral
basic chromosome number (x = 8) and polyploids. Our results suggest the presence of one 5S rDNA
site and one 26S rDNA site as an ancestral state.

Keywords: 5S rDNA; 26S rDNA; clover; fluorescent in situ hybridization; nucleotide polymorphism;
genome structure

1. Introduction

A part of the third-largest plant family, Fabaceae, the genus Trifolium (clovers) includes
ca. 255 species [1–4] with cosmopolitan distribution throughout a large range of biotopes
characterized by different temperature and climate conditions. Many Trifolium species
are extensively cultivated as fodder plants or, due to their symbiotic relationship with the
nitrogen-fixing bacterium Rhizobium leguminosarum, as green manure crops to enhance soil
fertility and sustainability [5].

The genus Trifolium is distributed across both the Northern and Southern hemispheres,
except for Southeast Asia and Australia. More than half of its species originated in the
Mediterranean region [6,7], which still has the largest number of endemic species [8,9].
The genus’ origin was estimated by Ellison et al. [3] to be in the Early Miocene (Tertiary
Period), 16–23 million years ago.

Changes in chromosome number played a role in the evolution of the genus Tri-
folium [10]. While 80% of species have a basic chromosome number of x = 8, species
showing reduced basic chromosome number (x = 7, 6, 5) are known [3,11]. Polyploidy has
been observed in 24 species and includes tetraploidy, hexaploidy, octoploidy, dodecaploidy,
and hexadecaploidy [3]. Chromosome evolution in Trifolium has been studied since the
1980s [1,12,13]. The first phylogenetic study in the genus was published by Ellison et al. [3].
This study is consistent with previous studies supporting x = 8 as the ancestral basic chro-
mosome number. To date, 31 species with reduced basic chromosome numbers have been
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identified (x = 7, 6, 5), 11 of which exhibit both reduced and ancestral diploid or polyploid
counts, while two of these species exhibit two different reduced counts [3].

Trifolium species have smaller to medium-sized genomes, ranging from 337.1 Mb in
Trifolium ligusticum to 5669.3 Mb in Trifolium pannonicum per 1C value [14]. The full genome
sequences of six Trifolium species are available, including of the cultured clovers Trifolium
pratense [15,16] and Trifolium repens [17] and of the wild clovers Trifolium medium [18],
Trifolium subterraneum [19,20], Trifolium occidentale [17], and Trifolium pallescens [17].

More detailed analyses from a phylogenetic perspective have been published based
upon nuclear ribosomal DNA (rDNA) internal transcribed spacer (ITS) and chloroplast
trnL intron sequences [3] or highly unusual Trifolium plastomes [21]. On the basis of
chloroplast trnL intron sequences, phylogenetic categorization of 218 species from the
Trifolium genus resulted in division into two subgenera: Chronosemium (20 species) and
Trifolium (198 species). The latter has been further divided into eight sections: Glycyrrhizum
(2 species), Involucrarium (72 species), Lupinaster (3 species), Paramesus (2 species), Tri-
chocephalum (9 species), Trifoliastrum (20 species), Trifolium (73 species), and Vesicastrum
(54 species) [3].

Ribosomal genes are among the best-known regions of genomes in eukaryotic organ-
isms. Polycistronic gene 35S constituting the nucleolus organizer region (NOR) contains
three coding genes (18S, 5.8S, and 26S) which are separated by internal transcribed spacers
(ITS1 and ITS2) and an external transcribed spacer (ETS). The 5S rRNA repeat unit consists
only of the coding conserved sequence 5S gene and non-transcribed intergenic spacer
that separates another coding gene, 5S rRNA. Both 5S and 18S-5.8S-26S loci are located
independently as tandem repeats numbering from hundreds to thousands of copies in
genomes of higher vascular plants [22]. The numbers of 5S rRNA gene copies are higher
than those for 35S rRNA genes, ranging from 2000 to 75,000 [23].

Due to their universal presence in eukaryotic genomes, the number, position, and
structure of the 5S and 35S rDNA loci are considered important characteristics of a given
species, genus, or group [24]. In angiosperms, the location of rDNA sites does not vary
randomly and the distribution of sites on the chromosome arms is not the same in different
taxa [25,26]. Variations in number and location of these multigene families have been
used as cytogenetic markers and genomic landmarks to construct molecular cytogenetic
maps [27,28], to study genome evolution [29–32], and to assess genomic relationships
between closely related species [33]. Simultaneously, sequencing of internal transcribed
spacers ITS1 and ITS2 and patterns of intra- and interspecific diversity have been exten-
sively characterized and used for phylogenetic reconstruction [3,34,35].

Four nuclear rRNA genes (5S, 18S, 5.8S, and 26S) have been proven as excellent
cytogenetic markers for karyotype analysis using the fluorescence in situ hybridization
(FISH) technique [36]. In the genus Trifolium, the number and position of rDNA sites on
chromosomes have been reported in seven related species (Trifolium ambiguum, Trifolium
hybridum, Trifolium isthmocarpum, Trifolium nigrescens, T. occidentale, T. repens, and Trifolium
uniflorum) belonging to the section Trifoliastrum [37], for two species (Trifolium israeliticum,
T. subterraneum subsp. brachycalycinum, subsp. subterraneum and subsp. yanninicum)
belonging to the section Trichocephalum [10], for only two species (T. medium, T. pratense)
from the largest section Trifolium [18,27,38], and for three species (Trifolium campestre,
Trifolium dubium, and Trifolium micranthum) from the subgenus Chronosemium [34]. In this
study, we aim to (i) provide a comprehensive cytogenetic study of the rDNA variation
with regards to the number and position of rDNA sites on chromosomes in the genus
Trifolium as represented by 30 species (diploids and polyploids) from two subgenera and
eight different sections, (ii) reconstruct the ancestral karyotype regarding number of rDNA
sites, and (iii) correlate the rDNA variation with the genus-wide phylogenetic relationship
using available sequences of 26S.
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2. Results
2.1. rDNA Localization on Chromosomes and Range of Variation in Trifolium

Twenty-seven clover species were newly described regarding number and position
of the 5S and 26S rDNA sites on chromosomes. In three additional species published
previously (T. microcephalum, T. occidentale, and T. subterraneum subsp. subterraneum),
different sites number or positions were observed. Hybridization patterns of 5S and
26S rDNA probes in individually analysed clover species are summarized in Figure 1,
and complete DAPI karyotypes with 5S and 26S rDNA probes of all analysed species
sorted according to subgenera and sections can be found in the supplementary materials
(Figures S1–S6). The numbers of both 5S and 26S rDNA sites ranged from 1 to 8 per haploid
genome. 5S rDNA sites were localized on 1, 2, 5, or 8 chromosomes per haploid genome
(Figure 1A–D). Three species showed variability in 5S rDNA sites regarding number and
localization (T. alpestre, Trifolium glanduliferum, Trifolium spumosum) and two species had
odd chromosomes carrying signals (T. alpestre had 11 5S rDNA sites per diploid genome;
T. glanduliferum had 3 5S rDNA loci per diploid genome). Similarly, 26S rDNA sites were
localized on 1, 2, 5, or 8 chromosomes per haploid genome (Figure 1A–D). Variability in
26S rDNA sites number was observed in two species (Trifolium badium, T. microcephalum),
and no odd chromosomes carrying signals were found.
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Figure 1. Hybridization patterns of 5S (red) and 26S (green) rDNA FISH probes in 30 Trifolium species. Distribution of
all rDNA loci on 1 chromosome (A), 2 chromosomes (B), 3 chromosomes (C), and 5 and 8 chromosomes (D) per haploid
genome was observed. A star (columns 2 and 3) indicates an odd chromosome carrying signal. A coloured circle next
to a species name indicates variability in rDNA sites number and localization. Fluorescent probes were labelled with
digoxigenin visualized by anti-DIG-FITC antibodies (green) or biotin visualized by streptavidin-Cy3 antibodies (red). Note
that ideograms only schematically illustrate numbers of 5S and 26S rDNA loci and their mutual localization and do not
precisely capture specific chromosomal localization of each locus.

The most common chromosomal arrangement in the analysed species was one 5S
and one 26S rDNA site per haploid genome separately on two different chromosomes
(Figure 1B). This constitution was observed in 12 species across subgenera Chronosemium
(T. badium) and Trifolium, with sections Trifolium (T. ligusticum, T. pannonicum, Trifolium
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bocconei, Trifolium diffusum, Trifolium purpureum, and Trifolium arvense), Trifoliastrum (Tri-
folium glomeratum, Trifolium montanum, and Trifolium thalii), Paramesus (Trifolium strictum),
and Vesicastrum (T. spumosum). Co-localization of one 5S and one 26S rDNA site on one
chromosome was found in 12 species in total. In eight of these species another one or more
chromosomes with 5S rDNA signal were described, four of which showed overlapping
signals of both rDNA sites (Trifolium chilense, Trifolium lupinaster, T. glanduliferum, and
T. spumosum; (Figure 1B)). In addition, for species with overlapping 5S and 26S rDNA sites,
an additional one chromosome bearing 5S rDNA loci per haploid genome was observed
in Trifolium pallidum, T. occidentale (Figure 1B), and T. glanduliferum and with one odd
chromosome carrying 5S loci (Figure 1C). Further expansion of 5S rDNA loci on more chro-
mosomes was found in T. alpestre (five or five with one extra odd chromosome in haploid
genome) and in T. microcephalum (all eight chromosomes in haploid genome) (Figure 1D).
Co-localization of two or three 5S rDNA signals on one chromosome was observed in
Trifolium aureum and Trifolium cherleri (two 5S signals; Figure 1A,D) and Trifolium hirtum
(three 5S signals; Figure 1A).

Expansion of 26S rDNA sites was observed more rarely. An additional one chromo-
some carrying 26S rDNA loci alone was observed in two species (T. badium and T. sub-
terraneum; Figure 1C), and further expansion was found in T. cherleri (additional four
chromosomes carrying 26S rDNA loci in haploid genome) and T. microcephalum (all eight
chromosomes in haploid genome carrying both 5S and 26S rDNA loci) (Figure 1D).

Intraspecific variability in 5S and 26S rDNA site numbers and arrangements were
described in five species. One 5S and one or two 26S rDNA sites separately on two or
three chromosomes, respectively, were observed in T. badium (Figure 1B,C). Three arrange-
ments were found in T. glanduliferum: (i) two 5S and one 26S rDNA sites separately on
three chromosomes, (ii) co-localization of overlapping 5S and 26S rDNA sites on one
chromosome with another chromosome carrying a 5S rDNA site, and (iii) co-localization of
non-overlapping 5S and 26S rDNA sites with another one and one extra odd chromosome
carrying 5S rDNA sites (Figure 1B,C). In addition to T. glanduliferum, an extra odd chromo-
some carrying 5S rDNA loci was also described in T. alpestre (Figure 1D). T. microcephalum
had two variants of rDNA loci arrangement: one chromosome carrying both 5S and 26S
rDNA sites with all other chromosomes carrying 5S rDNA sites or all chromosomes car-
rying both 5S and 26S rDNA sites (Figure 1D). Finally, in T. spumosum, one chromosome
carrying a single 5S rDNA site was accompanied either by a chromosome carrying one 26S
rDNA signal or by a chromosome having overlapping signals of both 5S and 26S rDNA
loci (Figure 1B).

Arrangements of chromosomes bearing either 5S, 26S rDNA, or both, loci and their
distributions in the analysed species are summarized in Figure 2.

Numbers and mutual localizations of rDNA sites in all species described in the present
and earlier studies are summarized in Table S1. Moreover, numbers of 5S and 26S rDNA
sites were further examined in species with known ITS1 sequences.

2.2. Reconstruction of the Ancestral Karyotype in Trifolium

Based upon ITS1 sequences, a phylogenetic tree was constructed and ancestral state
reconstruction was made of 5S and 26S rDNA site numbers per haploid genome (Figure 3).
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Parsimoniously estimated ancestral numbers of 5S and 26S rDNA sites suggest that
one 5S and one 26S rDNA is the most likely character state for the common ancestor. Diver-
sification of 5S rDNA numbers occurred in all analysed sections independently. The earliest
event occurred in the section Trifolium (T. purpureum, T. pannonicum, Trifolium squamosum, T.
pallidum, T. pratense, T. cherleri, T. alpestre, Trifolium rubens, T. medium, T. diffusum, T. arvense,
T. bocconei, T. ligusticum, Trifolium stellatum, and T. hirtum). Diversification had the character
of expansion from ancestral 1 to 2 or rarely to 3, 5 or 8 5S rDNA sites per haploid genome.
Non-integer numbers of 5S rDNA sites per haploid genome were found in three species (in
octoploid T. medium and in diploids T. alpestre and T. glanduliferum, both with an extra odd
chromosome carrying 5S rDNA loci).

On the other hand, diversification of 26S rDNA sites was observed rarely, occurring
only in subgenus Chronosemium and in subgenus Trifolium in sections Trifolium, Trifoliastrum,
Trichocephalum, and Involucrarium. Most commonly, expansion from one to two 26S rDNA
sites was observed. The only species with reduction in number of 26S rDNA sites per
haploid genome was tetraploid T. repens (0.5 site/1 n).

2.3. ITS1 Sequence Variability

Multiple alignment of 85 nucleotide sequences of Trifolium species (Table S2) resulted
in identification of 56 specific polymorphisms within eight Trifolium sections (Table S3).
These were mostly single nucleotide polymorphisms (SNPs), and only in four cases did
we find indels. In accordance with this data, we created a graph showing substitutions
(transitions and transversions), deletions, or insertions in each section of the two subgenera
(Figure 4, Table S3). Furthermore, we show a rough correlation between polymorphisms in
ITS1 sequences and mean 26S rDNA sites per chromosome in all analysed species in each
section (Figure 4). The largest mean proportion of 26S rDNA sites per chromosome was
observed in the section Involucrarium. The sections Vesicastrum, Trifoliastrum, Paramesus,
and Lupinaster presented the smallest numbers of variable sites, containing just 1, 2, 3, and
4 base substitutions, respectively, and the lowest mean 26S rDNA loci proportions. These
results are influenced by the amounts of input data, as not all species in the genus were
analysed.

The highest number of polymorphisms (21) was identified in the section Chronosemium,
the only section of the subgenus Chronosemium. These included both transitions and
transversions R-Y and one species-specific indel. In subgenus Trifolium, the sections Tri-
folium (mainly transversions Y-R) and Involucrarium (mainly transitions R-R) contained
the highest numbers of specific polymorphisms, at 11 and 10, respectively. Two specific
deletions (one of them 43 bp long) were identified in the section Trichocephalum. The genetic
diversity of ITS1 sequence in genus Trifolium is demonstrated in Table 1. To check whether
the detected ITS1 sequence diversity is influenced by the presence of pseudogenes in
the analysed sequences, we evaluated their presence as demonstrated by Xu et al. [35]
(Table S4). GC content was analysed in three regions (ITS1, 5.8S, and ITS2), and we ob-
served no significantly lower GC content in any region. For 5.8S rDNA sequences, all of
them contained three angiosperm-conserved motifs, and each sequence was able to fold
into a conserved secondary structure (Table S4). Overall, we concluded that the analysed
sequences did not contain pseudogenes, and this could increase variability among analysed
ITS1 regions in the Trifolium genus.
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Table 1. ITS1 sequence diversity based upon 85 sequences of Trifolium species.

SNP Polymorphism Indel Polymorphism

Diploid (ancestral basic
chromosome number)

k 11.811 k(i) 1.570
Pi 0.0642 Pi(i) 0.0063

Diploid (reduced basic
chromosome numbers)

k 17.464 k(i) 4.307
Pi 0.0939 Pi(i) 0.0176

Polyploid k 19.864 k(i) 1.303
Pi 0.0867 Pi(i) 0.0055

k—mean number of nucleotide differences, Pi—nucleotide diversity, k(i)—indel diversity, Pi(i)—indel diversity
per site, indel—insertion/deletion.

Estimated either by the mean number of nucleotide differences (k) or by nucleotide di-
versity (Pi), genetic diversity of ITS1 sequences was assessed in Trifolium species as divided
into three groups by their ploidy and basic chromosome numbers (Table 1). The sequence
diversity with respect to SNP polymorphism was lowest for diploids with ancestral basic
chromosome number (ABCN) for both k and Pi, while genetic variability for diploids with
reduced basic chromosome numbers (RBCN) and polyploids was comparable and higher
for both values compared to diploids ABCN. Indel diversity, k(i), and indel diversity per
site, Pi(i), were highest for diploids RBCN, while k(i) and Pi(i) for polyploids were lower
and comparable with those for diploids ABCN. This could be a result from there being
half the number of indel events (7) in polyploids compared to those in diploids RBCN and
diploids ABCN, at 16 and 18, respectively.

3. Discussion
3.1. rDNA Localization on Chromosomes and Range of Variation in Trifolium

Localization of rDNA loci is highly variable. The loci occur separately on different
chromosomes but also on a single chromosome pair together with varied co-localization.
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Analyses of rDNA loci in 100 species belonging to the family Fabaceae have been demon-
strated [25]. Observations in our study showed separated positions of 5S and 26S loci on
different chromosome pairs in 17 Trifolium species, mostly one pair of each locus or two
pairs of either locus, which is very common in plants [25]. In total, co-localization of the loci
26S and 5S on a chromosome pair was observed in 16 Trifolium species and co-localization of
5S–5S was described in 3 species. In the plant kingdom, the most frequent co-localizations
of 35S–5S (27.8%), 5S–5S (13.5%), and 35S–35S (3.4%) on a single chromosome pair was
described by Roa and Guerra [26]. RNA polymerase I is used for transcription of 35S rDNA
polycistronic loci, and the 5S rRNA gene is transcribed separately by RNA polymerase
III [39].

Description of sectional specificities in 5S and 26S rDNA site numbers and positions
could be beneficial for deducing ancestral state reconstruction in clovers. In T. badium
(subgenus Chronosemium), we evaluated rDNA signals located on separated chromosomes
with one or two 26S signals. A similar distribution pattern of the two types of rDNA signals
was described by Ansari et al. [34] in the diploid species T. campestre and T. micranthum.
In that case, a pair of 5S rDNA and a second pair of 26S rDNA signals were located on
different pairs of chromosomes in both species. Separate positions of 5S and 26S rDNA
sites were established to be prevalent in this section. On the other hand, a species-specific
adjacent position of the 5S and 26S rDNA loci in the pericentromeric region of a pair of
larger chromosomes was observed in T. aureum. This ordering of signals could indicate an
evolutionary originally adjacent 5S and 26S rDNA position in the subgenus with possible
translocation of the chromosomal material to a distal position on the chromosome arm or
chromosome fusion.

The section Trifolium comprises species with the most diverse chromosome numbers,
including both the ancestral number 2n = 16 and reduced numbers 14, 12, and 10. This
diversity also relates to the manner of rDNA signal positioning (separate and adjacent) and
signal numbers. Separate 5S and 26S rDNA positions were observed to prevail (in T. arvense,
T. bocconei, T. diffusum, T. ligusticum, T. purpureum, T. rubens, T. squamosum, T. stellatum, and
T. pannonicum), with 5S sites often positioned in the subterminal or terminal chromosome
regions. The location of rDNA sites in the terminal chromosome region may be the result
of homologous recombination constraints and chromosomal rearrangements [25], such as
DNA translocations or loss.

Ancestral state reconstruction suggested one 5S and one 26S as an ancestral condition
and distribution of the described chromosomes bearing 5S and 26S rDNA sites showed
separate arrangements to be prevalent. T. diffusum, with x = 8 and a single pair of 5S and
26S separately, could represent an ancestral karyotype in the Trifolium section but also in
the genus as a whole. Co-localization and further expansions of 5S and 26S rDNA sites
could occur independently in both subgenera as a result of chromosomal rearrangements
including the ancestor of subgenus Chronosemium.

Distinct arrangements of rDNA sites in the section Trifolium resembled increased
number of signals of both 5S (6 in T. hirtum, 10 or 11 in T. alpestre) and 26S (10 in T. cherleri).
While T. cherleri and T. hirtum are species with reduced basic chromosome number and
2n = 10, genomes of T. alpestre are characterized by the basic chromosome number x =
8. T. cherleri and T. hirtum are two examples of speciation based upon chromosomal
rearrangements and reduction of chromosome number. Expansion of 5S rDNA sites in
T. alpestre, including an odd number, shows its genome instability. Increase in 35S rDNA
sites could be linked to the activation of mobile elements that can produce a transposition
of rDNA copies to new genomic locations [40]. Intragenomic mobility of rRNA genes as a
consequence of transposon activity has been widely reported in angiosperms, and it has
been hypothesized as one of the major forces driving rDNA locus evolution [41].

Separate position of 5S and 26S rDNA sites was observed to be prevalent in the
section Trichocephalum. One exception, as reported by Falistocco et al., was T. israeliticum
(2n = 12) [10], which constitutes another example of speciation based upon chromosome
number reduction. Those authors observed increased number of 5S rDNA signals and their
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expansion on nearly all chromosomes except for the smallest chromosome pair. Increased
number of signals (to as many as 16 on each of 8 chromosomal pairs) was also observed in
T. microcephalum from the section Involucrarium. Joining the positions of 5S and 26S rDNA
was characteristic for the species analysed from this section.

Existence of increased number of rDNA signals and their expansion on nearly all
chromosomes has been described in Canavalia gladiata, belonging to the family Fabaceae
and with 20 5S rDNA loci dispersed on 20 of its 22 chromosomes [42], as well as in Cucumis
sativus, where 10 signals of 26S rDNA loci were dispersed on 10 of its 14 chromosomes [43].
Physical mapping of the rDNA sequences in these species revealed a significant remodelling
of the 35S and 5S rDNA sites that contributed greatly to differentiation of the 2n = 16 and
2n = 12 karyotypes.

Ansari et al. reported that species of the section Trifoliastrum showed a unique x = 8,
and they observed two rDNA hybridization patterns [37]. This coincided with our observa-
tion, as the analysed species T. glomeratum, T. montanum, and T. thalii showed hybridization
identical (two pairs of rDNA signals on separated chromosomes) with that of T. nigrescens
ssp. petrisavii, and T. ambiguum. T. pallescens exhibited the second pattern (co-localized 26S
and 5S signals on one chromosome pair), and it was identical to that of six other species
within this section.

Reduction of rDNA loci was observed in some species whereby one pair of signals
was usually weaker than the second one. Reduction of 5S rDNA loci was observed in
T. stellatum and T. occidentale. The same phenomenon was described in gymnosperms
Pinus nigra and P. taeda for both rDNA loci [44,45]. The reduction of 5S rDNA loci is more
common in monocots [46–48], but it is also observed in dicots, including the genus Trifolium.
Odd numbers of 5S rDNA loci were observed in T. glanduliferum (Figure S6B and Figure 1C)
and T. alpestre (Figure S2B and Figure 1D), with 5 and 11 loci, respectively. Odd numbers of
5S rDNA loci have been observed also in Byblis, Tanacetum, and Rosa species [49–51], as
have odd numbers of 35S rDNA loci in Fragaria [52].

Polyploid T. lupinaster (2n = 4× = 28, 32) from the section Lupinaster (Figure S6E,F and
Figure 1B) and T. repens (2n = 4× = 32) from the section Trifoliastrum had a similar pattern
of rDNA distribution on chromosomes. In T. repens, Ansari et al. [37] described one 26S and
two 5S sites per monoploid genome, one 5S site being in adjacent position with 26S and
the other on a separate chromosome in a pericentromeric region. We, however, observed
the separate 5S signal in the subterminal region. T. repens is a verified allopolyploid, and
therefore the described similarity could justify hypothesizing an allopolyploid origin of
T. lupinaster. The different number of 5S rDNA signals possibly points to a decreasing
loci number (rDNA inactivation and loss), quite common in natural allopolyploids and
which had arisen after hybridization. The same phenomenon was described by Dluhošová
et al. [18] in octoploid and presumed allopolyploid T. medium (2n = 8× = 64), where 8 clus-
ters of 35S rDNA and 12 clusters of 5S rDNA were described on separate chromosomes. The
effect of polyploidy on the number and position of rDNA sites on intra- and interspecific
levels has also been evaluated [25,53]. In polyploids, there is a trend towards reduction in
the number of sites per monoploid complement [25,54] caused by epigenetically regulated
inactivation, asymmetrical reduction of loci via unequal recombination, and loss [55]. In
another allotetraploid species from the subgenus Chronosemium, FISH analysis of T. dubium,
having T. campestre and T. micranthum as ancestors, revealed two pairs of each rDNA signal
on different chromosomes. Ansari et al. [34] concluded that one pair of NOR in tetraploid
T. dubium was inactivated after speciation.

Dluhošová et al. [38] described great variability by FISH using rDNA probes within
the artificial interspecific hybrid T. pratense × T. medium. Individual plants had a pattern of
5S and 35S rDNA loci rather more similar to that of T. pratense than of T. medium. Numbers
of chromosomes with clusters of 5S rDNA ranged from 6 to 14 while those with clusters of
35S rDNA varied between 4 and 13. Individual arrangements were almost unique, and
some plants also possessed novel formations not present in either of the parental species.
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This suggests complex rearrangements connected with post-hybridization stabilization of
hybrid genomes.

Sato et al. [27] and Dluhošová et al. [38] described the same rDNA pattern in diploid
(2n = 14) and artificial autotetraploid (2n = 4× = 28) genotypes of T. pratense, but with exactly
twice as many signals in autotetraploids. An additive pattern of sixteen 26S and sixteen
5S signals located separately on different chromosomes and detected in T. pannonicum
(2n = 16× = 128) from the section Trifolium (Figure S2P) suggests that this genome is rather
a natural autopolyploid than an allopolyploid.

3.2. Cytological and Sequence Diversity

Some of those species analysed showed population or subpopulation dispersion and
diversification. In T. subterraneum, Falistocco et al. [10] described one pair of each 26S
and 5S rDNA signal on different chromosome pairs. One additional pair of 26S signal
was observed in our study (Figure S2Q). Dissimilarities were also observed by Ansari
et al. [36]. They described separated 5S rDNA signal rather proximally in T. occidentale
and one additional 5S rDNA signal in T. repens. In another five species across the whole
genus—T. badium (subgenus Chronosemium), T. glanduliferum (section Paramesus), T. micro-
cephalum (section Involucrarium), T. spumosum (section Vesicastrum), and T. alpestre (section
Trifolium)—different numbers and localizations of 5S and 26S rDNA were observed. The
most prominent distinction was observed in T. microcephalum (Figure S5C,D and Figure 1D),
where 26S and 5S signals co-localized on all chromosomes or 26S and 5S signals co-localized
on one pair of chromosomes with 5S signals on all remaining chromosomes. A range of
variants occurring within a single species can be the main force driving diversity not only
in chromosome numbers but also in rDNA loci count and localization within that species
across fields and countries. These intraspecies and interpopulation differences exist also
elsewhere within the plant kingdom [56], specifically in the genus Anacyclus belonging
to the Asteraceae family. Similarly, Medicago truncatula lines Jemalong J5 and R-108-1
exhibited differences in location of the 5S rDNA [29].

Sequence alignment of the 85 analysed Trifolium sequences revealed correlation be-
tween mean 26S rDNA number per chromosome and polymorphism content in ITS1
sequence. Three kinds of sequence variation (single nucleotide variation, indel, and larger
deletion) were quantified and reduced diversity was observed in ITS1 sequences in Trifolium
species with no significantly lower GC content in three regions (ITS1, 5.8S, ITS2). This
suggests an absence of pseudogenes. Higher ITS sequence diversity in polyploids has often
been described and then attributed to frequent interspecies hybridization events [57–59].
In our study, ITS1 diversity with respect to single nucleotide variations was higher both in
polyploids and diploids with reduced basic chromosome numbers than in diploids with
ancestral basic chromosome number, and indel diversity was greatest in diploids with
reduced basic chromosome numbers. Diversity in diploids with reduced basic chromosome
numbers could have arisen from differential accumulation of repetitive sequences [59].

Our results contribute to improved understanding of the Trifolium genome structure
and evolutionary history. Further studies addressing the mechanism of chromosome num-
ber reduction, comparative analyses with evolutionarily close legumes, or the identification
of parental origin for many allopolyploid species have yet to be conducted. Expanding
cytogenetic and cytogenomic research in Fabaceae and the Trifolium genus using such
advanced methods as oligonucleotide libraries or bacterial artificial chromosome libraries
(oligo-FISH/-painting, BAC-FISH/-painting) will expand our understanding of genome
organization [60–63], structural rearrangements [64], and the genome dynamics in allopoly-
ploids [65,66].

4. Materials and Methods
4.1. Plant Material and Chromosome Preparation

Table 2 lists the 30 Trifolium species investigated here and their seed origins. Seeds were
germinated on Petri dishes at 8–10 ◦C for 24–48 h, then transferred at 23 ◦C. Seedlings were
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placed in pots with perlite supplemented with Murashige and Skoog medium [67]. Actively
growing root tips were collected either from germinated seeds or from growing plants.

Table 2. Origin and accession numbers of analysed Trifolium species.

Subgenus/
Section

Trifolium
Species

Accession
Number

Gene
Bank

Subgenus/
Section

Trifolium
Species

Accession
Number

Gene
Bank

Chronosemium Trichocephalum

T. subterraneum subsp.
subterraneum L. TRIF259 G-DE

T. aureum L. 13T0500014 PR-CZ

Vesicastrum

T. fragiferum L. TRIF1140 G-DE
T. badium Schreb. AZ4518, AZ159 AR-NZ T. resupinatum L. TRIF1134 G-DE

Trifolium T. spumosum L. AZ198,
13T0500086

AR-NZ,
PR-CZ

Trifolium

T. alpestre L. TRIF210 G-DE

Trifoliastrum

T. glomeratum L. TRIF136,
TRIF142 G-DE

T. arvense L. 13T0500032 PR-CZ T. montanum L. TRIF152 G-DE

T. bocconei Savi. TRIF81, TRIF93,
TRIF40 G-DE T. occidentale Coombe OCD1210,

OCD50 AR-NZ

T. cherleri L. TRIF135 G-DE T. pallescens Schreb. AZ6429 AR-NZT. diffusum Ehrh. TRIF250 G-DE

T. hirtum All. AZ6762, TRIF213 AR-NZ,
G-DE T. thalii Vill. AZ6833 AR-NZ

T. ligusticum Balb.
Ex Loisel TRIF137 G-DE

Involucrarium

T. chilense Hook. & Arn. AZ1759 AR-NZ

T. pallidum
Waldst&Kit TRIF253 G-DE T. microdon Hook. & Arn. AZ6256 AR-NZ

T. purpureum
Loisel. TRIF143 G-DE T. microcephalum Pursh. TRIF244 G-DE

T. rubens L. TRIF33, TRIF211 G-DE
Paramesus

T. glanduliferum Boiss. AZ6880 AR-NZ
T. squamosum L. TRIF68 G-DE T. strictum L. TRIF109 G-DE

T. stellatum L. TRIF252 G-DE Lupinaster T. lupinaster L. TRIF272 G-DET. pannonicum
Jacq. TRIF8 G-DE

PR-CZ (Prague Ruzyně, Czech Republic), AR-NZ (AgResearch New Zealand), G-DE (Gatersleben, Germany).

The entire protocol of preparing root tips and the slides for FISH followed protocols
by Lysák and Mandáková [68] and Kirov et al. [69] with little modification. Root tips were
pretreated in cold water overnight and fixed in freshly prepared 100% ethanol and 99%
acetic acid in a 3:1 ratio. Root tips were washed in a 0.1 M citrate buffer (0.08 M sodium
citrate dihydrate, 0.01 M citric acid) and digested in 30 µL of enzymatic mixture containing
0.3% cellulase, 0.3% pectolyase, and 0.3% cytohelicase (Merck, Prague, Czech Republic)
in a citrate buffer for 80–100 min at 37 ◦C. The cell suspension was vortexed and 470 µL
of water was added. It was then centrifuged at 10,000 rpm (Eppendorf 5415C centrifuge)
for 2 min. Supernatant was removed, 470 µL of 100% ethanol was added, and the mixture
was again centrifuged at 11,000 rpm for 2 min. The pellet was resuspended in ethanol
(10 µL per slide). Ten microlitres of suspension was dropped onto a slide and 20 µL of the
first fixation (3:1 ethanol and acetic acid) was applied. This slide was held upside down
over the steam from a water bath at 55–60 ◦C for 15–20 s, then 5 µL of the second fixation
(2:1 ethanol and acetic acid) was added and the previous step repeated. The slide was
then dried at room temperature and stored in a refrigerator at 8–10 ◦C. The slides with
chromosome spreads were treated with 100 µg mL−1 RNase A (Sigma, St. Louis, MO, USA)
in saline–sodium citrate buffer (2× SSC; 0.3 M sodium chloride, 30 mM trisodium citrate,
pH 7.0) for 1 h at 37 ◦C, then with 0.1 µg mL−1 pepsin in 10 mM HCl for 5 min at 37 ◦C,
and finally washed two times in 2× SSC and a 70–90–100% ethanol series.
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4.2. Probe DNA Isolation and Labelling

To localize the clusters of 26S rDNA and 5S rDNA, sequence lengths of 899 bp from
Arabidopsis thaliana (L.) Heynh. (X52320.1, GenBank) and 117 bp from T. repens (AF072692.1,
GenBank), respectively, were used for primers design. Selected rDNA sequences were am-
plified using specific primers (26S_F: TTCCCACTGTCCCTGTCTACTAT, 26S_R: GAACG-
GACTTAGCCAACGACA; 5S_F: GGTGCGATCATACCAGCACTAA, 5S_R: GAGGTG-
CAACACAAGGACTTC) by polymerase chain reaction (PCR). The PCR mixture contained:
1× GoTaq Reaction Buffer (Promega, Madison, WI, USA), 0.2 mM dNTPs, 1 µL primers,
0.5 U Taq Polymerase (Promega, Prague, Czech Republic), and 20 ng of gDNA (T. pratense
var. Tatra). PCR products were separated by electrophoresis in 3% agarose gel, excised from
the gel, purified using a PCR extraction kit (Qiagen, Hilden, Germany), then quantified
using a NanoDrop 2000c spectrophotometer (Thermo Scientific). Probes were labelled by
nick translation using biotin and digoxigenin Nick Translation Mix (Roche, Mannheim,
Germany).

4.3. Fluorescence In Situ Hybridization

A denaturation mixture in volume 25 µL containing 12.5 µL 100% formamide, 5 µL
50% dextran sulphate, 2.5 µL 20× SSC, 3 µL water, and with 1 µL of each probe (26S, 5S) in
a final concentration of 100 ng per used volume was denatured at 96 ◦C for 10 min, then
rapidly cooled for 2 min. The mixture was applied onto a chosen slide and co-denatured
on a hot plate at 80 ◦C for 2 min, then incubated overnight at 37 ◦C in a humid chamber
box. Post-hybridization washing was carried out at 42 ◦C with the following steps: 2× SSC
twice for 5 min, 10% formamide in 0.1× SSC twice for 5 min, 2× SSC for 5 min, and 4× SSC
with 0.05% Tween-20 for 5 min. Biotin and digoxigenin-labelled probes were immunode-
tected using streptavidin-Cy3 (GE Healthcare, Buckinghamshire, United Kingdom; 1:750
dilution) and anti-DIG-FITC (Roche; 1:250 dilution) antibodies, respectively. Chromosomes
were counterstained with 4′,6-diamidino-2-phenylindole (DAPI) in Vectashield (Vector
Laboratories, Burlingame, CA, USA).

Images were captured using an Olympus BX 51, Olympus, Tokyo, Japan fluorescence
microscope equipped with an Olympus DP72 CCD camera. Three greyscale images of each
mitosis event were taken, and images were pseudocoloured using Adobe Photoshop CS6
software (chromosomes—blue, 26S rDNA signals—green, 5S rDNA signals—red).

4.4. Phylogenetic Tree Construction

ITS1 Trifolium sequences of 42 species with known rDNA loci numbers were used
for tree construction with A. thaliana ITS1 sequence taken as outgroup. These sequences
were obtained from the National Center for Biotechnology Information (NCBI) GenBank
(Table S1). Sequences in FASTA format were aligned by Clustal W type in MEGA-X and
saved in NEXUS format. The data set was converted to xml format in BEAUTi version
1.10.4. Bayesian analysis of sequences was done in BEAST version 1.10.4, the final file
was cleaned according to conventional protocol procedure in Tree Annotator 1.10.4, and
posterior probability was fixed at >95. The phylogeny tree was visualized in Mesquite
(v.3.04) and A. thaliana was omitted from the final visualization. The model for recon-
structing ancestral state was implemented in Mesquite (v.3.04) while using that software’s
“parsimony” method. Coloured elements and labels were added in Adobe Photoshop CS6.

4.5. Identification of Specific Polymorphisms

To identify polymorphisms specific for individual sections of the Trifolium genus,
85 nucleotide sequences were obtained from NCBI GenBank (Table S2). Sequences were
aligned using the MUSCLE algorithm implemented in MegAlign Pro of the DNASTAR
software package (DNASTAR, Madison, WI, USA), and polymorphisms were identified by
grouping the aligned sequences under the sections. Specificity of the polymorphisms was
assessed using Fisher’s exact test in R (ver. 3.6.1), and polymorphisms with p-value < 0.05
were considered as significant. Genetic diversity of the ITS1 sequence was determined
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using DnaSP [70]. Control for the presence of pseudogenes was performed in the acces-
sions from Table S2, which, together with ITS1 sequence, contained 5.8S region and ITS2
sequence. GC content was calculated using MEGA-X [71], and 5.8S regions were inspected
for presence of the three angiosperm-conserved motifs M1 (5′-CGATGAAGAACGTAGC),
M2 (5′-GAATTGCAGAATCC-3′), and M3 (5′-TTTGAACGCA-3′) while following Harpke
and Peterson [72]. Secondary structures of 5.8S region were predicted using Mfold ver-
sion 2.3 on a web server [73,74] under specific settings for a base pairing following Hři-
bová et al. [75] for helix B4, F 36 99 3; helix B5, F 42 55 3; helix B6, F65 90 3; helix B7, F 104
112 3; and helix B8, F 113 136 4 and F120 129 3.

Trifolium species were divided into three groups according to their ploidy and basic
chromosome numbers (polyploid, diploid with ancestral basic chromosome number, and
diploid with reduced basic chromosome numbers). For species with variable number of
chromosomes, both alternative chromosome number (polyploidy, diploidy with reduced
basic chromosome numbers) were taken into account. Genetic diversity of the ITS1 se-
quences was calculated using DnaSP [70]. The variability of ITS1 sequences was evaluated
for SNP polymorphism and short insertion/deletion events (indels) (option: Multiallelic)
in each group separately.

5. Conclusions

The Trifolium ancestral karyotype contains a single pair of 5S and 26S rDNA sites.
Diversification of 5S rDNA numbers in the genus Trifolium occurred independently in
all eight analysed sections, the earliest event having occurred in the section Trifolium.
Diversification had the character of expanding from ancestral 1 to 2 or rarely to 3, 5,
or 8 5S rDNA sites per haploid genome. Diversification of 26S rDNA sites was rarely
observed. Most commonly, expansion from one to two 26S rDNA sites was observed.
Increased number of rDNA signals was characteristic for diploid species with reduced
basic chromosome numbers. SNP and indel polymorphisms were greater in these species
in comparison with diploids with x = 8 and polyploids, which could be attributed to the
evolutionary benefit.
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26S rDNA FISH probes in section Trifoliastrum. Figure S5: Hybridization patterns of 5S and 26S rDNA
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75. Hřibová, E.; Čížková, J.; Christelová, P.; Taudien, S.; de Langhe, E.; Doležel, J. The ITS1-5.8S-ITS2 sequence region in the Musaceae:

Structure, diversity and use in molecular phylogeny. PLoS ONE 2011, 6, e17863. [CrossRef]

http://doi.org/10.1111/j.1469-8137.2007.02034.x
http://doi.org/10.1371/journal.pone.0187131
http://doi.org/10.1186/1471-2164-13-722
http://doi.org/10.1007/s00606-017-1442-7
http://doi.org/10.1093/aob/mcy113
http://doi.org/10.1139/g03-106
http://doi.org/10.1007/s10577-010-9129-8
http://www.ncbi.nlm.nih.gov/pubmed/20449646
http://doi.org/10.3389/fpls.2016.01152
http://www.ncbi.nlm.nih.gov/pubmed/27516770
http://doi.org/10.1007/s10577-016-9526-8
http://www.ncbi.nlm.nih.gov/pubmed/27168155
http://doi.org/10.1186/s12870-018-1468-1
http://doi.org/10.1007/s13580-018-0115-y
http://doi.org/10.1111/j.1399-3054.1962.tb08052.x
http://doi.org/10.1007/978-1-62703-333-6_2
http://www.ncbi.nlm.nih.gov/pubmed/23559198
http://doi.org/10.1186/1755-8166-7-21
http://www.ncbi.nlm.nih.gov/pubmed/24602284
http://doi.org/10.1093/bioinformatics/btp187
http://doi.org/10.1093/molbev/msy096
http://doi.org/10.1139/B07-134
http://doi.org/10.1093/nar/gkg595
http://unafold.rna.albany.edu/?q=mfold/RNA-Folding-Form2.3
http://doi.org/10.1371/journal.pone.0017863

	Introduction 
	Results 
	rDNA Localization on Chromosomes and Range of Variation in Trifolium 
	Reconstruction of the Ancestral Karyotype in Trifolium 
	ITS1 Sequence Variability 

	Discussion 
	rDNA Localization on Chromosomes and Range of Variation in Trifolium 
	Cytological and Sequence Diversity 

	Materials and Methods 
	Plant Material and Chromosome Preparation 
	Probe DNA Isolation and Labelling 
	Fluorescence In Situ Hybridization 
	Phylogenetic Tree Construction 
	Identification of Specific Polymorphisms 

	Conclusions 
	References

