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Abstract: The central floral development gene LEAFY (LFY), whose mutation leads to striking
changes in flowering and often sterility, is commonly expressed in non-floral structures; however, its
role in vegetative development is poorly understood. Sterility associated with suppression of LFY
expression is an attractive means for mitigating gene flow by both seeds and pollen in vegetatively
propagated forest trees, but the consequences of its suppression for tree form and wood production
are unclear. To study the vegetative effects of RNAi suppression of LFY, we created a randomized,
multiple-year field study with 30–40 trees (ramets) in each of two sterile gene insertion events, three
transgenic control events, and a wild-type control population. We found that floral knock-down
phenotypes were stable across years and propagation cycles, but that several leaf morphology and
productivity traits were statistically and often substantially different in sterile vs. normal flowering
RNAi-LFY trees. Though trees with suppressed LEAFY expression looked visibly normal, they
appear to have reduced growth and altered leaf traits. LFY appears to have a significant role in
vegetative meristem development, and evaluation of vegetative impacts from LFY suppression would
be prudent prior to large-scale use for genetic containment.

Keywords: floral development; RNAi; LEAFY; Populus; sterility; containment

1. Introduction

LEAFY (LFY) and its homologs across species are highly conserved in protein structure
and play key roles in coordinating the transition from vegetative to reproductive growth,
and in inflorescence patterning. LFY was initially characterized in Arabidopsis, where
loss-of-function mutants (lfy) grew shoots or unusual flowers with leaf-like floral organs.
Additional experiments demonstrated that LFY is key for floral meristem identity gene
in Arabidopsis. LFY is typically present in a single copy but does have two homologs in
some lineages (reviewed in [1,2]). The origins of LFY itself appears to pre-date both seed
plants and flowering plants as LFY-like genes are present in moss, ferns, liverworts, and
hornworts, as well as plants that form multicellular embryos but not seeds (reviewed
in [2]). In seedless plants, LFY function appears to be key for sporophyte cell division [2].
In gymnosperms, LFY and its related gene NEEDLY (NLY) are expressed in meristems
and appear to be important for both vegetative and reproductive meristem establishment
(reviewed in [2]). The later-evolved primary targets of LFY in seed and flowering plants,
the MADS family, appear to have arisen via MADS family expansion during speciation as
there are no known orthologs in bryophytes or ferns [2–5].

It appears that some aspects of early LFY function have been retained in angiosperms
outside of floral determination and patterning. For example, many herbaceous flowering
plants show low levels of LFY expression in a range of vegetative tissues. NFL, the
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LFY homolog from Nicotiana tabacum (tobacco), is expressed in vegetative meristems [6].
Similarly, FA, the Lycopersicon esculentum (tomato) homolog is expressed in vegetative
meristems, leaf primordia, and leaves [7]. In Fabales (pea), PEAFLO is an LFY homolog
expressed in leaves [8]. This trend of LFY expression beyond floral tissues holds true for
the very small number of studies of LFY in woody perennials. In several species of Cornus
(dogwood) trees, the LFY homolog is present in leaves and bracts, with an expression
pattern that appears to relate to the architecture of the overall inflorescence [1]. Poplar
trees, the focus of this paper, have LFY expression in floral buds, flowers, vegetative buds,
and leaf primordia [9].

Overexpression of LFY leads to strong alterations not only in flowers, but also in
overall plant architecture. For example, 35S-NFL1 transformed tobacco plants (tobacco
LFY homolog) grew a single terminal flower and also had reduced stature [10]. Similarly,
expression of 35S-LFY in hybrid poplar led to a bushy stature and small leaves [9]. While
overexpression analysis of function can create de novo phenotypes it is also a useful means
for analyzing gene function. In the case of LFY, overexpression in Arabidopsis leads to
conversion of vegetative meristems to floral meristems and more rapid flowering [2,11–13].
These findings demonstrate the key role of LFY in floral meristem identity.

Information on functions of LFY in non-flowering plants is hampered by a paucity
of loss-of-function mutants. Studies in Physcomitrella patens (moss) found that PpLFY
double nulls show normal gametophytes, but the sporophyte either fails to develop after
fertilization or has severe growth defects [14]. These data imply a key role of LFY in
vegetative growth in the diploid life stage. Most loss-of-function studies of LFY are from
examination of flowering plants, and focus on floral alterations, which are striking in nulls.
There are very limited studies of the vegetative features of loss-of-function mutants of
floral development genes, most studies are in herbaceous annuals, and none analyzed
productivity effects in a randomized trial. For example, a novel lfy mutant in A. thaliana
ecotype No-0 showed increased stem height and additional branches [15]. Similarly, tomato
fa mutants (loss of FLORICAULA, tomato homology of LFY) leads to shoots growing in
place of flowers, giving plants a bushy appearance [7]. Loss of the LFY homolog from peas
gave alterations in leaf shape, with the formation of single rather than compound leaves,
which is a dramatic alteration in overall leaf architecture [8]. Apart from the work of Klocko
et al. 2016 [16], which is closely related to the present study, we are unaware of randomized
or field-based studies of vegetative characteristics in LFY mutants or transgenics.

One potential application of loss-of-function LFY mutants is for prevention of un-
wanted gene flow by changing reproductive floral whorls into vegetative structures [16,17].
However, this usage would be limited to situations where the desired plant product is a
vegetative structure such as a woody stem, and not a seed or fruit. Such applications are
mostly likely when trees are grown for bioenergy, pulp, or wood products [17]. In such
cases, it will be essential to determine if loss of LFY leads to alterations in plant survival,
performance, or vegetative traits. Previously, we studied suppression of LFY in a large field
trial of poplar trees [16], which included many constructs designed to alter the function
of a variety of floral genes [18]. Of these, the strongly suppressed RNAi-LFY events gave
strong alteration in floral form, leading to sterile female flowers, but statistically significant
differences in tree growth were not detected. Due to the large-scale nature of the test (many
constructs and gene insertion events, only a few replicates per event), and that there were
only two LFY-suppressed sterile events observed, the power of this finding is low. We
therefore vegetatively propagated several representative events from the original trial to
create a much more highly replicated field trial with more statistical power to detect event
differences if they are present. We report that although the trees appeared largely identical
in vegetative form, the test had sufficient power to detect some differences in vegetative
traits, mainly reductions in productivity traits including stem growth and leaf size that are
of great interest for forestry applications.
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2. Results
2.1. Most Events Rooted and Survived Well in Greenhouse Conditions

Events were selected from the initial large-scale trial and re-numbered to simplify
naming (Table S1). The transgenic sterile (TS) events were selected because they had
the strongest sterility phenotypes in the initial trial; transgenic normal (TN) events were
selected based on the presence of normal catkins in the initial trial. Cuttings for establishing
the new trial were rooted in a greenhouse and survival of cuttings by event were scored
weekly. Of the 304 cuttings placed in the greenhouse, 262 survived for an overall survival
rate of 86%. Cuttings of control trees had an overall survival of 89%, and all but one
transgenic event had a survival rate of at least 91% (Figure S1). Event TN4 had a survival
rate of 25%, and of the 10 surviving TN4 cuttings, 9 were from 1 parent tree. Due to its low
rooting rate, and subsequent poor viability and growth in field conditions, it was excluded
from statistical analysis.

2.2. Floral Traits

Rooted cuttings were planted in July of 2016 in four randomized field blocks (Figure S2).
Presence or absence of flowering was scored for all trees every spring. Trees with at least
one floral bud or catkin were scored as flowering. In spring 2017, 3 of the 221 total trees
flowered (1.4% of all trees including borders). These were one control tree (hereafter C
for control), one transgenic normal tree (hereafter TN for transgenic normal), and one
transgenic sterile tree (hereafter TS, Figure S3). All flowering trees were located in interior
(non-border) blocks for an overall flowering of 2.1% of the 140 total interior trees. No
flowering for any trees occurred in 2018. In 2019, 121 of the 132 interior trees under study
(140 total trees minus 8 event TN4 trees) flowered (92%, Figure S4). Flowering across blocks
ranged from 83–94% of trees, and flowering within events was 85–100% of trees, with event
TS2 showing the lowest percentage of flowering trees. While flowering was similar across
groups, blocks and events, there were differences in floral form and in the timing of floral
bud flush. While control trees had large catkins which flushed prior to leaf flush, the TS
events had small floral buds that flushed late (Figure 1).

Figure 1. Cont.
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Figure 1. Field site overviews from 2019. (A) In spring 2019, WT trees had numerous large catkins,
(B) WT catkins were fully open prior to leaf bud flush. (C) Sterile RNAi-LFY trees had numerous tiny
catkins that opened late, (D) tiny catkins were still mostly enclosed by bud scales prior to leaf bud
flush. (E) Field site overview in summer 2019.

To quantify the timing of floral opening, floral bud burst was scored weekly for
7 weeks, a 0–5.0 scale was used to score the number of open floral buds (details in methods).
Scores from the first two weeks were used for the early flowering score, weeks 3–7 were
used for the late flowering score. Analysis of floral timing, early (first two weeks) vs. late
(last 5 weeks), of the growing season showed that both TS events had highly delayed
floral opening, with no open floral buds observed in the early part of the flowering season
(Figure 2). By contrast, most flowering TN and C trees had open flower buds in the first
two weeks of floral timing scoring. Chi-squared analysis of early and late flowering scores
showed TS trees were highly significantly different than TN or C trees (p < 0.001, Table S2.
These floral buds did open, but the maximal floral score (the highest floral score given to
that tree for the entire season) and sum of flowering scores (number of open flower buds)
were lower for TS trees than for TN or control trees (p < 0.001, Table S2, Figure 2). Control
trees and TN trees had similar floral timing, with most trees having open flowers in the
early part of the floral season. Control and TN trees had similar maximal floral scores, and
some TN trees had higher overall floral scores than control trees (Figure 2). Observations
of floral form showed that two events, TS1 and TS2, had small catkins lacking externally
visible carpels, similar to what was observed on these same events in the initial field test
(Figure 3).
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Figure 2. Floral timing and abundance varied among genotype classes, in all panels C is non-transgenic control (shown in
red), TN is transgenic normal (shown in blue), TS is transgenic sterile (shown in dark grey). A numeric scoring system was
used to score the timing of floral opening for all trees, with 0 no open buds, and a 0.5 to 5.0 relative scale for the number of
open buds. (A) The first two weeks of the 2019 floral bud flush were designated “early flowering.” Trees with scores of 0
had no open flower buds, trees with scores of 0.5 had 10 or fewer open catkins. (B) Weeks 3–7 of the 2019 floral bud flush
were designated “late flowering.” Here, a relative scale from 0–4 was used to score the number of open catkins (details in
methods). (C) The maximal flowering score (number of open catkins) was determined for all trees. The distribution of this
score was similar for C and TN groups, but still reduced for TS trees. (D) The metric “sum of flowering scores” is the actual
counted number of open flowers per tree, TS trees tended to have the lowest scores, likely due to their delayed floral bud
flush as seen in (A).

Figure 3. Catkin phenotypes were stable between the two field trials. (A) Catkins of control trees from the initial field
trial in 2015 and (B) control trees from the new trial in 2019 were similar in appearance, as were (C) diminutive catkins of
transgenic sterile trees from the initial trial in 2015 and (D) transgenic sterile catkins from the new trial in 2019.
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2.3. Vegetative Traits

Vegetative traits were measured for four years, starting in 2016 with size at planting.
These 2016 data were excluded from overall analysis as field trees were coppiced in the
first dormant season and had not fully and uniformly resumed growth. Data collected
in 2017, 2018, and 2019 included wood volume productivity (calculated as volume index:
height × DBH2) and leaf characteristics, including leaf area, petiole dimensions, and leaf-
specific weight. In 2019 we also scored the timing of vegetative leaf flush, with both the top
and bottom of each tree assessed separately. Chi-squared analysis of leaf flush indicated
that top of tree flush was significantly different between groups (p < 0.01), but bottom of
tree flush was not significantly different between groups (p = 0.5, Table S2). Initial principal
components (PC) analysis of data from the 2019 growing season showed that block was a
significant factor for every vegetative trait except for leaf specific weight (Table 1).

Table 1. Summary of p-values from ANOVA tests and Tukey comparisons. Comparisons between groups are shown with
a-sign, such as TS-TN. Significant values (p < 0.05) are shown in bold; NA is non-applicable.

ANOVA Results

Event
Block

Result Height DBH Volume
Index

Petiole
Length

Petiole
Width

Petiole
L/W

Ratio

Leaf
Area

Leaf
weight

Leaf-
Specific
Weight

PC1 PC2 PC3 PC4 PC5

p values 0.002 0.026 0.036 0.053 0.083 0.015 0.153 0.055 0.003 0.002 0.143 <0.001 0.054 0.095
p values 0.002 0.004 0.001 <0.001 0.014 <0.001 <0.001 0.002 0.295 NA NA NA NA NA

Tukey Comparisons

TS-TN
p values 0.102 0.045 0.035 0.010 0.943 0.004 0.035 0.015 0.344 0.001 0.211 <0.001 0.427 0.961

% change −7.67 −17.70 −26.47 −15.08 1.02 −15.75 −20.22 −23.95 −3.28 NA NA NA NA NA

TS-C
p values 0.235 0.990 0.854 0.856 0.032 0.167 0.621 0.700 0.745 0.455 0.181 <0.001 0.097 0.056

% change −9.81 −1.79 −9.70 −4.09 −11.79 −12.75 −11.16 −10.65 −2.43 NA NA NA NA NA

TN-C
p values 0.003 0.131 0.394 0.176 0.041 0.787 0.572 0.347 0.145 0.266 0.809 0.623 0.006 0.023

% change 18.94 23.67 22.81 12.94 10.66 4.16 11.35 17.33 5.91 NA NA NA NA NA

Therefore, we included blocks in our Analysis of Variance (ANOVA) models and
performed block adjustments (deviations from block means) when displaying genetic
differences in phenotypes graphically. ANOVA showed significant differences within
height, diameter, volume index, petiole L/W ratio and leaf-specific weight (Table 1, Figure 4).
When comparing the groups of trees, significant differences in the 2019 data between TS and
control trees included smaller petiole width of TS trees than C trees (p = 0.032). Significant
differences between TN and control trees included larger height of TN (p = 0.003), and larger
petiole width of TN (p = 0.041). Significant differences in productivity traits between the
two sets of RNAi trees included DBH (p = 0.045) and volume index (p = 0.035) with TS trees
being smaller than TN trees. Significant leaf trait differences between the two groups of
RNAi trees (TS and TN) included petiole length with TS smaller than TN (p = 0.010), smaller
leaf area of TS (p = 0.035), and lower leaf weight of TS (p = 0.035).

There was significant variation between transgenic (TN and TS) and control (C)
genotypes, and between individual events, in vegetative traits measured in 2019 (Figure 4,
Table S3). Controls as a group were highly variable in height and diameter compared to the
transgenic events. Event TN1 tended to have larger trees, with larger heights and diameters
than both control and TS trees. Statistically significant differences included height with
TN1 trees larger than both C and TS1 trees. The DBH of TN1 was larger than that of TS1.
Event TN1 also differed from TS events in regard to leaf traits; the petiole length to width
ratio between event TN1 and TS2 differed with TN larger than TS2, and TN1 with a larger
leaf-specific weight than TS2. Vegetative traits with no event-to-event differences in 2019
included volume index, petiole length, petiole width, leaf weight, and leaf area (Figure S5.
The most variable vegetative trait was volume, a key productivity trait, in which event
TN1 was 30.6% larger than the average, and event TS1 was 21.4% smaller than the event
average (Table S3). The least variable vegetative trait was petiole width, in which C trees
were 8.4% smaller than the event average, and event TN3 was 4.1% larger than the event
average (Table S3). The largest differences in 2019 data were observed in the floral traits of
TS events, with events TS1 and TS2 showing 100% and 99% reductions in early flowering
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as compared to the mean of all events (Table S3). Both TS events had reduced sum of floral
scores −43% and −77% for TS1 and TS2, respectively (Table S3).

Figure 4. Representative traits with statistically significant variation among events or groups based on ANOVA for 2019.
These included (A) height, (B) DBH, (C) petiole length to width ratio, and (D) leaf-specific weight. To remove block effects
when visualizing event-based variation, boxplots were calculated based on deviations from block means for individual
trees (with overall means added back to provided normalized trait values for each tree). Dark lines in bars show means of
events, whiskers show extent of variation. Small letters indicate significant differences between events based on Tukey tests
(p < 0.05).

2.4. Principal Component Traits

Principal components analysis (adjusted for block) of floral characteristics in 2019,
and of vegetative performance for all three years of field data from 2017–2019, showed that
68.5% of the variance could be described by 5 components. As is evident from the heat maps
(Figure S6) and loadings summary table (Table 2), the PCs represented groups of traits, or
traits in various years, but often in a complex manner. PC1, which accounted for 30.5% of
the variance, clearly represented overall tree growth across years. PC2, which accounted for
13.2% of the variance, was a complex combination of petiole and leaf traits between years.
PC3, which accounted for 9.1% of the variance, was most strongly affected by flowering
traits. PC4, which accounted for 8.3% of the variance, was a complex combination of
flowering, and leaf traits. PC5, which accounted for 7.4% of the variance, was also a mix of
leaf traits, leaf flush, and flowering timing. The main traits of influence (absolute value
of 0.2 or more) for PC1 were growth related, while the main traits in PC3 were floral
related (floral timing, intensity, Table 2). These traits in PC4 were leaf and petiole related
(leaf weight, petiole dimensions, Table 2), and for PC5, they were leaf and petiole related
(leaf-specific weight, petiole length). There were statistically significant differences between
events for three of the top five PCs (not PC2 and PC4: Table 1). Tukey contrasts showed that
TN and C trees were significantly different in PC4 (p = 0.006) and PC5 (p = 0.023). TN and
TS trees were significantly different in PC1 (p = 0.001), the productivity component, with TS
being substantially lower than TN (Table 2; note that the productivity trait loadings are all
negative). PC3, the main flowering PC, was also significantly different between TN and TS
(p < 0.001), with TS being substantially lower than TN (Table 2; floral activity loadings all
negative). TS and C trees were also significantly different for PC3 (p < 0.001). Histograms
of PC outputs provided another way to visualize results. TS trees tended to be different in
performance from TN and C trees in the directions predicted by the contrasts. This is most
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evident for PC1, PC2, and PC3. PC3, which is mainly related to floral traits, shows TS most
distinctly (Figure S7, Table 2). Elliptical plots comparing PCs to each other also showed
that TS trees were distinct from TN and C trees in regard to PC3 as plotted against all other
PCs, though the statistical difference of TS from TN and C are also evident (Figure 5 and
Figure S8). These plots also illustrate the wide range of performance of the C trees for some
PCs. Block adjustment clearly helped to resolve the differences of TS trees from others
in elliptical plots (Figure S9). The floral timing and intensity differences in the PCs were
aligned with our analysis of this trait alone, with TS trees showing fewer and late-opening
catkins. ANOVA for PC1, the PC which was well-loaded with the growth traits height,
DBH, and volume for multiple years, had statistically significant variation among events
and between TS and TN (Tables 1 and 2). The many leaf and petiole morphology traits,
contrasted among years as loaded into PC2, were not statistically significant among events
or groups (Table 1). PC3, mainly affected by flowering traits, were highly significant among
events and TS trees were significantly different from both TS and C groups (p < 0.001). PC4,
which was mainly loaded with leaf morphology traits, and significantly differentiated TS
and C but not other groups.

Table 2. Summary of traits with large PC loadings. Traits shown are those with absolute values of 0.2 or greater for PC 1-5.
Positive associates are those traits with a positive loading value, negative associations are those with a negative loading
value. For simplicity, significant traits of the same type from different years have been combined into one cell, where
numbers indicate collection year (e.g., 17 is 2017).

Loading Type PC1 PC2 PC3 PC4 PC5

Positive
associations none

leaf weight 17
leaf area 17
petiole length 17
petiole width 17
petiole ratio 17

leaf weight 18 late flowering
leaf area 19
leaf weight 19
petiole length 19

Negative
associations

leaf weight 19
petiole length 19
DBH 17, 18, 19
height 18, 19
volume 17, 19

leaf area 18
petiole width 18
leaf weight 18
SPAD 18
leaf-specific weight 18

early flowering
late flowering
max flowering
intensity
sum flower
petiole ratio 17, 18

leaf area 17, 18
leaf weight 17, 18
leaf-specific weight 17
petiole width 17
petiole length 17, 18
max flowering
intensity

petiole length 18
leaf area 18
flush bottom
leaf weight 18
flush top
max flowering
intensity
petiole ratio 19
petiole width 18
late flowering

Figure 5. Cont.
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Figure 5. Elliptical plots of PCs where TS trees were statistically different (p < 0.05) from both TN
and C trees based on Tukey comparisons from ANOVA. These included (A) PC1 and PC3, (B) PC2
and PC3, (C) PC3 and PC4, and (D) PC3 and PC5. Dots represent individual trees; ellipses show
boundaries encompassing 65% of all data points.

3. Discussion

An important aspect of this study was to assess the stability of floral phenotypes
of sterile RNAi-LFY trees after propagation through vegetative cuttings. As these trees
are female-sterile, they could not be propagated through seeds. Additionally, plantation
trees are generally established with cuttings, either rooted or dormant, or via grafted
plants, rather than seeds (for example, see [19–21]). We noted early on that one event, TN4,
performed poorly in both greenhouse and field conditions. In hindsight, this event should
have been excluded from the field planting. However, this event showed no indication
of such poor performance in the initial field trial testing of RNAi-LFY events [16]. It is
possible that the cuttings used for propagating these samples were in poor health. Of the
40 initial cuttings for this event, only 10 rooted in greenhouse conditions, and all but 1 of
these rooted cuttings were from the same parent tree. It is also possible that there was
tree-to-tree variation in rooting ability, as rooting of mature tree cuttings is known to be
challenging and variable due to physiological differences in vigor and location/maturity
of cuttings [22].

We found that the use of mature poplar trees for cuttings initially lead to maintained
maturity (early flowering), as we observed flowering for three trees in 2017, the first spring
after planting. However, all trees reverted to a more juvenile state the next year, with
no trees flowering in 2018. The rooted cuttings apparently underwent a developmental
reset to reenter the juvenile phase, thus observed phenotypes were not simply due to
carryover of parental tree performance. This is commonly seen in poplar plantations,
even when large trees or hedges are used as sources of cuttings [23]. In 2019 most trees of
this precocious genotype flowered (91.7%), giving us a good view of floral form, timing,
and abundance. Importantly, we found that floral phenotypes were stable between the
initial field trial and this new one established with cuttings, with catkins of our two sterile
events being smaller than control catkins with no externally visible carpels. Therefore, it is
possible to see continued sterility after propagation with RNAi as the molecular approach
to achieve gene suppression and genetic containment. As with most other studies of
transgenic forest trees, the traits imparted were highly stable under vegetative growth
and propagation [24] including those with a focus in suppression of floral genes such as
AGAMOUS in poplar [25]. However, to our knowledge, this is the first observation of
stability of floral sterility after vegetative propagation.

Analysis of floral form and timing showed that the TS trees showed delayed floral
bud burst and small catkins, which is consistent with their initial characterization in the
large-scale screening trial. The TS trees also had a lower maximal flowering score (the
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highest score of open floral buds achieved), and a lower sum of floral scores (the number
of open catkins per tree in 2019). However, these two metrics were a bit challenging to
assess as the floral buds for the TS trees were both smaller and opened later than those of
C and TN trees, and the TS catkins emerged during vegetative bud flush.

These results were supported by the highly significant PC3, which was strongly
influenced by floral traits. PC3 was significantly different between TS and control trees,
and the main loadings for PC3 were related to leaf weight, petiole ratios, as well as several
flowering traits. In general, the TS trees had late floral opening, lower floral abundance,
and a change in the relative petiole dimensions as compared to control trees. These first
two traits were easy to assess and quantify in the field, while the changes in leaves and
petioles were more subtle and were only revealed during data analysis. TS and TN also
showed significant differences in PC3, indicative of the differences in their floral abundance
and timing of floral opening. This late floral bud opening may indicate a more vegetative-
like identity of the floral buds, which would be consistent with a partial conversion of
reproductive structures to vegetative structures. These data also show we were able to
successfully maintain female tree sterility after vegetative propagation, as discussed above.

We found that block was a significant factor for performance of nearly all vegetative
traits. Trees were initially planted in blocks by size (largest trees in block 1, smallest trees
in block 4), which probably gave a growth advantage to the larger trees. Additionally,
there was variation present from the environment, as this growing site was not uniform
soil quality. There were also confounding factors including deer browse, which occurred
unevenly across the site prior to mitigation of deer intrusion (browsing was mainly in block
4, which also had the smallest trees at planting). Block adjustments to data allowed for
better resolution of differences between tree groups, as can be seen by the clearer separation
of TS trees from TN and C in elliptical plots of PC2 (mainly relating to leaf traits) and PC3
(mainly relating to floral timing and abundance).

We did not observe any major alterations in overall tree architecture or form between
our RNAi trees and our control trees. Unsurprisingly, this is in contrast to findings in the
annual plant Arabidopsis, where analysis of a novel lfy mutant showed very noticeable
impacts on vegetative features, such as increased number of rosette leaves, additional
stem-born branches, and longer stems related to delayed onset and structure of flowers [15].
Annual Arabidopsis plants normally grow several terminal floral structures along a main
stem, while the lfy mutants of Arabidopsis have branches in these equivalent positions [15].
By contrast, floral development in perennial poplar starts to form floral buds the growing
season prior to floral bud flush, and these buds remain dormant over the winter [26]. Most
floral buds occur around the outermost branches of the crown but can be found on the
apex of the main shoot as well [27]. Thus, floral buds are formed in different places on the
plant in poplar as compared to Arabidopsis and poplar are kept in a dormant state until the
next growing season. One vegetative difference was the timing of leaf flush at the tops of
trees, with TS trees flushing later than control and TN trees, which was a loading of PC5.
Given that the floral buds of TS trees also flushed late, it may be that LFY has a role in the
timing of overall bud flush.

We chose to use normal flowering events as a transgenic control for our study as these
trees shared a transformation and propagation history with the transgenic sterile trees.
These trees were chosen based on morphologically normal catkins in the initial field trial
rather than on levels of LFY suppression as we did not previously characterize expression
levels of all RNAi events. We observed significant differences between the overall tree size
of some TN and TS events, with event TS1 being significantly shorter in height and smaller
in DBH than event TN1. Event TS1 had the smallest height of all events, while TN1 was
the largest event based on height, and was larger on average than non-transgenic controls
as well. As events represent individual genetic transformation events with the construct
insertion into a different place in the genome, it is expected to generate some event-to-event
differences. However, these differences occurred both within a normal flowering event
(TN1), indicating little impairment of LFY function, and events where flowers are sterile
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(TS1), indicating strong impairment of LFY function. Thus, it seems unlikely these large
growth differences are mainly a result of variation in LFY expression, however, that was
not characterized in this study. Moreover, there was wide variation within the wildtype
control trees, a likely result of variation due to propagation timing, plant history on the
site, and soil fertility. Nevertheless, our ANOVA results showed that the TS group was
significantly different than the TN group for several traits, all of them indicating slower
growth rate and smaller leaves in TS vs. TN trees. The productivity difference for volume
growth exceeded 25%, a very large potential reduction in productivity. This result was also
supported by ANOVA for PC1, the “productivity PC” as discussed under results, where its
values were highly significantly different for TS vs. TN in the same direction. Significant
differences were also observed in petiole traits, which in poplar are linked to tree growth
as changes in petiole size is linked to leaf exposure to light [28]. In poplars, petiole size
not only varies between clones, but also within the canopy of one tree, making it a very
plastic trait [28]. It may be that the size differences observed between some TN and TS
events could be due to both direct vegetative roles of LFY, and indirectly due to alterations
in light capture ability as influenced by the petiole architecture.

Given the large within group and event-to-event variation, a much larger number
of transgenic sterile and normal events would have been desirable for this study; there
were just two sterile and three normal RNAi events, and event TN1 tended to have the
largest trees, with the tallest height and largest diameter of all events (Figure 4), perhaps
indicating an overall health difference of this event. Unfortunately, only two events with
sufficient LFY suppression for these studies were discovered from our earlier studies [16]
limiting our scope of inference.

In sum, our findings support a role for LFY function in vegetative features and perfor-
mance of poplar trees, as has been observed for other angiosperms. Despite considerable
variation among and within events, the weight of evidence suggests that LFY suppression
is not without deleterious vegetative consequences on productivity. Though our results
showing stability of floral phenotypes after vegetative propagation are encouraging, the
use of LFY suppression for genetic containment may come at a large cost. Before LFY
suppression mutation is deployed for genetic containment, additional studies are needed
in relevant genotypes and environments to examine if the productivity losses we observed
apply, and if so, what their magnitude is. In addition, other approaches to containment
that do not appear to have such costs, such as suppression of AGAMOUS, should continue
to be pursued.

4. Materials and Methods
4.1. Plasmid Construction and Plant Transformation

In the initial field trial, the RNAi-LFY cassette was generated in the pHannibal vector
using a 285-bp fragment of PtLFY from Populus trichocarpa using standard organogenic
techniques (as described in [16,18]). This was inserted into Populus alba (P. alba) female
6K10 clones via a binary vector, pART27 using Agrobacterium-based transformation. Events
were rooted and four ramets per event were produced to be grown in the initial field trial.
This initial trial was planted in summer 2011 [18].

4.2. Propagation and Root Induction

Dormant branch cuttings for propagation were collected in March 2016 from the initial
6K10 sterility trial. We selected non-transgenic control trees (C), four RNAi-LFY events with
normal flowers (TN events), and two RNAi-LFY events with sterile catkins (TS events) for
the field trial (Table S1). Each event was given a simplified number, rather than the longer
event name of the initial trial (Table S1). Two trees from each of these selected events were
used as a source of dormant woody branch cuttings for the focused trial. These cuttings
were hand collected from the ends of branches and were approximately 1 foot in length.
They were placed into plastic bags and stored at 4◦ Fahrenheit for 10 days before preparing
cuttings and inducing rooting. Branch cuttings were trimmed to 10 cm length with the
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base cut at a 45◦ angle. After each cutting was trimmed, it was immediately dipped in
a 1:5 dilution of Dip ‘N’ Grow rooting hormone and planted in a 3-inch pot filled with
moist potting soil. Rooting hormone was freshly diluted for each event. Dormant buds
were removed from each cutting, retaining 1–2 vegetative buds at the apex of the cutting.
Inverted plastic bags were placed over pots to maintain high humidity.

4.3. Tree Acclimatization

Potted cuttings were moved to a greenhouse and randomized in two blocks. A shade
cloth was used to lower the light intensity. Daytime greenhouse temperatures were between
70- and 85-degrees F, and cuttings were provided with constant water from trays under the
pots. Bud flush of the cuttings was measured weekly as an indicator of cutting health. After
most cuttings had flushed, cuttings were slowly acclimated to the natural humidity by
cutting corners off the inverted plastic bags and eventually removing them entirely over the
course of about 4 weeks. The first corner was cut off in week 1, the second corner in week
2, then the top of the bag snipped about half open for week 3 and fully open for week 4.
After week 4, bags were removed. Flushed cuttings were moved to a lathhouse (outdoor
screened in greenhouse) for acclimatization to outdoor conditions prior to planting. Tree
height was measured in the lathhouse and used as a guide for planting in field blocks
by size.

4.4. Field Design

Following acclimatization in a lath house (open sided greenhouse), rooted cuttings
were planted in the field in July of 2016 (Figure S1). The trial consisted of 4 randomized
blocks, with a one-tree border between each block and a one-tree perimeter border, with
9–40 trees per event (Figure S2, Table S4). Blocks consisted of rectangular arrangements of
5 × 7 trees with a 1-tree border between and around each block. The total field measured
90 feet (27.4 m) by 120 feet (36.6 m). Trees were planted at seven foot (2.1 m) spacing,
their bases were covered with shade cloths and metal tags were placed for identification.
Block designation was based on tree size at planting with block 1 being the largest trees
and 4 being the smallest trees. Within the blocks, approximately five trees of each event
were planted with randomized locations. Border trees were randomly planted using the
remaining trees and included trees from each event as well as controls. On the west
exterior border of the field, pairs of each event were planted in a non-randomized order
as a showcase for demonstrative purposes. The border trees and showcase trees were
excluded from statistical analyses and results. A total of 221 trees were planted: 30 controls,
114 transgenic normal, and 77 transgenic sterile (Table S4).

This trial was established under permit from APHIS (BRS permit number 17-012-101r-
a2, previous permit numbers 17-012-101r-a1, 17-012-101r, 13-330-102r and 10-260-102-a1).
Prior to field planting in July 2016, the field was sprayed with herbicide, tilled, and
irrigation lines were established. Sprinkler heads with 360◦ rotation were attached to the
irrigation lines which were spread out in an E-shape to provide full coverage of the field
trial. From July through August 2016, the field was watered for four hours each morning.
In September 2016, fields were watered for two hours each morning. Trees were irrigated
according to this plan in 2017 as well, then the irrigation system was removed in early 2018.

4.5. Vegetative Growth Measurements and Spring Leaf Flush Scoring

Tree height was measured at planting and again in each dormant season. Height
was collected using a meter stick in the first season of growth and using cm tape in later
growth seasons. Stem diameter was measured at 6 inches above soil level using Meba IP54
Electronic Digital Calipers. Volume index was calculated using height × DBH2. Spring
leaf flush was scored for the top and bottom half of each tree using the following scoring
system; 0 = no leaves flushed, 1 = buds starting to break, 2 = partial leaf emergence,
3 = leaves fully flushed. Tree survival was scored each spring along with the timing of
leaf flush. Trees that did not flush leaves were scored as dead. Because event TN4 had
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poor performance in terms of growth and survival in the field, it was excluded from
future analysis.

4.6. Leaf Collection

Each year, three leaves were collected and measured from each tree. Either in the field,
or shortly after collection, chlorophyll content was measured using a hand-held SPAD
502 Plus Chlorophyll Meter. Three SPAD measurements taken and averaged on each leaf.
During the first growth season, leaves were collected at the visual midpoint of the trees. For
subsequent years, leaves were collected using a leaf plasticron index. This was measured
by counting ten leaves down from the top of the tree without including nascent leaves.
Nascent leaves were those under 4 cm in length. Leaves were collected from different
sides of the tree when possible. Any trees with fewer than 10 developed leaves were not
included in the statistical analyses. No chlorophyll content was measured in 2019.

4.7. Leaf Trait Measurements

Petiole length and width of fresh leaves were measured with digital calipers. Leaves
were scanned using an HP Scanjet 8200. Each scan included three leaves from the same
tree and a ruler for a scale marker. Leaf area in cm2 was calculated using ImageJ software.
Scanned leaves were placed in drying ovens until the mass of the combined leaves remained
stable, indicating leaves were fully dry. Each leaf was weighed with a Mettler AJ100 scale.
Leaf-specific weight was calculated as the dry weight divided by the leaf area.

4.8. Scoring Flowering, Floral Timing and Floral Abundance

Trees were scored yearly for the presence of floral buds and fully flushed catkins.
Trees with at least one floral bud were scored as flowering. In 2019 trees were scored for
floral bud presence (flowering or not), timing of floral opening, and abundance of open
flowers (sum of flowering scores). Floral opening was scored for 7 weeks beginning 11
March 2019 using the following system.

0. No fully flushed catkins.
1. Very sparse fully flushed catkins (less than 10).
2. Sparse fully flushed catkins (more than 10 but less than 20).
3. Some fully flushed catkins (more than 20 but less than 40).
4. Many fully flushed catkins (more than 40 but less than 50).
5. Abundant fully flushed catkins (50 or more).

Trees with numbers of fully flushed catkins that fell about halfway between two
categories were scored at half integer intervals. Maximal flowering score was the highest
overall score given to a tree across the 7 weeks.

Floral abundance was determined by counting the actual number of fully flushed
catkins on each tree. This was performed twice, once on 25 March 2019, and once on April
4 2019. These data were termed “sum of floral scores.”

4.9. Field Management

In summer 2016 several of the trees experienced browsing damage from deer. Due
to uneven tree performance in the 2016 growing season, it was decided to trim all trees
to a uniform height of 30 cm from soil level. Trees that had not reached 30 cm in height
were left untrimmed. Trees were trimmed during the first winter season then singled in
spring 2017. Trees were terminated in fall 2020 by coppicing (cutting off near ground level),
followed by injecting EZ-Ject copperhead herbicide shells containing imazapyr directly
into the stem roughly 3 inches (7.6 cm) off the ground. Stems were incinerated while the
stumps remained in the ground.

4.10. Data Analysis

All statistical analyses were performed in R studio, raw and analyzed data can be
found in Ap raw R code can be found in Supplementary File S2. All trees that were
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recorded as dead in any year, even if they resprouted in another year, were excluded from
the analysis due to poor growth, as were all data collected in 2016 due to deer damage
and trimming.

Using all collected data from 2017–2019, a principal component analysis was per-
formed using the function prcompfrom the stats package [29]. Prior to analysis, all rows
containing missing data were omitted with the function na.omit from the stats package,
and all data were adjusted for block. After adjusting for block, the polarity of PCA results
changed, meaning the major growth traits are negative, and the more negative a trait is, the
larger the tree is in reality. Package dyplr [30] was used to assign groups and events to their
respective blocks using the function mutate. Linear models and ANOVAs were created
with the principal components 1–5. All linear models were created using the function lm in
the stats package. Linear models for the principal components were created with event as
the independent variable.

Traits were independently analyzed within the 2019 collected data only. This is because
after the third year of growth, the trees reached maturity and produced mature leaves and
flowers. As such, data collected in 2019 were considered the most reliable data. The 2019
data were subset into 4 datasets to exclude missing data values without excluding whole
rows. This was done using the function subset in the base R package [29]. All individual
trait analysis was performed on raw data unadjusted for block. Linear models were created
for each numerical variable within the 2019 collected data. All linear models were created
with event and block as the independent variable. In all linear models, block × event
interactions were ignored as they were found to only be significant in 2 variables.

Logistic regressions were created with event as the independent variable for each
categorical variable within this dataset with the function glm in the package brglm2 [31].
Prior to analysis, categorical variables were collapsed into binary variables. All floral scores
were collapsed from 0–2 (to become zero) and 3–5 (to become 1), while leaf flush scores
were collapsed in the same manner from 0–1 and 2–3. The sum of floral scores over the
whole season were collapsed from values greater than the median. All logistic regressions
were tested for complete separation. Where complete separation was detected, penalized
logistic regressions were created. Diagnostic Q-Q and residual plots created with package
DHARMa [32] and function simulateResiduals indicated that assumptions of normality
and equal variance were acceptable. Likelihood ratio tests were performed on all logistic
regressions using the function drop1 from brglm2. Manual chi-squared tests were used to
uncover differences between classes.

Diagnostic plots were created for all linear models, which found the assumptions
of normality, equal variance, and independence to be acceptable. ANOVAs were then
performed on all linear models using the function anova in the stats package. These were
used to then perform Tukey’s HSD test as well as contrasts using the function emmeans in
the package emmeans [33].

Graphics for all data were created with ggplot2 [34], ggbiplot [35] (dependency dev-
tools, ggplot2), plotly [36], graphics in base R, and multcompView [37]. The color palette
for all graphics is as follows: grey27, royal-blue, and tomato3. All boxplots display block
adjusted data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10081594/s1, Figure S1: event performance in the greenhouse and early field views.
Figure S2: General planting map of the field trial. Figure S3: Catkins on field trees in spring 2017.
Figure S4: Trees flowered abundantly in 2019. Figure S5: Tukey plots of traits without significant
differences between events trees in 2019. Figure S6: Heat map of PCA loadings based on deviations
from block means Figure S7: histograms of PC outputs. Figure S8: Elliptical plots of PCs without
significant differences between TS and TN or TS and C trees. Figure S9: Example of PC plot with
and without block adjustment to show how adjustment increased resolution of class differences.
Table S1: Key to event IDs and short names. Table S2: Summary of p-values from likelihood ratio and
Chi-squared analysis of flowering and leaf flush traits Table S3: Percent change between event means
for block-adjusted 2019 field data. Table S4: Numbers of trees in each block, event, and group at time
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of planting in 2016. Supplementary File S1: Excel Spreadsheet of All Data. Supplementary File S2:
Raw R Code.
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