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Abstract: Based on results from previous studies, populations of the Iberian endemic Centaurea
podospermifolia north of the Ebro River are considered genetically pure, while those southward are
introgressed, with genetic input from C. cephalariifolia. This phenomenon is particularly relevant, es-
pecially given both the endangered and protected status for the species, which can have consequences
in how to best apply conservation strategies to maintain genetic resources in the species. The main
goal of this study was to evaluate whether genome size assessments using flow cytometry can help
distinguishing between pure, hybrid and introgressed populations, and hence become a powerful
and cost-effective tool to complement comprehensive population genetic surveys. The results indicate
that there are significant genome size differences between populations of C. podospermifolia, which are
coincident with previous considerations of pure and introgressed populations. Given the simplicity
and reproducibility of this technique, flow cytometry could become an effective tool for monitoring
pure populations of this species and, indeed, become an integral part of the management plans that
are mandatory for listed taxa.

Keywords: Centaurea cephalariifolia; Centaurea podospermifolia; Centaurea ×loscosii; conservation;
genome size; hybridisation; introgression

1. Introduction

About a decade ago, a study revealed that populations of the Iberian endemic Cen-
taurea podospermifolia Loscos & J.Pardo north of the Ebro River (in the Cardó Massif) were
considered genetically pure, while those from the south (in the Ports Massif) were intro-
gressed, with genetic input from the widely distributed C. cephalariifolia Willk. [1]. Despite
current understanding of the limitations of allozyme markers (e.g., low polymorphisms,
restricted to coding genes), this study provided the first genetic insights into a potential
hybridisation occurring between these two species, which had been based solely upon
morphological evidence [2]. López-Pujol et al. [1] attributed this pattern to the existence of a
biogeographical barrier, the Ebro River, that would have prevented the entry of genetic ma-
terial of C. cephalariifolia into the Cardó Massif. Given that C. podospermifolia and C.×loscosii
Willk., the resulting hybrid between the two species are legally protected (listed as ‘vulner-
able’ [3]), the question arose as to whether efforts should be geared towards conserving
the so-called by the authors pure or hybrid populations of the species [1]. Conservation
management strategies of endangered species require regular population monitoring. This
is particularly important in cases such as that of C. podospermifolia, where hybridisation and
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introgression seem to be recurrent, and could possibly lead to the genetic assimilation of the
species. Whilst C. cephalariifolia plants are large and vigorous, with purple florets and the
involucre bracts with fimbriate margins (Figure 1C,H,J), C. podospermifolia and C. ×loscosii
are morphologically more similar (Figure 1A,B), and mainly distinguished on the basis
of flower head characters [2]. The main traits that can be used to distinguish between
them are (i) the presence of sessile capitula in C. podospermifolia, while being pedunculate
in C. ×loscosii (Figure 1A,B). (ii) Florets are bright yellow in the former and pale yellow
(sometimes purplish), with darker anthers in the hybrid (Figure 1D,E,I). In addition (iii),
involucral bracts in C. podospermifolia present mostly smooth margins and terminate with
an apical spine (Figure 1F). In C. ×loscosii, the bracts also terminate in an apical spine, but
the margins are clearly fimbriate (Figure 1G). Based on this, it is in many cases difficult
to identify hybrid and introgressed individuals in the field, especially as few individuals
flower per season, making identification in the field sometimes challenging [1].
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Figure 1. Photographs illustrative of the three Centaurea studied from Ports Massif, including morphological details of
the flower head: (A,D,F) C. podospermifolia; (B,E,G,I) C. ×loscosii; (C,H,J) C. cephalariifolia (Images: Marc Aixarch, Oriane
Hidalgo). Note that specimens of C. podospermifolia from Cardó Massif are morphologically no different from those of
Ports Massif (image available at https://twitter.com/agentsruralscat/status/1278388147324243969?lang=ca, accessed on
19 July 2021).

Hybridisation is a recurrent phenomenon in plants, which has been widely recognised
as a key evolutionary driver [4]. It has been linked in many cases to processes such as
diversification and speciation [5,6] because of its role in the rise of new species through the
accumulation of biological novelties inherent to the process [7,8]. Certainly, humans have
benefited for long time from hybridisation by selecting and transferring useful traits among
species for agro- and horticultural purposes. In many cases, hybridisation involves changes
in chromosome number and/or ploidy level (e.g., Medicago, Sorbus [9,10]). Homoploid
hybrids, where no change in ploidy with respect to the parental donors occurs, are also
reported at lower frequencies among plants [11], though their rate of incidence is a hot
topic of debate, and might have been so far underestimated [12].

Besides the use of genetic markers to uncover the genetic signature of crosses between
species, flow cytometry has been widely used at population level to detect changes in
nuclear DNA contents, i.e., intraspecific and cytotype variation, which is frequently one
of the outcomes of hybridisation (e.g., Sorbus, Viola [9,13,14]). Indeed, this technique has
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become a complementary tool to interpret output data from population genetics (i.e., allelic
frequencies). To date, no genome size data are available for C. podospermifolia, C. cephalari-
ifolia and their resulting hybrid C. ×loscosii, although we know they share a chromosome
number of 2n = 40 [15], supporting that C. ×loscosii is a homoploid hybrid. With these
premises in mind, the first question to address is whether nuclear DNA contents of C. po-
dospermifolia, C. cephalariifolia and their hybrid are sufficiently different to be discriminated
by flow cytometry. Theoretically, F1 hybrids are expected to have usually a genome size (or
2C-value) corresponding approximately to the mean of their parents (Figure 2A). Based on
this, the present study aims at evaluating whether genome size assessments through flow
cytometry could become a useful tool for population monitoring, offering a simple, cost-
effective and high-throughput sampling method to assess the extent of hybridisation and
introgression between these species. Several processes might account for the configuration
depicted in Figure 2A, where all hybrids have a 2C-value that corresponds to the mean
2C of the parental species: (i) hybrids are infertile and are generated sporadically where
the parental species coexist; (ii) hybrids are self-compatible; (iii) hybrids are apomictic,
i.e., they produce seeds without sexual reproduction. In the case of self-compatibility or
apomixis, one would therefore expect the hybrid to be stable (i.e., able to persist over time
without genetic exchange with parent species).
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Figure 2. (A–C) Schematic flow cytometry outputs when processing together the parental species and their homoploid
hybrid. (A) Configuration expected in case there is no gene flow between hybrids and parental species, due to, e.g.,
reproductive barriers or sterility of hybrids. (B) Configuration expected in case there is gene flow between hybrids and
parental species. (C) Observed configuration in the studied populations. (D,E) Flow histograms obtained from analysing
C. podospermifolia (peak 2) using Petroselinum crispum (4.5 pg/2C, peak 1) as the calibration standard. (D) Population from
Cardó Massif (OH 621-1). (E) Population from Ports Massif (OH 618-4). (F) Flow histogram obtained from coprocessing C.
podospermifolia (population from Cardó Massif, OH 621-4), C. cephalariifolia (OH 616-2) and C. ×loscosii (OH 613-5).

Another question to answer is to which extent C.×loscosii is a stable hybrid originating
through one or few hybridisation events or if, by contrary, it is continuously generated
in those areas where both parental species coexist (note that observations in the field
tend to favour the latter hypothesis; J. López-Pujol and M. Aixarch, pers. obs.). In this
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sense, flow cytometry can also provide information on the different possible outcomes
after generations of hybridisation and subsequent introgression, which would result in a
diverse array of genome size patterns. For example, if a hybrid is fertile and there are no
reproductive barriers with its parental species, then subsequent generations would have
genome sizes that are not exactly the mean of the genome sizes of their parental species,
but a range of intermediate values depending on the degree of introgression (Figure 2B).

2. Results

Flow cytometry results are given in Table 1 (mean values per population) and in
Table S1 (values for each individual).

Table 1. Genome size data for populations of Centaurea cephalariifolia, C. ×loscosii and C. podospermifolia at Cardó and Ports
Massifs (Catalonia, Spain), with indication of geographical coordinates.

Massif Centaurea Species (Population) 2C in pg (SD) 1 N 2 CVplt
3 CVstd

4 Geographical
Coordinates

Ports

C. cephalariifolia (OH 614) 7.66 (0.05) 5 3.21 2.86 40◦48′25” N, 0◦20′15” E
C. cephalariifolia (OH 616) 7.61 (0.08) 5 2.51 2.35 40◦48′28” N, 0◦19′40” E

C. ×loscosii (OH 613) 7.94 (0.11) 8 2.79 2.61 40◦48′23” N, 0◦20′14” E
C. ×loscosii (OH 617) 7.83 (0.06) 5 2.67 2.64 40◦48′28” N, 0◦19′42” E

C. podospermifolia (OH 618) 7.85 (0.06) 5 2.70 2.85 40◦48′40” N, 0◦19′50” E
C. podospermifolia (OH 619) 7.88 (0.04) 5 2.92 2.87 40◦48′28” N, 0◦19′10” E

Cardó C. podospermifolia (OH 621) 5.88 (0.05) 10 2.91 2.84 40◦56′28” N, 0◦35′06” E
1 SD: standard deviation. 2 N: number of individuals measured. 3 CVplt: coefficient of variation for Centaurea accessions (in %). 4 CVstd:
coefficient of variation for the calibration standard (in %).

We found C. podospermifolia population from Cardó Massif to have an average genome
size of 5.88 pg/2C (Figure 2D), while populations of the same species from Ports Massif
have a mean value of 7.87 pg/2C (Figure 2E). In fact, the three Centaurea species from Ports
Massif exhibited very similar genome sizes (Figure 3), although that of C. cephalariifolia
(7.64 pg/2C) was slightly smaller than that of C.×loscosii (7.89 pg/2C) and C. podospermifolia
(7.87 pg/2C).
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Figure 3. (Left) Violin plots showing the distribution of genome size in Centaurea cephalariifolia,
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Letters above violins indicate which groups are statistically different from one another (Tukey test,
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and C. podospermifolia (yellow) in Catalonia, NE Spain.
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To confirm that this variation was genuine rather than due to a potential technical
artefact, leaves from populations showing the largest difference in 2C-values were mixed
and processed. This resulted in distinct peaks in the flow histogram (Figure 2F), indicative
of biologically real differences in nuclear DNA contents. In line with these findings,
the Tukey test evidenced statistically significant differences in genome size between C.
cephalariifolia, C. ×loscosii plus C. podospermifolia from Ports Massif, and C. podospermifolia
from Cardó Massif (Figure 3).

3. Discussion
3.1. Genome Size Enables Discrimination between Populations of C. podospermifolia

This study reports novel genome size data, which were missing for the species and its
hybrid. The analysis of nuclear DNA contents in multiple accessions of C. podospermifolia
highlighted significant differences in genome size between the populations from Cardó
and Ports Massifs, which covers the main distribution area of the species. Despite the
limitations highlighted in the introduction regarding the use of the allozyme analysis
for population genetics, the differences in genome size observed here can be interpreted
considering the work by López-Pujol et al. [1], who reported the existence of segregated
genetic clusters, coincident with each of the mountain ranges. Certainly, based solely on
nuclear DNA contents, it would be too speculative to conclude that C. podospermifolia from
Cardó Massif is genetically pure, especially since we cannot discard ancient hybridisation
events that might have happened in that area. However, we cannot overlook the fact that
this population has a significant smaller genome (5.88 pg/2C) than those that coexist with
C. cephalariifolia in the Ports Massif (7.85–7.88 pg/2C), and such results indicate that, at
least, the populations from both mountain ranges have undergone contrasting evolutionary
trajectories. There are old records indicating the presence of C. cephalariifolia in the Cardó
Massif [16–18]; however, these records are far enough from the current populations nuclei
of C. podospermifolia, and currently the species is barely present in the area (Rafel Curto,
pers. comm). Based on this, hybridisation might be unlikely given the results supporting a
lack of gene flow between both mountain ranges [1].

It is nonetheless important to bear in mind that C. cephalariifolia is widespread in the
Iberian Peninsula, and could eventually spread in this area, meaning that efforts should be
made to preserve the original genetic stock of C. podospermifolia from this area. Furthermore,
C. podospermifolia is included in the Catalan national list of protected species [3], and
thereupon the conservation strategies to include populations that are unlikely to have
undergone hybridisation (at least recent episodes) must be guaranteed. The conservation
of introgressed populations, however, could also be desirable because, as already noted in
López-Pujol et al. [1], it can have beneficial effects for an endangered species. Furthermore,
Thompson et al. [19] argued that the conservation strategy for Mediterranean plants should
combine the protection of pure and mixed populations—the latter being the arena for
adaptive evolution and speciation.

Overall, in order to contribute further to the conservation and monitoring of these
species, future population genetics surveys would be desirable to tackle, as well as the
potential taxonomic questions arising from the apparent recurrent introgression in Ports
Massif. The use of high throughput approaches (e.g., RADseq [13,20]) has been crucial to
untangle the complex backgrounds of hybridisation in plants. Such techniques combined
with flow cytometry would certainly enable reaching more sound conclusions about the
genetic background of Centaurea in this area, including the level of introgression within
and between populations. Altogether, this information would ultimately help to apply
more fine-scale conservation protocols addressed to preserve genetic clusters of interest.

3.2. Interspecific Hybridisation and Introgression: Impact on Genome Size

As highlighted above, hybridisation and introgression are recurrent in plants and
have been frequently associated with the rise of new species, and the genus Centaurea is
not an exception [21]. Understanding the ecological and evolutionary consequences of this
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puzzling phenomenon has therefore become a source of intense debate [12,22–24]. Part of
such interest is underpinned by the fact that, despite the expectancy that hybrids would
(theoretically) display intermediate genomic features concerning the parental genomes [25],
several studies report that, in many cases, one of the parental genomes can become domi-
nant and erode the signature of the other parental genome [26–28]. In this sense, the pattern
found in C. podospermifolia, whose likely introgressed populations present genome sizes
close to their sympatric congeners and quite divergent from the isolated conspecific popu-
lation (Figure 1C), in a similar way than what was observed in Armeria [29], could reflect a
process of genomic assimilation. In the case of Onopordum, though nuclear DNA contents of
hybrid and introgressed specimens between O. hinojense and O. nervosum displayed a range
of sizes that fell within that of the parental species [30], the authors provided compelling
evidence of the impact of directional introgression on the extinction risk of the endangered
species O. hinojense. In fact, in absence of reproductive barriers, high levels of introgression
can compromise the long-term existence of parental donors through assimilation of the
genome [31], showing significant outperformance of hybrids in contact zones [23].

In addition, hybridisation can also affect the composition of repetitive DNA content
of hybrids (triggered by the ‘genomic shock’), such as is the case in Helianthus, where the
expansion of repetitive elements resulted in the overall genome additivity observed in
homoploid hybrids, although the influence of ecological conditions in promoting such
patterns is unclear [32,33]. Whether the increased genome size of introgressed C. po-
dospermifolia is a consequence of genomic assimilation, repetitive element activation or the
combination of both, yet remains to be clarified with a more in-depth population genetics
screening.

Our flow cytometry analyses revealed that populations of C. podospermifolia from
Ports Massif present very homogenous genome size values, suggesting that their increased
genome size likely arose through an ancient post-hybridisation genome restructuring
event, which could be now fully stabilised. By contrast, C.×loscosii hybrids displayed more
heterogeneous genome size values compared to their progenitors, having in some cases
slightly larger C-values than those of the potential parents (Figure 2; Table S1). A scenario
where C. ×loscosii presents more unstable genome sizes could indeed reflect the potential
impact of recurrent and recent hybridisations in those areas where both parental species
currently coexist. Nonetheless, this point should be confirmed with future genetic screening
at the population level. In summary, hybridisation is increasingly recognised as both a
potential threat (through hybridisation swamping and genetic assimilation, or outbreeding
depression), but also a chance (as it generates genetic variation) for species survival and
conservation [24,34]. In this sense, improving our understanding of hybridisation processes
is therefore fundamental for species management, including its impact on genome size,
which is most often overlooked.

4. Materials and Methods
4.1. Plant Sampling

Details of the studied populations are given in Table 1 and their location is shown
in Figure 2. In total, 43 individuals were sampled, representing two populations of each
species from Ports Massif, and one population of C. podospermifolia from Cardó Massif.
We collected one leaf per individual, since approximately only 1 cm2 of leaf material
is necessary to carry out genome size assessments by flow cytometry [35]. Herbarium
vouchers from previous collections in the same area by López-Pujol et al. [1] are deposited
in herbarium BC (Botanical Institute of Barcelona).

4.2. Flow Cytometry Measurements

Genome size was determined using propidium iodide flow cytometry with a CyFlow
Space (Sysmex-Partec, Germany), following the one-step procedure [36] with modifications
as described in Clark et al. [37]. We used Petroselinum crispum (Mill.) Fuss. ‘Champion
Moss Curled’ (2C = 4.50 pg [38]) as calibration standard and the general purpose buffer
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GPB [39] supplemented with 3% PVP-40 [35]. The number of individuals analysed per
population is depicted in Table 1.

4.3. Statistical Analyses

Data visualisation and analyses were carried out with the R package ggplot2 [40] and
R v.3.2.2 [41]. After verifying assumptions of homogeneity of variances (with Bartlett’s
test) and of normality on residuals (with Shapiro test and QQ-plot), we proceeded to a one
way ANOVA and performed multiple pairwise comparisons between the means of groups
(Tukey honest significant differences, R function: ‘TukeyHSD’).

5. Conclusions

Understanding hybridisation and the impact of introgression in plant populations
is fundamental for species management, especially when it comes to endangered species.
Besides the critical role of population genetics, complementary approaches can be imple-
mented, including changes on genome size, which are most often overlooked. This study
provides an example about how can nuclear DNA contents highlight potential hybridis-
ation. Because of its simplicity and low cost, flow cytometry could become an effective
tool for the monitoring of pure (and, eventually, introgressed) populations and, indeed, an
integral part of the management plan that is mandatory for listed species, as illustrated
here in the case of C. podospermifolia.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10081492/s1, Table S1: Genome size data for each of the individuals of Centaurea
cephalariifolia, C. ×loscosii and C. podospermifolia at Cardó and Ports Massifs (Catalonia, Spain).
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