
plants

Article

Identification of Candidate Gene-Based Markers for Girth
Growth in Rubber Trees

Gunlayarat Bhusudsawang 1, Ratchanee Rattanawong 2, Thitaporn Phumichai 3, Wirulda Pootakham 4,
Sithichoke Tangphatsornruang 4 and Kittipat Ukoskit 1,*

����������
�������

Citation: Bhusudsawang, G.;

Rattanawong, R.; Phumichai, T.;

Pootakham, W.; Tangphatsornruang,

S.; Ukoskit, K. Identification of

Candidate Gene-Based Markers for

Girth Growth in Rubber Trees. Plants

2021, 10, 1440. https://doi.org/

10.3390/plants10071440

Academic Editor: Aakash Chawade

Received: 21 June 2021

Accepted: 12 July 2021

Published: 14 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biotechnology, Faculty of Science and Technology, Rangsit Campus, Thammasat University,
Pathum Thani 12120, Thailand; g33bh@tu.ac.th

2 Nong Khai Rubber Research Center, Rubber Research Institute of Thailand, Rubber Authority of Thailand,
Rattanawapi District, Nong Khai 43120, Thailand; ratchaneerattanawong@gmail.com

3 Rubber Research Institute of Thailand, Rubber Authority of Thailand, Bangkok 10900, Thailand;
thitaporns@gmail.com

4 National Science and Technology Development Agency, Thailand Science Park, Khlong Luang,
Pathum Thani 12120, Thailand; wirulda.poo@nstda.or.th (W.P.); sithichoke.tan@nstda.or.th (S.T.)

* Correspondence: ku@tu.ac.th; Tel.: +66-2564-4444 (ext. 2458)

Abstract: Girth growth is an important factor in both latex and timber production of the rubber tree.
In this study, we performed candidate gene association mapping for girth growth in rubber trees
using intron length polymorphism markers (ILP) in identifying the candidate genes responsible
for girth growth. The COBL064_1 marker developed from the candidate gene (COBL4) regulating
cellulose deposition and oriented cell expansion in the plant cell wall showed the strongest association
with girth growth across two seasons in the Amazonian population and was validated in the breeding
lines. We then applied single molecule real-time (SMRT) circular consensus sequencing (CCS) to
analyze a wider gene region of the COBL4 to pinpoint the single nucleotide polymorphism (SNP) that
best explains the association with the traits. A SNP in the 3’ UTR showing linkage disequilibrium with
the COBL064_1 most associated with girth growth. This study showed that the cost-effective method
of ILP gene-based markers can assist in identification of SNPs in the candidate gene associated with
girth growth. The SNP markers identified in this study added useful markers for the improvement
of girth growth in rubber tree breeding programs.

Keywords: candidate gene association mapping; intron length polymorphism; single nucleotide
polymorphism; girth growth; rubber tree

1. Introduction

Girth growth of the rubber tree, Hevea brasiliensis (Willd.ex Adr.de Juss.) Muell. Arg.,
is the most important indicator of the maturity of the plantation, on which the harvesting of
latex is based. Wood derived from the trunk of the rubber tree, harvested during periodic
replanting, has emerged as an important raw material, especially in counties where logging
of the natural forest is restricted. Breeding for girth growth is time-consuming, as the
rubber tree has a long juvenile period, non-synchronous flowering, low fruit setting, and a
heterozygous nature. Propagation of new varieties requires a minimum of 20–25 years of
experimentation. To improve the rubber productivity, a deeper knowledge of the genetic
factors responsible for variation in girth growth is necessary.

Genome-wide association mapping for girth growth in Amazonian accessions grown
in a suboptimal climate zone has identified candidate genes for adaptation to suboptimal
climate zone [1]. However, none of the functional genes associated with secondary growth
had been in the SNP set analyzed previously. The low linkage disequilibrium (LD) was
also reported in the Amazonian population. Successful application of genome scanning to
outcrossing species such as rubber tree will require a very high number of markers, making
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the candidate gene method more attractive [1,2]. The candidate gene approach has proven
successful in many instances, such as in Arabidopsis [3] wheat [4,5], pea [6], potato [7], and
perennial ryegrass [8]. Secondary growth has been extensively studied, and several of the
genes involved have been identified. Candidate genes for cellulose and lignin biosynthesis
and cell wall development, and transcription factors involved in wood development, have
been reported for loblolly pine [9] and eucalyptus [10–13]. The allelic variation of these
candidate genes may be used to establish associations between targeted genes with known
function and girth growth in rubber tree.

Gene-based or functional markers are derived from sequence polymorphisms within
genes that are directly associated with phenotypic variation. Gene-based markers accu-
rately discriminate between traits associated with alleles of a target gene and are ideal
molecular markers for marker assisted selection in breeding [14]. Although high through-
put sequencing techniques are being developed nowadays, the use of variable markers
present in candidate genes is still an interesting alternative for association studies. An
approach known as intron length polymorphism (ILP), based on the alignment of EST
cDNA sequences against known genomic sequences, has been applied to a range of crop
species for genetic diversity, evolutionary and association genetic studies [15–21]. As ILP
markers are gene-based, co-dominant, neutral, convenient, reliable and cost effective, and
can play a vital role in regulation of gene expression [22], this is a promising approach to
genetic studies such as candidate gene association mapping, which seeks to identify allelic
variation in the genes that influence girth growth.

In the present study, we developed a set of ILP markers from candidate genes involved
in secondary growth and performed candidate gene association mapping for girth growth
in Amazonian accessions. Rubber tree breeding lines were used to validate the effectiveness
of the ILP markers identified by association mapping. We applied targeted sequencing
using Pacific Biosciences single molecule real-time (SMRT) circular consensus sequencing
(CCS) technology to determine the sequence variation of the strongest associated candidate
gene influencing girth growth. We then conducted candidate gene association mapping
in order to exploit SNPs for downstream applications to support rubber tree breeding
programs. Our study showed that the cost-effective method of ILP gene-based markers
can assist in identification of SNPs in the candidate gene associated with girth growth. The
SNP markers identified in this study added useful markers for the improvement of girth
growth in rubber tree breeding programs.

2. Results
2.1. Development and Identification of ILP Markers

ILP variation was investigated in 26 genes from four function classes. A total of
45 ESTs (Table S1) were aligned with whole-genome shotgun contigs of the rubber tree to
predict the position and number of the introns. The 45 ESTs showed significant hits with
158 contigs of the whole-genome shotgun sequences. Of 530 predicted introns, 235 introns
with sizes smaller than 800 bp were selected for primer synthesis and used in the evaluation
of length polymorphism. Of the 235 ILP primer pairs examined, 228 pairs successfully
amplified genomic DNA samples. We selected 115 polymorphic ILP markers (Table S2)
based on their predetermined intronic-Indel size and PIC. The average size of the amplicon
was 284 bp, ranging from 150 (CesA004) to 759 bp (PAL117). The selected ILP markers
yielded 470 alleles, with an average of 4.20 alleles per locus. The number of alleles ranged
from 2 to 12. PIC values were between 0.06 and 0.88, with an average of 0.44. The observed
heterozygosity ranged from 0.02 to 1 and the expected heterozygosity from 0.10 to 0.92,
with average values of 0.59 and 0.47, respectively.

2.2. Population Structure and LD Analysis of ILP Markers

We further tested the 115 polymorphic ILP markers to evaluate the genetic population
structure of the Amazonian accessions used in the present study. The model-based Bayesian
analysis, combined with computation of the Evanno ∆K statistics (Figure S1a), suggested
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two clusters (K = 2) with admixed accessions. Cluster 1 (green bars) comprised 13 accessions
from Acre, one from Mato Grosso, and 71 from Rondonia. Cluster 2 (red bars) comprised
52 accessions from Mato Grosso and eight from Rondonia (Figure S1b). The accession with
unknown origin (BRAZIL_UN) was placed into Cluster 2. Twenty-four accessions had a
membership probability (Q value) below 0.7 and were defined as admixtures. Of these,
one originated from Acre, 11 from Mato Grosso, and 12 from Rondonia. The PCA results
(Figure S1c) were consistent with those from the admixture model. The accessions from
Mato Grosso formed a group that was distinct from the Acre and Rondonia cluster.

The population LD was analyzed using the 115 polymorphic ILP markers. Based on
r2 estimates, 59 of the marker pairs showed r2 ≥ 0.1 (Table S3). Of these pairs, 15 pair-
wise comparisons were intragenic LD with an average r2 of 0.18. The seven highest r2

(0.30 < r2 < 0.64) with an average of 0.46 represented intragenic LD between ILP markers
of four genes: LIM, CesA3, APL, and MYB. Forty-four marker pairs were intergenic LD,
with an average r2 of 0.14. Among intergenic LD, 35 marker pairs were LD between ILP
developed from transcription factors and functional genes and nine were LD between ILP
developed from functional genes.

2.3. Association Mapping of ILP Markers

The results of phenotype statistics of GiD and GiW were described in the previous
work [1]. For GiC, the mean was 4.49 cm, with the maximum of 6.96 cm and the minimum
of 2.30 cm. Significant positive phenotypic correlations (p < 0.01) were found between
GiD and GiC, and between GiW and GiC, with r values of 0.51 and 0.61, respectively.
Different association mapping models were compared, and the proportion of significant
results was calculated. Q and PCA yielded similar Q-Q plots (Figure S2), only the three
models GLM, GLM + Q, and MLM + K + Q are presented for association analysis. The
naive GLM model detected the largest number (25) of significant associations for nine
candidate genes and three traits studied (Table S4). This model did not take account of
possible confounding effects and the associated false positives so that the cumulative
distribution of p values was greatest from the observed p values. The GLM + Q models
performed better than the naive model but still deviated from the expected values. These
models yielded 13 significant associations for six candidate genes and all traits. The MLM
+ Q + K model showed the smallest departure from expectations in the Q-Q plots. It
detected nine marker–trait associations for four candidate genes and three traits. All
three models displayed similar distributions of p values for GiC, but the MLM + Q + K
model still deviated less from the expected values than the GLM or GLM + Q models
and detected a single marker–trait association for GiC. As the MLM + Q + K model was
superior at accounting for spurious associations resulting from population structure and/or
familial relatedness, the results from this model are discussed next (Table 1). A total of nine
marker–trait associations involving four ILP markers developed from three candidate genes
were detected. Marker–trait associations of COBL064_1, and PIN227_1 were significantly
associated with GiD and GiW, using a Bonferroni corrected cut-off (with p ≤ 4.3 × 10−4).
These marker–trait associations explained the phenotypic variation, with ranges from 4.9%
(CaS108) to 14.6% (COBL064_1)
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Table 1. Markers and trait association from the MLM + Q + K model.

Trait 1 Marker 2 p Value Phenotypic Variation (%)

GiD

COBL064_1 * 2.0 × 10−7 14.0
PIN227_1 * 1.0 × 10−5 10.2

PIN220 * 1.1 × 10−4 7.7
CaS108 9.2 × 10−4 4.9

GiW

COBL064_1 * 4.32 × 10−7 14.6
PIN227_1 * 4.82 × 10−5 10.0

PIN220 4.7 × 10−4 7.3
CaS108 1.8 × 10−3 4.9

GiC CAD076 1.6 × 10−3 8.9
1 GiD = girth in the dry season, GiW = girth in the wet season, and GiC = total girth increment; 2 * Significant
after Bonferroni correction p value = 4.3 × 10−4.

2.4. Validation of the Associated Markers in Rubber Tree Breeding Lines

For the breeding lines used to validate the markers identified by association mapping,
girth was lower in the dry season than in the wet season. The mean GiD was 22.37 cm,
with the largest girth of 28.66 cm and the smallest girth of 13.33 cm. The mean GiW was
26.15 cm, with a maximum of 33.28 cm and a minimum of 15.73 cm. The mean GiC was
13.49 cm, with the maximum of 21.62 cm and the minimum of 7.40 cm. Significant positive
phenotypic correlations (p < 0.01) were found between GiD and GiC, and between GiW
and GiC, with r values of 0.63 and 0.54, respectively.

ILP markers identified in the Amazonian population as associated with the girth
growth traits were tested by looking for significant markers in the rubber tree breeding
lines, to determine whether the association between marker and trait was maintained over
the breeding lines. The results revealed that one allele of COBL064_1 and three of PIN227_1
remained significantly (p < 0.05 or 0.01) associated with GiD and GiW in the rubber tree
breeding lines, and one allele of CAD76 with GiC (Table 2). In the case of COBL064_1,
individuals carrying the 380-bp allele showed a significant (p < 0.05) reduction in GiD and
GiW. In the case of PIN227_1, individuals carrying the 261-bp allele showed a significant
increase in GiD and GiW, whereas individuals carrying the 289- and 298-bp alleles showed
a significant reduction in both. In the case of CAD076, individuals carrying the 263-bp
allele showed a significant reduction in GiC.

Table 2. Allelic effect on girth growth traits of each significant ILP marker in rubber tree breeding lines.

Marker Size (bp)
GiD GiW GiC

p-Value Effect p-Value Effect p-Value Effect

COBL4 380 0.033 −1.52 0.044 −1.68 ns −0.08

PIN227
261 0.01 1.22 0.026 1.16 ns −0.20
289 0.005 −1.66 0.01 −1.74 ns −0.29
298 0.013 −2.02 0.027 −2.17 ns −0.41

PIN220 461 0.025 3.98 0.023 4.70 ns 3.32

CAD76
263 ns −0.93 ns −1.07 0.017 −1.49
312 ns 0.41 ns 0.49 0.043 1.25

ns = non-significant.

2.5. Identification of Polymorphism and Linkage Disequilibrium within COBL Gene

Given the strongest association between the ILP marker in the COBL gene with GID
and GIW, we further investigated this particular variant using SMRT CCS technology.
Three specific primer pairs yielded high-quality sequences. The sequencing of the COBL
gene with a total length of 4236 bp revealed 128 SNPs and 178 indels. The amplified regions
covered 6 exons, 5 introns, and the 3’ UTR. Of 306 polymorphic sites, 72 and 83 were
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located in exons, and introns, respectively, and 151 polymorphic sites within the 3’ UTR.
The LD between pairs of polymorphic sites ranged from 6.7 × 10−7 to 1.0 with an average
r2 = 0.24. Plotting r2 values against physical distance between polymorphic pairs (Figure 1)
indicated the LD decay of 650 bp. i.e., the maximum physical distance for genetically
linked markers. This result suggested that the LD of the SNPs within this gene did not
extend over the entire gene region.
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2.6. Association between SNP/Indel within COBL and Growth Girth

When pairs of adjacent loci were found to demonstrate LD, only one of the two SNPs
from each pair was used in marker–trait association analysis, leaving 55 SNPs and 162
Indels in the candidate gene. Of these, 63, 55 and 99 polymorphic sites were located in
exons, introns, and the 3’ UTR, respectively, of this gene. The FarmCPU model showed a
straight line close to 1:1 with a slightly deviated tail in the Q-Q plots, suggesting that this
model controlled both false positives and false negatives (Figure 2). FarmCPU showed
a trend of association with GID and GIW toward 3’ UTR of the COBL gene. The most
associated position with GID (Table 3 and Figure 3) was the SNP at 5589 bp (p = 6.50 × 10−5;
q = 0.014) explaining 11.1% of the phenotypic variance. The suggestive association (p < 0.01)
with GID and GIW was the SNP at 3221 in intron5.



Plants 2021, 10, 1440 6 of 14
Plants 2021, 10, x 6 of 14 
 

 

   

Figure 2. Quantile-quantile plots of estimated –log10 (p) from association analysis using MLM model and FarmCPU and 
three traits: (A)girth in the dry season (GiD) (B) girth in the wet season (GiW) and (C) total girth increment (GiC). The 
black line is the expected line under the null distribution. The blue line represents the observed p values using the MLM 
model, and the red line using FarmCPU. 

Table 3. Markers and trait association mapping from FarmCPU model. 

Trait 1 Marker Position 2 p-Value 3 Phenotypic Variation (%) 

GiD 

3’UTR 5589 6.50 × 10−5 * 11.1 
intron5 3221 1.69 × 10−3 7.0 
intron1 1475 6.63 × 10−3 6.1 
3’UTR 4406 6.69 × 10−3 10.1 

GiW 3’UTR 5589 1.56 × 10−3 9.8 
intron5 3221 7.64 × 10−3 6.4 

GiC 3’UTR 5526 6.89 × 10−3 3.6 
1 GiD = girth in the dry season, GiW = girth in the wet season, and GiC = total girth increment; 2 

Position in GenBank accession AJJZ010406963.1; 3 * Significant after FDR correction. 

Figure 2. Quantile-quantile plots of estimated −log10 (p) from association analysis using MLM model and FarmCPU and
three traits: (A)girth in the dry season (GiD) (B) girth in the wet season (GiW) and (C) total girth increment (GiC). The black
line is the expected line under the null distribution. The blue line represents the observed p values using the MLM model,
and the red line using FarmCPU.

Table 3. Markers and trait association mapping from FarmCPU model.

Trait 1 Marker Position 2 p-Value 3 Phenotypic Variation (%)

GiD

3’ UTR 5589 6.50 × 10−5 * 11.1
intron5 3221 1.69 × 10−3 7.0
intron1 1475 6.63 × 10−3 6.1
3’ UTR 4406 6.69 × 10−3 10.1

GiW
3’ UTR 5589 1.56 × 10−3 9.8
intron5 3221 7.64 × 10−3 6.4

GiC 3’ UTR 5526 6.89 × 10−3 3.6
1 GiD = girth in the dry season, GiW = girth in the wet season, and GiC = total girth increment; 2 Position in
GenBank accession AJJZ010406963.1; 3 * Significant after FDR correction.



Plants 2021, 10, 1440 7 of 14
Plants 2021, 10, x 7 of 14 
 

 

 
Figure 3. Marker–trait associations across the COBL gene. Associations were based on FarmCPU. 
The p-value of the marker is given at each position (p-value was decimal log transformed). (A) girth 
in the dry season (GiD), (B) girth in the wet season (GiW), and (C) total girth increment (GiC). 

3. Discussion 
Increasing the girth growth is one important step to further improve economic values 

of the rubber tree. In the present study, we demonstrated for the first time an association 
between girth growth traits and allelic variations at various candidate gene loci using the 
ILP markers. Comparison of the EST sequences with the whole-genome shotgun contigs 
of the rubber tree enabled the design of 235 primer pairs for ILP markers. This primer 

Figure 3. Marker–trait associations across the COBL gene. Associations were based on FarmCPU.
The p-value of the marker is given at each position (p-value was decimal log transformed). (A) girth
in the dry season (GiD), (B) girth in the wet season (GiW), and (C) total girth increment (GiC).

3. Discussion

Increasing the girth growth is one important step to further improve economic values
of the rubber tree. In the present study, we demonstrated for the first time an association
between girth growth traits and allelic variations at various candidate gene loci using the
ILP markers. Comparison of the EST sequences with the whole-genome shotgun contigs
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of the rubber tree enabled the design of 235 primer pairs for ILP markers. This primer
design strategy explicitly focused on single-copy genes due to complexities generated by
the presence of paralogous copies [23,24].

The high PCR success rate (97%) confirmed that the predicted exon/intron junction
sites could be utilized to develop ILP markers in this study. A total of 115 polymorphic
ILPs from 26 candidate genes involved in secondary growth, were selected. The PIC varied
from 0.06 to 0.88, with an average of 0.44. The results were similar to the findings from
EST-SSR markers [25] but higher than the results from ILP markers developed from a
previous study [26]. Based on these ILP markers, model-based Bayesian analysis and PCA
suggested that the accessions of Amazonian rubber trees fell into two clusters. These results
were consistent with previous reports of two distinct clusters within this population, using
SNPs [1] and comparable with those reported for the IRRDB collection [27–29]. Our results
suggested that the intronic regions were sufficiently varied to act as marker resources when
determining the population structure in rubber tree.

Gene-based markers are a type of marker with the most potential to bridge the
gap between structural polymorphisms and functional diversity, since these gene-based
markers are related to phenotypic variations. Here, we demonstrate the utility of ILP
markers in identifying the best candidate gene for girth growth. COBL064_1 derived from
COBL4 showed the strongest association with girth across two seasons and explained the
relatively high portion of the phenotypic variance. This marker also remained significantly
associated with GiD and GiW in the rubber tree breeding lines. The COBL4 gene is
a member of the COBRA family, which encodes glycosyl phosphatidylinositol (GPI)-
anchored proteins that regulate cellulose deposition and oriented cell expansion in the plant
cell wall [30]. Linkage analysis in a full-sib family revealed that COBL4 was the associated
gene in a quantitative trait locus (QTL) region for cellulose content in Eucalyptus [10,31]. In
the present study, the associated polymorphism of the COBL064_1 marker is located in the
intron 5. The fact that sequence variants located within a noncoding region are associated
with the variation in girth growth traits could be explained by two hypotheses. Firstly,
the detected variants are in LD with causal polymorphisms in regulatory sequences that
are responsible for the trait variance. Secondly, the nucleotide change within the intron
is involved in regulatory functions like alternative splicing, and therefore, can affect the
structure, function, and expression level of proteins [32,33]. The important next step to
understanding the genetic contributions to the girth growth traits is identifying which
SNP(s) are likely to be causal at this candidate gene.

In order to analyze whether genetic variants in COBL4 might be mediating gene-based
marker–trait association, we applied candidate gene association mapping to identify SNPs
with the strongest association with the traits. Several studies using this approach in plants
have been able to successfully identify associations between SNPs in candidate genes and
phenotypic traits [3,7,34]. In the present study, the COBL4 gene was selected for candidate
gene association mapping due to the known functional relevance to growth properties,
and its association with the girth growth traits in the natural population and the breeding
lines. We applied targeted sequencing using SMRT technology to assess sequence variation.
The long-read sequencing technologies such as PacBio SMRT can allow for the assembly
of multigene family clusters and serve to more accurately characterize patterns of gene
copy variation in gene families [35]. The CCS technology derives a consensus sequence
from multiple passes of a single template molecule, producing accurate reads from noisy
individual subreads [36–38].

The power of identifying SNP and mapping resolution for complex traits depend on
the LD exploited in the population by the statistical model [39]. The fast LD decay over
physical distance was observed in the COBL4 in the Amazonian population.

From our results, FarmCPU, the multilocus model, provides a robust model for
association mapping, effectively suppressing false positives. This result corresponds to the
previous study demonstrating that the FarmCPU model could reduce both false positives
and false negatives in soybean and maize with varying LD decays rates [40].
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SMRT CCS of the candidate gene identified a SNP (CA5589) in the 3’ UTR most
associated with the girth growth traits. The detected SNP is in LD with COBL064_1
(p = 0.006). The intragenic LD decayed within 650 bp in this gene. Thus, the SNP showing
genetic association is likely to be the causal variant or located in close proximity to the
causative polymorphisms. The 3’ UTR of messenger RNAs may contain cis-regulatory
elements that affect gene expression by altering mRNA stability and translation [41].
Additional studies are needed to better elucidate the mechanisms underlying these putative
associations. Overall, this study showed that the cost-effective method of ILP gene-based
markers can assist in identification of SNPs in the candidate gene associated with girth
growth. A combination of the SNP markers identified in this study and our previous
report [1] can be applied to rubber tree breeding programs for improvement of girth
growth by marker-assisted selection.

4. Materials and Methods
4.1. Plant Materials and Field Data

The Amazonian population comprised 170 accessions from three Brazilian states
divided as follows: 14 from Acre, 91 from Rondoma, 64 from Mato Grosso and one of
unknown origin. The details of the materials and field experiments were described in the
previous study of Chanroj et al. [1]. Briefly, all trees were propagated by grafting with five
replicates, and planted at a spacing of 3× 7 m. Measurements were carried out individually
on each tree. The experiment was conducted in 1994 at the Nong Khai Rubber Research
Center (NKRR) of Nong Khai Province, the northeast region of Thailand. To evaluate the
growth of individual trees, the girth (circumference at 1.7 m) was measured in centimeters
(cm). Means were then calculated based on the total replicates. Measurements were taken
in March (dry) and September (wet) in 2000, 2002, and 2004. The trees generally reached
a latex tappable size. The total change in girth (GiC) was also calculated by subtraction
from the circumferences in the 2000 and 2004 data. Three traits were used for association
analysis, girth in the dry (GiD), and wet (GiW) seasons and GiC.

4.2. Candidate Gene Selection

Gene selection (Table 4) was based on earlier reports of secondary growth development
and differential gene expression in Eucalyptus spp. [11,13,42,43] and of the genes involved
in xylem/wood development in loblolly pine (Pinus taeda L.) [9]. Twenty six genes were
selected from four function classes: four from cellulose synthesis (CesA2, CesA3, CaS and
COBL4), eight from lignin synthesis (4CL, C4H, CAD, CCoAMT, CCR, COMT, PAL, and
Peroxidase2, 12 associated with the transcription factors regulating secondary cell wall
development (BTF3, FRA2, HD-zip, KNAT, LIM, MOR1, MYB, NAC1, NtLIM1, PIN1, RIC1
and APL), and two from cell expansion (COB, and KORRIGAN).

Table 4. Candidate genes for secondary growth development used in the study.

Functional Class Gene Full Name No. of ESTs References

Cellulose 1 CesA2 Cellulose synthase2 1 [9,13]

synthesis
2 CesA3 Cellulose synthase3 1 [9,13]
3 COBL4 COBRA-like protein 4 1 [10,13]
4 CaS Callose synthase 10 3 [9]

Lignin synthesis

5 4CL 4-coumarate:CoA ligase 1 [9,11–13]
6 CAD Cinnamyl alcohol dehydrogenase 3 [9–13]
7 COMT1 Caffeic O-methylransferase1 2 [9,11,13]

8 CCoAMT Caffeoyl-CoA
O-methyltransferase 3 [9,10,13]

9 CCR Cinnamoyl-CoA reductase 2 [9–12]
10 C4H1 Cinnamate 4-hydroxylase 1 2 [10,11]
11 PAL Phenylalanine ammonia-lyase 1 [9,11]
12 Peroxidase2 Peroxidase 2 1 [9]
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Table 4. Cont.

Functional Class Gene Full Name No. of ESTs References

Transcription 13 LIM LIM gene for LIM transcription
factor 2 [9,13]

factors

14 MYB1 MYB1 gene for MYB transcription
factor 1 5 [9,10,13]

15 BTF3 Transcription factor BTF3
homolog 4 2 [13]

16 HD-zip Homeobox-leucine zipper protein
ANTHOCYANINLESS 2 1 [13]

17 NAC1 NAC domain-containing protein
100-like 4 [13]

18 APL myb family transcription factor
APL 1 [9]

19 KNAT Homeobox protein knotted-1-like 1 [9]

20 NtLIM1 Eglim1 gene for transcription
factor lim1 2 [10]

21 MOR1 Protein MOR1 1 [9]

22 PIN1 Auxin efflux carrier component
1-like 1 [9]

23 RIC1 CRIB domain-containing protein
RIC7 1 [9]

24 FRA2 Katanin p60 ATPase-containing
subunit A1 1 [9]

Cell expansion 25 COB
COBRA-like extracellular

glycosyl-phosphatidyl
inositol-anchored protein family

1 [9]

26 KORRIGAN Korrigan 1 [9,10]

Total 26 45

4.3. ILP Marker Development

Gene transcripts were used as queries in a BLASTN program search of the whole-
genome shotgun sequences of rubber tree cultivar RRIM 600 [44] in the NCBI database.
Regions of similarity (E-value ≤ 10−4 and an identity > 65%) between selected sequences
and whole-genome shotgun contigs were identified using BLAST. The position and length
of introns within the rubber tree transcripts were predicted from the alignment results. The
specific primers flanking the predicted intron positions were designed using the Primer3
program [45] with the default settings. Amplification by PCR was performed in a 20 µL
reaction mixture containing 10 ng template DNA, 1 × PCR buffer (20 mM Tris pH 9.0,
100 mM KCl, 3.0 mM MgCl2), 200 µM of each of the four dNTPs, 1.5 µM of each of the
forward and reverse primers, and 0.5 U Taq DNA polymerase. Thermal cycling conditions
were as follows: 3 min initial denaturation at 95 ◦C, 30 cycles of 30 s for denaturation at
95 ◦C, 30 s of annealing at 52–60 ◦C (depending on the combination of primers), a 30 s
extension at 72 ◦C, and a final 5 min extension at 72 ◦C. PCR products were separated on
6% denaturing polyacrylamide gels and silver-stained. Since large intron fragments can
produce inaccurate scores when differences in fragment size are small, and can reduce
the rate of PCR amplification, the polymorphic ILP markers were selected between 150
and 800 bp in length. Allelic variation was calculated from the genotypic profiles of the
ILP markers based on the number of alleles and the polymorphism information content
(PIC; [46]), using PowerMarker 3.25 [47]. The genetic diversity parameters included the
number of alleles (Na), expected heterozygosity (He), and observed heterozygosity (Ho).

4.4. Population Structure and Linkage Disequilibrium Analysis of ILP Markers

To test for the potential applications, the polymorphic ILP markers were used to
evaluate the genetic population structure of the Amazonian accessions used in the present
study. Two methods were used to determine the population structure. First, a two-
dimensional diagram of principal coordinates analysis (PCA) was produced based on a
genetic distance (GD) matrix by NTSYS-pc v. 2.0 [48]. The second method used the model-
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based Bayesian analysis in the software STRUCTURE v. 2.3.4 [49]. The analysis was run
10 times for each K value from K = 1 to K = 10. The burn-in length was set to 100,000 and the
number of iterations to 100,000. The ad hoc statistics defined by Evanno et al. [50] as ∆K
were used. Based on the posterior probability of membership (Q) of a given accession, the
accession was classified as an admixture with a membership probability of Q < 0.70. The
squared correlation coefficients (r2) between ILP markers were used to quantify intragenic
and intergenic LD, computed using TASSEL 2.1 [51]. The significance of this measure was
assessed using p-values after Bonferroni correction for multiple tests (α = 0.05).

4.5. Association Analysis of ILP Markers

To assess the effect of population structure (Q) and relative kinship (K) on traits in the
Amazonian germplasm accessions, Q and K were inferred from an independent set of 1820
SNPs as previously described [1] to avoid dependency among terms in the model and to
prevent the structure from absorbing the QTL effects from the model [52,53]. ILP markers
were used to perform association analyses through general linear models (GLM) and the
mixed linear model (MLM). The TASSEL V2.1 [51] software package was used to analyze
the multiallelic genotypic data of ILP markers and the phenotypic data of girth traits using
the GLM without correction, the GLM model corrected with the Q-matrices (GLM + Q) or
PCA (GLM + PCA), and the MLM incorporated both K and Q matrices (MLM + K + Q)
or PCA (MLM + K + PCA). All models were assessed for their ability to control for type I
errors by plotting the Quantile-Quantile (Q-Q) p values for the markers, where uniformly
distributed p values indicate proper control. The best-fit model was selected for association
analysis. For multiple comparison adjustment, the marker–trait association was considered
significant if the adjusted p-value following FDR (q value) was <0.05.

4.6. Validation of the Identified ILP Markers

To confirm the effectiveness of the ILPs detected, markers identified by association
mapping were further validated using 95 rubber tree breeding lines with a range of growth
girths. These breeding lines were generated from 23 parents, propagated by grafting
with three replicates, and planted in seven-tree row plots at a spacing of 3 × 7 m. The
experiment was conducted in the year 2000 at NKRR. Girth measurements were taken
collected continuously in March (GiD) and September (GiW) between 2003 and 2006. GiC
was calculated by subtraction from the circumferences of years 2003 and 2006. These
evaluation periods were treated as independent environments. DNA isolation and PCR
amplification were performed as described previously for ILP marker development. The
amplified product was resolved using a ZAG™ DNA Analyser.

4.7. Library Preparation and SMRT Sequencing of the Candidate Gene

The candidate gene, COBL, that encodes glycosyl phosphatidylinositol (GPI)-anchored
proteins regulating cellulose deposition and oriented cell expansion in the plant cell wall,
was selected for sequencing in the Amazonian population. We applied targeted sequencing
using Pacific Biosciences (PacBio) single-molecule real-time (SMRT) circular consensus
sequencing (CCS) to assess sequence variation. Two-step barcoding for each individual
was performed with M13-tailed primers. The target regions were first amplified with pairs
of gene-specific primers with M13 forward and reverse sequence tails (Table S5). The COBL-
specific primers were used to generate a 4236 kb fragment covering 6 exons, 5 introns, and
3’ UTR (GenBank: AJJZ010406963.1). Thermal cycling conditions were as follows: 3 min
initial denaturation at 95 ◦C, 35 cycles of 30 s for denaturation at 95 ◦C, 60 s of annealing
at 52–60 ◦C (depending on the combination of primers), a 45 s extension at 72 ◦C, and
a final 5 min extension at 72 ◦C. Sample-specific barcodes were introduced in a second
PCR with identical conditions as the first, but using 3 µL of the purified product from the
first step PCR. A SMRT bell library and sequencing were performed as recommended by
Pacific Biosciences.
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4.8. Linkage Disequilibrium and Candidate Gene Association Mapping of COBL4

The raw reads generated from SMRT sequencing were processed using the Pacific
Biosciences (CA, USA), SMRT analysis (v2.3.0) software package. SNPs within the can-
didate gene sequence were selected for the linkage disequilibrium analysis based on a
minor allele frequency threshold of 5%. The extent of LD was estimated by nonlinear
regression analysis on the basis of intragenic r2 values [1]. When pairs of adjacent loci
were found to demonstrate LD, one of the two SNP/Indels from each pair was used for
marker–trait association analysis. Associations between the biallelic genotypic data of
SNP/Indel markers and the mean girth traits were analyzed using the mixed linear model
(a single locus model) incorporated both K, and Q matrices using TASSEL v. 5.2.54 [51],
and by applying FarmCPU (Fixed and random model Circulating Probability Unification;
a multilocus model) [54] in R. The relative distribution of −log10 p-values was observed
for each SNP/Indel association and compared individually with the expected distribution
using the Q-Q plot. The best-fit model was selected for association analysis. To control for
type I errors due to multiple testing, the marker–trait association was considered significant
if the adjusted p-value following FDR was <0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10071440/s1, Figure S1: Population structure of 170 Amazonian accessions based
on 115 ILP markers. (a) The most probable number of clusters (K), estimated using ad-hoc ∆K
statistics. (b) Bayesian analysis of population structure based on K = 2. Each accession is represented
by a thin horizontal bar partitioned into two colored segments whose length is proportional to the
estimated membership coefficient (Q). (c) Principal component analysis (PCA). The triangles, squares,
and circles represent accessions from Acre, Mato Grosso, and Rondonia, respectively.; Figure S2:
Quantile-quantile plots of estimated −log10 (p) from association analysis using three models and
three traits: girth in the dry (GiD) and wet (GiW) seasons and total girth increment (GiC). The black
line is the expected line under the null distribution. The blue line represents the observed p values
using the GLM model, the red line those using the GLM with Q or PCA model, and the green
line those using the MLM model with Q or PCA and K.; Table S1: Characteristics of selected 115
ILP markers.; Table S2: Linkage disequilibrium of 59 pairs based on estimated r2 ≥ 0.1.; Table S3:
Association analysis of 115 ILP markers.; Table S4: Primers used for the amplification of COBL gene.;
Table S5. Primers used for the amplification of COBL gene.
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